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Chapter 1

Introduction and Book Overview

1.1 Book Objective

Wireless communication is one of the most vibrant research areas in the communication
field today. While it has been a topic of study since the 60’s, the past decade has
seen a surge of research activities in the area. This is due to a confluence of several
factors. First is the explosive increase in demand for tetherless connectivity, driven
so far mainly by cellular telephony but is expected to be soon eclipsed by wireless
data applications. Second, the dramatic progress in VLSI technology has enabled
small-area and low-power implementation of sophisticated signal processing algorithms
and coding techniques. Third, the success of second-generation (2G) digital wireless
standards, in particular the IS-95 Code Division Multiple Access (CDMA) standard,
provides a concrete demonstration that good ideas from communication theory can
have a significant impact in practice. The research thrust in the past decade has led
to a much richer set of perspectives and tools on how to communicate over wireless
channels, and the picture is still very much evolving.

There are two fundamental aspects of wireless communication that make the prob-
lem challenging and interesting. These aspects are by and large not as significant in
wireline communication. First is the phenomenon of fading: the time-variation of the
channel strengths due to the small-scale effect of multipath fading, as well as larger
scale effects such as path loss via distance attenuation and shadowing by obstacles.
Second, unlike in the wired world where each transmitter-receiver pair can often be
thought of as an isolated point-to-point link, wireless users communicate over the air
and there is significant interference between them in wireless communication. The
interference can be between transmitters communicating with a common receiver (e.g.
uplink of a cellular system), between signals from a single transmitter to multiple re-
ceivers (e.g. downlink of a cellular system), or between different transmitter-receiver
pairs (e.g. interference between users in different cells). How to deal with fading and
with interference is central to the design of wireless communication systems, and will
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be the central themes of this book. Although this book takes a physical-layer per-
spective, it will be seen that in fact the management of fading and interference has
ramifications across multiple layers.

The book has two objectives and can be roughly divided into two corresponding
parts. The first part focuses on the basic and more traditional concepts of the field:
modeling of multipath fading channels, diversity techniques to mitigate fading, coher-
ent and noncoherent receivers, as well as multiple access and interference management
issues in existing wireless systems. Current digital wireless standards will be used as
examples. The second part deals with the more recent developments of the field. Two
particular topics are discussed in depth: opportunistic communication and space-time
multiple antenna communication. It will be seen that these recent developments lead
to very different points of view on how to deal with fading and interference in wireless
systems. A particular theme is the multifaceted nature of channel fading. While fading
has traditionally been viewed as a nuisance to be counteracted, recent results suggest
that fading can in fact be viewed as beneficial and exploited to increase the system
spectral efficiency.

The expected background is solid undergraduate courses in signal and systems,
probability and digital communication. It is expected that the readers of this book
may have a wide range of backgrounds, and some of the appendices will be catered to
providing supplementary background material. We will also try to introduce concepts
from first principles as much as possible. Information theory has played a significant
role in many of the recent developments in wireless communication, and we will use it
as a coherent framework throughout the book. The level of sophistication at which we
use information theory is however not high; we will cover all the required background
in this book.

1.2 Wireless Systems

Wireless communication, despite the hype of the popular press, is a field that has
been around for over a hundred years, starting around 1897 with Marconi’s successful
demonstrations of wireless telegraphy. By 1901, radio reception across the Atlantic
Ocean had been established; thus rapid progress in technology has also been around
for quite a while. In the intervening hundred years, many types of wireless systems
have flourished, and often later disappeared. For example, television transmission,
in its early days, was broadcast by wireless radio transmitters, which is increasingly
being replaced by cable transmission. Similarly, the point to point microwave circuits
that formed the backbone of the telephone network are being replaced by optical fiber.
In the first example, wireless technology became outdated when a wired distribution
network was installed; in the second, a new wired technology (optical fiber) replaced
the older technology. The opposite type of example is occurring today in telephony,
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where wireless (cellular) technology is partially replacing the use of the wired telephone
network (particularly in parts of the world where the wired network is not well devel-
oped). The point of these examples is that there are many situations in which there
is a choice between wireless and wire technologies, and the choice often changes when
new technologies become available.

In this book, we will concentrate on cellular networks, both because they are of
great current interest and also because the features of many other wireless systems can
be easily understood as special cases or simple generalizations of the features of cellular
networks. A cellular network consists of a large number of wireless subscribers who
have cellular telephones (mobile users), that can be used in cars, in buildings, on the
street, or almost anywhere. There are also a number of fixed base stations, arranged
to provide coverage (via wireless electromagnetic transmission) of the subscribers.

The area covered by a base station, i.e., the area from which incoming calls reach
that base station, is called a cell. One often pictures a cell as a hexagonal region with
the base station in the middle. One then pictures a city or region as being broken
up into a hexagonal lattice of cells (see Figure 1.2a). In reality, the base stations are
placed somewhat irregularly, depending on the location of places such as building tops
or hill tops that have good communication coverage and that can be leased or bought
(see Figure 1.2b). Similarly, the mobile users connected to a base station are chosen
by good communication paths rather than geographic distance.
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Part (a): an oversimplified view
in which each cell is hexagonal.

Part (b): a more realistic case where base
stations are irregularly placed and cell phones
choose the best base station

Figure 1.1: Cells and Base stations for a cellular network

When a mobile user makes a call, it is connected to the base station to which it
appears to have the best path (often the closest base station). The base stations in a
given area are then connected to a mobile telephone switching office (MTSO, also called
a mobile switching center MSC) by high speed wire connections or microwave links.
The MTSO is connected to the public wired telephone network. Thus an incoming call
from a mobile user is first connected to a base station and from there to the MTSO and
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then to the wired network. From there the call goes to its destination, which might
be an ordinary wire line telephone, or might be another mobile subscriber. Thus, we
see that a cellular network is not an independent network, but rather an appendage
to the wired network. The MTSO also plays a major role in coordinating which base
station will handle a call to or from a user and when to handoff a user from one base
station to another.

When another telephone (either wired or wireless) places a call to a given user, the
reverse process takes place. First the MTSO for the called subscriber is found, then the
closest base station is found, and finally the call is set up through the MTSO and the
base station. The wireless link from a base station to a mobile user is interchangeably
called the downlink or the forward channel, and the link from a user to a base station
is called the uplink or a reverse channel. There are usually many users connected to a
single base station, and thus, for the forward channels, the base station must multiplex
together the signals to the various connected users and then broadcast one waveform
from which each user can extract its own signal. The combined channel from the
one base station to the multiple users is called a broadcast channel. For the reverse
channels, each user connected to a given base station transmits its own waveform, and
the base station receives the sum of the waveforms from the various users plus noise.
The base station must then separate out the signals from each user and forward these
signals to the MTSO. The combined channel from each user to the base station is
called a multiaccess channel.

Older cellular systems, such as the AMPS system developed in the U.S. in the
80’s, are analog. That is, a voice waveform is modulated on a carrier and transmitted
without being transformed into a digital stream. Different users in the same cell
are assigned different modulation frequencies, and adjacent cells use different sets of
frequencies. Cells sufficiently far away from each other can reuse the same set of
frequencies with little danger of interference.

All of the newer cellular systems are digital (i.e., they have a binary interface). Since
these cellular systems, and their standards, were originally developed for telephony, the
current data rates and delays in cellular systems are essentially determined by voice
requirements. At present, these systems are mostly used for telephony, but both the
capability to send data and the applications for data are rapidly increasing. Later on
we will discuss wireless data applications at higher rates than those compatible with
voice channels.

As mentioned above, there are many kinds of wireless systems other than cellular.
First there are the broadcast systems such as AM radio, FM radio, TV, and paging
systems. All of these are similar to the broadcast part of cellular networks, although the
data rates, the size of the areas covered by each broadcasting node, and the frequency
ranges are very different. Next, there are wireless LANs (local area networks) These are
designed for much higher data rates than cellular systems, but otherwise are similar to
a single cell of a cellular system. These are designed to connect PC’s, shared peripheral
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devices, large computers, etc. within an office building or similar local environment.
There is little mobility expected in such systems and their major function is to avoid
the mazes of cable that are strung around office buildings. There is a similar (even
smaller scale) standard called Bluetooth whose purpose is to reduce cabling in an office
and simplify transfers between office and hand held devices. Finally, there is another
type of LAN called an ad hoc network. Here, instead of a central node (base station)
through which all traffic flows, the nodes are all alike. The network organizes itself
into links between various pairs of nodes and develops routing tables using these links.
Here the network layer issues of routing, dissemination of control information, etc. are
of primary concern rather than the physical layer issues of major interest here.

One of the most important questions for all of these wireless systems is that of
standardization. For cellular systems in particular, there is a need for standardization
as people want to use their cell phones in more than just a single city. There are
already three mutually incompatible major types of digital cellular systems. One is
the GSM system which was standardized in Europe but now used worldwide, another
is the TDMA (time-division multiple access) standard developed in the U.S. (IS-136),
and a third is CDMA (code division multiple access) (IS-95). We discuss and contrast
these briefly later. There are standards for other systems as well, such as the IEEE
802.11 standards for wireless LANs.

In thinking about wireless LANs and wide-area cellular telephony, an obvious ques-
tion is whether they will some day be combined into one network. The use of data rates
compatible with voice rates already exists in the cellular network, and the possibility
of much higher data rates already exists in wireless LANs, so the question is whether
very high data rates are commercially desirable for the standardized wide-area cellular
network. The wireless medium is a much more difficult medium for communication
than the wired network. The spectrum available for cellular systems is limited, the
interference level is significant, and rapid growth is increasing the level of interference.
Adding higher data rates will exacerbate this interference problem. In addition, the
screen on hand held devices is small, limiting the amount of data that can be presented
and suggesting that many existing applications of such devices do not need very high
data rates. Thus whether very high speed data for cellular networks is necessary or
desirable in the near future may depend very much on new applications. On the other
hand, cellular providers are anxious to provide increasing data rates so as to be viewed
as providing more complete service than their competitors.

1.3 Book Outline

The central object of interest is the wireless fading channel. Chapter 2 introduces the
multipath fading channel model that we use for the rest of the book. Starting from a
continuous-time passband channel, we derive a discrete-time complex baseband model
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more suitable for analysis and design. We explain the key physical parameters such
as coherence time, coherence bandwidth, Doppler spread and delay spread and survey
several statistical models for multipath fading (due to constructive and destructive
interference of multipaths). There have been many statistical models proposed in the
literature; we will be far from exhaustive here. The goal is to have a small set of
example models in our repertoire to illustrate the basic communication phenomena we
will study.

Chapter 3 introduces many of the issues of communicating over fading channels in
the simplest point-to-point context. We start by looking at the problem of detection of
uncoded transmission over a narrowband fading channel. We consider both coherent
and noncoherent reception, i.e. with and without channel knowledge at the receiver
respectively. We find that in both cases the performance is very poor, much worse
than an AWGN channel with the same signal-to-noise ratio (SNR). This is due to a
significant probability that the channel is in deep fade. We study various diversity
techniques to mitigate this adverse effect of fading. Diversity techniques increase reli-
ability by sending the same information through multiple independently faded paths
so that the probability of successful transmission is higher. Some of these techniques
we will study include:

• interleaving of coded symbols over time;

• multipath combining or frequency hopping in spread-spectrum systems to obtain
frequency diversity

• use of multiple transmit or receive antennas, via space-time coding.

• macrodiversity via combining of signals received from or transmitted to multiple
base stations (soft handoff)

In some scenarios, there is an interesting interplay between channel uncertainty and
the diversity gain: as the number of diversity branches increases, the performance of
the system first improves due to the diversity gain but then subsequently deteriorates
as channel uncertainty makes it more difficult to combine signals from the different
branches.

In Chapter 4 we shift our focus from point-to-point communication to studying
cellular systems as a whole. Multiple access and inter-cell interference management
are the key issues that come to the forefront. We explain how existing digital wireless
systems deal with these issues. We discuss the concepts of frequency reuse and cell sec-
torization, and contrast between narrowband systems such as GSM and IS-136, where
users within the same cell are kept orthogonal and frequency is reused only in cells far
away, and CDMA systems, where the signals of users both within the same cell and
across different cells are spread across the same spectrum, i.e. frequency reuse factor of
1. We focus particularly on the design principles of spread-spectrum CDMA systems.
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In addition to the diversity techniques of time-interleaving, multipath combining and
soft handoff, power control and interference averaging are the key mechanisms to man-
age intra-cell and inter-cell interference respectively. All five techniques strive toward
the same system goal: to maintain the channel quality of each user, as measured by
the signal-to-interference-and-noise ratio (SINR), as constant as possible. We conclude
this chapter with the discussion of a wideband orthogonal frequency division multi-
plexing system (OFDM) which combines the advantages of CDMA and narrowband
systems.

In Chapter 5 we study the basic information theory of wireless channels. This gives
us a higher level view of the tradeoffs involved in the earlier chapters as well as lays
the foundation for understanding the more modern developments in the subsequent
chapters. We use as a baseline for comparison the performance over the (non-faded)
additive white Gaussian noise (AWGN) channel. We introduce the information theo-
retic concept of channel capacity as the basic performance measure. The capacity of a
channel provides the fundamental limit of communication achievable by any scheme.
For the fading channel, there are several capacity measures, relevant for different sce-
narios. Using these capacity measures, we define several resources associated with a
fading channel: 1) diversity; 2) number of degrees of freedom; 3) received power. These
three resources form a basis for assessing the nature of performance gain by the various
communication schemes studied in the rest of the book.

Chapters 6 to 10 cover the more recent developments in the field. In Chapter 6 we
revisit the problem of multiple access over fading channels from a more fundamental
point of view. Information theory suggests that if both the transmitters and the
receiver can track the fading channel, the optimal strategy to maximize the total
system throughput is to allow only the user with the best channel to transmit at any
time. A similar strategy is also optimal for the downlink (one-to-many). Opportunistic
strategies of this type yield a system wide multiuser diversity gain: the more users in
the system, the larger the gain, as there is more likely to have a user with a very strong
channel. To implement the concept in a real system, three important considerations
are: 1) fairness of the resource allocation across users, 2) delay experienced by the
individual user waiting for its channel to become good, and 3) measurement inaccuracy
and delay in feeding back the channel state to the transmitters. We discuss how these
issues are addressed in the context of IS-865 (also called HDR or CDMA 2000 1x
EV-DO), a third-generation wireless data system.

A wireless system consists of multiple dimensions: time, frequency, space and users.
Opportunistic communication maximizes the spectral efficiency by measuring when and
where the channel is good and only transmits in those degrees of freedom. In this con-
text, channel fading is beneficial in the sense that the fluctuation of the channel across
the degrees of freedom ensures that there will be some degrees of freedom in which the
channel is very good. This is in sharp contrast to the diversity-based approach we will
discuss in Chapter 3, where channel fluctuation is always detrimental and the design
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goal is to average out the fading to make the overall channel as constant as possible.
Taking this philosophy one step further, we discuss a technique, called opportunistic
beamforming, in which channel fluctuation can be induced in situations when the nat-
ural fading has small dynamic range and/or is slow. From the cellular system point of
view, this technique also increases the fluctuations of the interference imparted on ad-
jacent cells, and presents an opposing philosophy to the notion of interference averaging
in CDMA systems.

Chapters 7, 9 and 10 discuss multi-input multi-output (MIMO) systems. It has
been known for a while that a multiaccess system with multiple receive antennas allow
several users to simultaneously communicate to the receiver. The multiple antennas
in effect increase the number of degrees of freedom in the system and allow spatial
separation of the signals from the different users. It has recently been shown that
a similar effect occurs for point-to-point channel with multiple transmit and receive
antennas, i.e. even when the antennas of the multiple users are co-located. This holds
provided that the scattering environment is rich enough to allow the receive antennas
separate out the signal from the different transmit antennas. This allows the spatial
multiplexing of information. We see yet another example where channel fading is in
fact beneficial to communication.

Chapter 7 starts with a discussion of MIMO channel models. Capacity results
in the point-to-point case are presented. We then describe several signal processing
and coding schemes which achieve or approach the channel capacity. These schemes
are based on techniques including singular-value decomposition, linear and decision-
feedback equalization (also known as successive cancellation). As shown in Chapter 3,
multiple antennas can also be used to obtain diversity gain, and so a natural question
arises as how diversity and spatial multiplexing can be put in the same picture. In
Chapter 9, the problem is formulated as a tradeoff between the diversity and multi-
plexing gain achievable, and it is shown that for a given fading channel model, there
is an optimal tradeoff between the two types of gains achievable by any space-time
coding scheme. This is then used as a unified framework to assess both the diversity
and multiplexing performance of several schemes. Finally, in Chapter 10, we extend
our discussion to multiuser and multi-cellular systems. Here, in addition to provid-
ing spatial multiplexing and diversity, multiple antennas can also be used to suppress
interference.
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Chapter 2

The Wireless Channel

A good understanding of the wireless channel, its key physical parameters and the
modeling issues, lays the foundation for the rest of the book. This is the goal of this
chapter.

A defining characteristic of the mobile wireless channel is the variations of the
channel strength over time and over frequency. The variations can be roughly divided
into two types:

• large-scale fading, due to path loss of signal as a function of distance and shad-
owing by large objects such as buildings and hills. This occurs as the mobile
moves through a distance of the order of the cell size, and is typically frequency
independent.

• small-scale fading, due to the constructive and destructive interference of the
multiple signal paths between the transmitter and receiver. This occurs at the
spatial scale of the order of the carrier wavelength, and is frequency dependent.

We will talk about both types of fading in this chapter, but with more emphasis
on the latter. Large-scale fading is more relevant to issues such as cell-site planning.
Small-scale multipath fading is more relevant to the design of reliable and efficient
communication systems – the focus of this book.

We start with the physical modeling of the wireless channel in terms of electro-
magnetic waves. We then derive an input-output linear time varying model for the
channel, and define some important physical parameters. Finally we introduce a few
statistical models of the channel variation over time and over frequency.

2.1 Physical Modeling for Wireless Channels

Wireless channels operate through electromagnetic radiation from the transmitter to
the receiver. In principle, one could solve the electromagnetic field equations, in con-

16
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Figure 2.1: Channel quality varies over multiple time scales. At a slow scale, channel
varies due to large-scale fading effects. At a fast scale, channel varies due to multipath
effects.

junction with the transmitted signal, to find the electromagnetic field impinging on the
receiver antenna. This would have to be done taking into account the obstructions1

caused by ground, buildings, vehicles, etc. in the vicinity of this electromagnetic wave.
Cellular communication in the USA is limited by the Federal Communication Com-

mission (FCC), and by similar authorities in other countries, to one of three frequency
bands, one around 0.9 GHz, one around 1.9 GHz, and one around 5.8 GHz. The wave-
length Λ(f) of electromagnetic radiation at any given frequency f is given by Λ = c/f ,
where c = 3 × 108 m/s is the speed of light. The wavelength in these cellular bands
is thus a fraction of a meter, so to calculate the electromagnetic field at a receiver,
the locations of the receiver and the obstructions would have to be known within sub-
meter accuracies. The electromagnetic field equations are therefore too complex to
solve, especially on the fly for mobile users. Thus, we have to ask what we really need
to know about these channels, and what approximations might be reasonable.

One of the important questions is where to choose to place the base stations, and
what range of power levels are then necessary on the downlink and uplink channels.
To some extent this question must be answered experimentally, but it certainly helps
to have a sense of what types of phenomena to expect. Another major question is
what types of modulation and detection techniques look promising. Here again, we
need a sense of what types of phenomena to expect. To address this, we will construct
stochastic models of the channel, assuming that different channel behaviors appear
with different probabilities, and change over time (with specific stochastic properties).

1By obstructions, we mean not only objects in the line-of-sight between transmitter and receiver,
but also objects in locations that cause non-negligible changes in the electromagnetic field at the
receiver; we shall see examples of such obstructions later.
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We will return to the question of why such stochastic models are appropriate, but for
now we simply want to explore the gross characteristics of these channels. Let us start
by looking at several over-idealized examples.

2.1.1 Free space, fixed transmitting and receive antennas

First consider a fixed antenna radiating into free space. In the far field,2 the electric
field and magnetic field at any given location are perpendicular both to each other and
to the direction of propagation from the antenna. They are also proportional to each
other, so it is sufficient to know only one of them (just as in wired communication,
where we view a signal as simply a voltage waveform or a current waveform). In
response to a transmitted sinusoid cos 2πft, we can express the electric far field at
time t as

E(f, t, (r, θ, ψ)) =
αs(θ, ψ, f) cos 2πf(t− r

c
)

r
. (2.1)

Here, (r, θ, ψ) represents the point u in space at which the electric field is being mea-
sured, where r is the distance from the transmitting antenna to u and where (θ, ψ)
represents the vertical and horizontal angles from the antenna to u, respectively. The
constant c is the speed of light, and αs(θ, ψ, f) is the radiation pattern of the send-
ing antenna at frequency f in the direction (θ, ψ); it also contains a scaling factor to
account for antenna losses. Note that the phase of the field varies with fr/c, corre-
sponding to the delay caused by the radiation travelling at the speed of light.

We are not concerned here with actually finding the radiation pattern for any given
antenna, but only with recognizing that antennas have radiation patterns, and that
the free space far field behaves as above.

It is important to observe that, as the distance r increases, the electric field de-
creases as r−1 and thus the power per square meter in the free space wave decreases
as r−2. This is expected, since if we look at concentric spheres of increasing radius
r around the antenna, the total power radiated through the sphere remains constant,
but the surface area increases as r2. Thus, the power per unit area must decrease as
r−2. We will see shortly that this r−2 reduction of power with distance is often not
valid when there are obstructions to free space propagation.

Next, suppose there is a fixed receive antenna at the location u = (r, θ, ψ). The re-
ceived waveform (in the absence of noise) in response to the above transmitted sinusoid
is then

Er(f, t, u) =
α(θ, ψ, f) cos 2πf(t− r

c
)

r
(2.2)

where α(θ, ψ, f) is the product of the antenna patterns of transmitting and receive
antennas in the given direction. Our approach to (2.2) is a bit odd since we started

2The far field is the field sufficiently far away from the antenna so that (2.1) is valid. For cellular
systems, it is a safe assumption that the receiver is in the far field.
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with the free space field at u in the absence of an antenna. Placing a receive antenna
there changes the electric field in the vicinity of u, but this is taken into account by
the antenna pattern of the receive antenna.

Now suppose, for the given u, that we define

H(f) :=
α(θ, ψ, f)e−j2πfr/c

r
. (2.3)

We then have Er(f, t, u) = < [
H(f)ej2πft

]
. We have not mentioned it yet, but (2.1)

and (2.2) are both linear in the input. That is, the received field (waveform) at u in
response to a weighted sum of transmitted waveforms is simply the weighted sum of
responses to those individual waveforms. Thus, H(f) is the system function for an
LTI (linear time-invariant) channel, and its inverse Fourier transform is the impulse
response. The need for understanding electromagnetism is to determine what this
system function is. We will find in what follows that linearity is a good assumption for
all the wireless channels we consider, but that the time invariance does not hold when
either the antennas or obstructions are in relative motion.

2.1.2 Free space, moving antenna

Next consider the fixed antenna and free space model above with a receive antenna that
is moving with speed v in the direction of increasing distance from the transmitting
antenna. That is, we assume that the receive antenna is at a moving location described
as u(t) = (r(t), θ, ψ) with r(t) = r0 + vt. Using (2.1) to describe the free space electric
field at the moving point u(t) (for the moment with no receive antenna), we have

E(f, t, (r0 + vt, θ, ψ)) =
αs(θ, ψ, f) cos 2πf(t− r0

c
−vt

c
)

r0 + vt
. (2.4)

Note that we can rewrite f(t−r0/c−vt/c) as f(1−v/c)t− fr0/c. Thus, the sinusoid at
frequency f has been converted to a sinusoid of frequency f(1−v/c); there has been
a Doppler shift of −fv/c due to the motion of the observation point.3 Intuitively,
each successive crest in the transmitted sinusoid has to travel a little further before it
gets observed at the moving observation point. If the antenna is now placed at u(t),
and the change of field due to the antenna presence is again represented by the receive
antenna pattern, the received waveform, in analogy to (2.2), is

Er(f, t, (r0+vt, θ, ψ)) =
α(θ, ψ, f) cos 2πf

[
(1−v

c
)t− r0

c

]

r0 + vt
. (2.5)

3The reader should be familiar with the Doppler shift associated with moving cars. When an
ambulance is rapidly moving toward us we hear a higher frequency siren. When it passes us we hear
a rapid shift toward lower frequencies.
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This channel cannot be represented as an LTI channel. If we ignore the time varying
attenuation in the denominator of (2.5), however, we can represent the channel in
terms of a system function followed by translating the frequency f by the Doppler
shift −fv/c. It is important to observe that the amount of shift depends on the
frequency f . We will come back to discussing the importance of this Doppler shift and
of the time varying attenuation after considering the next example.

The above analysis does not depend on whether it is the transmitter or the receiver
(or both) that are moving. So long as r(t) is interpreted as the distance between the
antennas (and the relative orientations of the antennas are constant), (2.4) and (2.5)
are valid.

2.1.3 Reflecting wall, fixed antenna

Consider Figure 2.2 below in which there is a fixed antenna transmitting the sinusoid
cos 2πft, a fixed receive antenna, and a single perfectly reflecting large fixed wall. We
assume that in the absence of the receive antenna, the electromagnetic field at the
point where the receive antenna will be placed is the sum of the free space field coming
from the transmit antenna plus a reflected wave coming from the wall. As before, in
the presence of the receive antenna, the perturbation of the field due to the antenna
is represented by the antenna pattern. An additional assumption here is that the
presence of the receive antenna does not appreciably affect the plane wave impinging
on the wall. In essence, what we have done here is to approximate the solution of
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Figure 2.2: Illustration of a direct path and a reflected path

Maxwell’s equations by a method called ray tracing. The assumption here is that
the received waveform can be approximated by the sum of the free space wave from
the sending transmitter plus the reflected free space waves from each of the reflecting
obstacles.

In the present situation, if we assume that the wall is very large, the reflected wave
at a given point is the same (except for a sign change) as the free space wave that would
exist on the opposite side of the wall if the wall were not present (see Figure 2.3). This
means that the reflected wave from the wall has the intensity of a free space wave at
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a distance equal to the distance to the wall and then back to the receive antenna, i.e.,
2d− r. Using (2.2) for both the direct and the reflected wave, and assuming the same
antenna gain α for both waves, we get

Er(f, t) =
α cos 2πf

(
t− r

c

)

r
− α cos 2πf

(
t− 2d−r

c

)

2d− r
. (2.6)

WallSending
Antenna

Figure 2.3: Relation of reflected wave to wave without wall.

The received signal is a superposition of two waves, both of frequency f . The phase
difference between the two waves is:

∆θ =

(
2πf(2d− r)

c
+ π

)
−

(
2πfr

c

)
=

4πf

c
(d− r) + π. (2.7)

When the phase difference is an integer multiple of 2π, the two waves add constructively,
and the received signal is strong. When the phase difference is an odd integer multiple
of π, the two waves add destructively, and the received signal is weak. As a function
of r, this translates into a spatial pattern of constructive and destructive interference
of the waves. The distance from a peak to a valley is called the coherence distance:

∆xc :=
λ

4
(2.8)

where λ := c/f is the wavelength of the transmitted sinusoid.
The constructive and destructive interference pattern also depends on the frequency

f : for a fixed r, if f changes by

1

2

(
2d− r

c
− r

c

)−1

, (2.9)

we move from a peak to a valley. The quantity



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 22

Td :=
2d− r

c
− r

c
(2.10)

is called the delay spread of the channel: it is the difference between the propagation
delays along the two signal paths. Thus, the constructive and destructive interference
pattern changes significantly if the frequency changes by an amount of the order of
1/Td. This parameter is called the coherence bandwidth.

2.1.4 Reflecting wall, moving antenna

Suppose the receive antenna is now moving at a velocity v (Figure 2.4). As it moves
through the pattern of constructive and destructive interference created by the two
waves, the strength of the received signal increases and decreases. This is the phe-
nomenon of multipath fading. The time taken to travel from a peak to a valley is
c/(4fv): this is the time-scale at which the fading occurs, and it is called the coher-
ence time of the channel.
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Figure 2.4: Illustration of a direct path and a reflected path

An equivalent way of seeing this is in terms of the Doppler shifts of the direct and
the reflected waves. Suppose the receive antenna is at location r0 at time 0. Taking
r = r0 + vt in (2.6), we get:

Er(f, t) =
α cos 2πf [(1− v

c
)t− r0

c
]

r0 + vt
−

α cos 2πf
[
(1 + v

c
)t +

r0−2d

c

]

2d− r0 − vt
. (2.11)

The first term, the direct wave, is a sinusoid of slowly decreasing magnitude at
frequency f(1 − v/c), experiencing a Doppler shift D1 := −fv/c. The second is a
sinusoid of smaller but increasing magnitude at frequency f(1 + v/c), with a Doppler
shift D2 := +fv/c . The parameter

Ds := D2 −D1 (2.12)
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Figure 2.5: The received waveform oscillating at frequency f with a slowly varying
envelope at frequency Ds/2.

is called the Doppler spread. For example, if the mobile is moving at 60 km/h and
f = 900 MHz, the Doppler spread is 100 Hz. The role of the Doppler spread can be
visualized most easily when the mobile is much closer to the wall than to the transmit
antenna. In this case the attenuations are roughly the same for both paths, and we
can approximate the denominator of the second term by r = r0 + vt. Then, combining
the two sinusoids, we get

Er(f, t) ≈
2α sin 2πf

[
v
c
t +

(r0−d)

c

]
sin 2πf [t− d

c
]

r0 + vt
. (2.13)

This is the product of two sinusoids, one at the input frequency f , which is typically
on the order of GHz, and the other one at fv/c = Ds/2, which might be on the
order of 50Hz. Thus, the response to a sinusoid at f is another sinusoid at f with a
time-varying envelope, with peaks going to zeros around every 5 ms (Figure 2.5). The
envelope is at its widest when the mobile is at a peak of the interference pattern and
at its narrowest when the mobile is at a valley. Thus, the Doppler spread determines
the rate of traversal across the interference pattern and is inversely proportional to the
coherence time of the channel.

We now see why we have partially ignored the denominator terms in (2.11) and
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(2.13). When the difference in the length between two paths changes by a quarter
wavelength, the phase difference between the responses on the two paths changes by
π/2, which causes a very significant change in the overall received amplitude. Since
the carrier wavelength is very small relative to the path lengths, the time over which
this phase effect causes a significant change is far smaller than the time over which the
denominator terms cause a significant change. The effect of the phase changes is on
the order of milliseconds, whereas the effect of changes in the denominator are of the
order of seconds or minutes. In terms of modulation and detection, the time scales of
interest are in the range of milliseconds and less, and the denominators are effectively
constant over these periods.

The reader might notice that we are constantly making approximations in trying to
understand wireless communications, much more so than for wired communications.
This is partly because wired channels are typically time-invariant over a very long
time-scale, while wireless channels are typically time varying, and appropriate models
depend very much on the time scales of interest. For wireless systems, the most impor-
tant issue is what approximations to make. Solving and manipulating equations is far
less important. Thus, it is important to understand these modeling issues thoroughly.

2.1.5 Reflection from a Ground Plane

Consider a transmitting and a receive antenna, both above a plane surface such as
a road (see Figure 2.6). When the horizontal distance r between the antennas be-
comes very large relative to their vertical displacements from the ground plane (i.e.,
height), a very surprising thing happens. In particular, the difference between the
direct path length and the reflected path length goes to zero as r−1 with increasing r
(see Exercise 2.5).
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Figure 2.6: Illustration of a direct path and a reflected path off a ground plane

When r is large enough, this difference between the path lengths becomes small
relative to the wavelength c/f . Since the sign of the electric field is reversed on the
reflected path, these two waves start to cancel each other out. The electric wave at
the receiver is then attenuated as r−2, and the received power decreases as r−4. This
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situation is particularly important in rural areas where base stations tend to be placed
on roads4.

2.1.6 Power Decay with Distance and Shadowing

The previous example with reflection from a ground plane suggests that the received
power can decrease with distance faster than r−2 in the presence of disturbances to
free space. In practice, there are several obstacles between the transmitter and the
receiver and, further, the obstacles might also absorb some power while scattering the
rest. Thus, one expects the power decay to be considerably faster than r−2. Indeed,
empirical evidence from experimental field studies suggests that while power decay
near the transmitter is like r−2, at large distances the power decays exponentially with
distance.

The ray tracing approach used so far provides a high degree of numerical accuracy
in determining the electric field at the receiver, but requires a precise physical model
including the location of the obstacles. But here, we are only looking for the order of
decay of power with distance and can consider an alternative approach. So we look
for a model of the physical environment with the fewest number of parameters but
one that still provides useful global information about the field properties. A simple
probabilistic model with two parameters of the physical environment: the density of
the obstacles and the nature of the obstacles (scatterer or absorber) is developed in
Exercise 2.6. With each obstacle absorbing a positive fraction of the energy impinging
on it, the model allows us to show that the power decays exponentially in distance at
a rate that is proportional to the density of the obstacles.

With a limit on the transmit power (either at the base station or at the mobile)
the largest distance between the base station and a mobile at which communication
can reliably take place is called the coverage of the cell. For reliable communication,
a minimal received power level has to be met and thus the fast decay of power with
distance constrains cell coverage. On the other hand, rapid signal attenuation with
distance is also helpful; it reduces the interference between adjacent cells. As cellular
systems become more popular, however, the major determinant of cell size is the
number of mobiles in the cell. In engineering jargon, the cell is said to be capacity
limited instead of coverage limited. The size of cells has been steadily decreasing,
and one talks of micro cells and pico cells as a response to this effect. With capacity
limited cells, the inter-cell interference may be intolerably high. To alleviate the inter-
cell interference, neighboring cells use different parts of the frequency spectrum, and
frequency is reused at cells that are far enough. Rapid signal attenuation with distance
allows frequencies to be reused at closer distances.

4Since the ground plane is modeled as a perfect scatterer (i.e., there is no loss of energy in scat-
tering), there are other receiver positions where the power decays slower than r−2.
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The density of obstacles between the transmit and receive antennas depends very
much on the physical environment. For example, outdoor plains have very little by
way of obstacles while indoor environments pose many obstacles. This randomness in
the environment is captured by modeling the density of obstacles and their absorption
behavior as random numbers; the overall phenomenon is called shadowing5. The effect
of shadow fading differs from multipath fading in an important way. The duration of a
shadow fade lasts for multiple seconds or minutes, and hence occurs at a much slower
time-scale compared to multipath fading.

2.1.7 Moving Antenna, Multiple Reflectors

Dealing with multiple reflectors, using the technique of ray tracing, is in principle
simply a matter of modeling the received waveform as the sum of the responses from
the different paths rather than just two paths. We have seen enough examples, however,
to understand that finding the magnitude and phase of these responses is no simple
task. Even for the very simple large wall example in Figure 2.2, the reflected field
calculated in (2.6) is valid only at distances from the wall that are small relative to the
dimensions of the wall. At very large distances, the total power reflected from the wall
is proportional to both d−2 and to the area of the cross section of the wall. The power
reaching the receiver is proportional to (d− r(t))−2. Thus, the power attenuation from
transmitter to receiver (for the large distance case) is proportional to (d(d− r(t)))−2

rather than to (2d− r(t))−2. This shows that ray tracing must be used with some
caution. Fortunately, however, linearity still holds in these more complex cases.

Another type of reflection is known as scattering and can occur in the atmosphere or
in reflections from very rough objects. Here there are a very large number of individual
paths, and the received waveform is better modeled as an integral over paths with
infinitesimally small differences in their lengths, rather than as a sum.

Knowing how to find the amplitude of the reflected field from each type of re-
flector is helpful in determining the coverage of a base station (although, ultimately
experimentation is necessary). This is an important topic if our objective is trying to
determine where to place base stations. Studying this in more depth, however, would
take us afield and too far into electromagnetic theory. In addition, we are primarily in-
terested in questions of modulation, detection, multiple access, and network protocols
rather than location of base stations. Thus, we turn our attention to understanding
the nature of the aggregate received waveform, given a representation for each reflected
wave. This leads to modeling the input/output behavior of a channel rather than the
detailed response on each path.

5This is called shadowing because it is similar to the effect of clouds partly blocking sunlight.
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2.2 Input/Output Model of the Wireless Channel

We derive an input/output model in this section. We first show that the multipath
effects can be modeled as a linear time varying system. We then obtain a baseband
representation of this model. The continuous-time channel is then sampled to obtain
a discrete-time model. Finally we incorporate additive noise.

2.2.1 The Wireless Channel as a Linear Time-Varying System

In the previous section we focussed on the response to the sinusoidal input φ(t) =
cos 2πft. The received signal can be written as

∑
i ai(f, t)φ(t− τi(f, t)), where ai(f, t)

and τi(f, t) are respectively the overall attenuation and propagation delay at time t
from the transmitter to the receiver on path i. The overall attenuation is simply the
product of the attenuation factors due to the antenna pattern of the transmitter and
the receiver, the nature of the reflector, as well as a factor that is a function of the
distance from the transmitting antenna to the reflector and from the reflector to the
receive antenna. We have described the channel effect at a particular frequency f . If
we further assume that the ai(f, t)’s and the τi(f, t)’s do not depend on the frequency
f , then we can use the principle of superposition to generalize the above input-output
relation to an arbitrary input x(t) with nonzero bandwidth:

y(t) =
∑

i

ai(t)x(t− τi(t)). (2.14)

In practice the attenuations and the propagation delays are usually slowly varying
functions of frequency. These variations follow from the time-varying path lengths and
also from frequency dependent antenna gains. However, we are primarily interested
in transmitting over bands that are narrow relative to the carrier frequency, and over
such ranges we can omit this frequency dependence. It should however be noted that
although the individual attenuations and delays are assumed to be independent of the
frequency, the overall channel response can still vary with frequency due to the fact
that different paths have different delays.

For the example of a perfectly reflecting wall in Figure 2.4, then,

a1(t) =
|α|

r0 + vt
, a2(t) =

|α|
2d− r0 − vt

, (2.15)

τ1(t) =
r0 + vt

c
− ∠φ1

2πf
, τ2(t) =

2d− r0 − vt

c
− ∠φ2

2πf
, (2.16)

where the first expression is for the direct path and the second for the reflected path.
The term ∠φj here is to account for possible phase changes at the transmitter, reflector,
and receiver. For the example here, there is a phase reversal at the reflector so we take
φ1 = 0 and φ2 = π.
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Since the channel (2.14) is linear, it can be described by the response h(τ, t) at
time t to an impulse transmitted at time t − τ . In terms of h(τ, t), the input-output
relationship is given by:

y(t) =

∫ ∞

−∞
h(τ, t)x(t− τ)dτ. (2.17)

Comparing (2.17) and (2.14), we see that the impulse response for the fading multipath
channel is:

h(τ, t) =
∑

i

ai(t)δ(τ − τi(t)). (2.18)

This expression is really quite nice. It says that the effect of mobile users, arbitrarily
moving reflectors and absorbers, and all of the complexities of solving Maxwell’s equa-
tions, finally reduce to an input/output relation between transmit and receive antennas
which is simply represented as the impulse response of a linear time-varying channel
filter.

The effect of the Doppler shift is not immediately evident in this representation.
From (2.16) for the single reflecting wall example, τ ′i(t) = vi/c where vi is the velocity
with which the ith path length is increasing. Thus, the Doppler shift on the ith path is
−fτ ′i(t).

In the special case when the transmitter, receiver and the environment are all
stationary, the attenuations ai(t)’s and propagation delays τi(t)’s do not depend on
time t, and we have the usual linear time-invariant channel with an impulse response

h(τ) =
∑

i

aiδ(τ − τi). (2.19)

For the time-varying impulse response h(τ, t), we can define a time-varying fre-
quency response

H(f ; t) :=

∫ ∞

−∞
h(τ, t)e−j2πfτdτ =

∑
i

ai(t)e
−j2πfτi(t). (2.20)

In the special case when the channel is time-invariant, this reduces to the usual fre-
quency response. One way of interpreting H(f ; t) is to think of the system as a slowly
varying function of t with a frequency response H(f ; t) at each fixed time t. Corre-
sponding, h(τ, t) can be thought of as the impulse response of the system at a fixed
time t. This is a legitimate and useful way of thinking about multipath fading chan-
nels, as the time-scale at which the channel varies is typically much longer than the
delay spread of the impulse response at a fixed time. In the reflecting wall example in
Section 2.1.4, the time taken for the channel to change significantly is of the order of
milliseconds while the delay spread is of the order of microseconds. Fading channels
which have this characteristic are sometimes called underspread channels.
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Figure 2.7: Illustration of the relationship between a passband spectrum S(f) and its
baseband equivalent Sb(f).

2.2.2 Baseband Equivalent Model

In typical wireless applications, communication occurs in a passband [fc − W
2
, fc + W

2
]

of bandwidth W around a center frequency fc, the spectrum having been specified
by regulatory authorities. However, most of the processing, such as coding/decoding,
modulation/demodulation, synchronization, etc, is actually done at the baseband. At
the transmitter, the last stage of the operation is to “up-convert” the signal to the
carrier frequency and transmit it via the antenna. Similarly, the first step at the
receiver is to “down-convert” the RF (radio-frequency) signal to the baseband before
further processing. Therefore from a communication system design point of view, it is
most useful to have a baseband equivalent representation of the system. We first start
with defining the baseband equivalent representation of signals.

Consider a real signal s(t) with Fourier transform S(f), bandlimited in [fc −
W/2, fc + W/2] with W < 2fc. Define its complex baseband equivalent sb(t) as the
signal having Fourier transform:

Sb(f) =

{ √
2S(f + fc) f + fc > 0

0 f + fc ≤ 0
. (2.21)

Since s(t) is real, its Fourier transform is Hermitian around f = 0, which means that
sb(t) contains exactly the same information as s(t). The factor of

√
2 is quite arbitrary
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Figure 2.8: Illustration of upconversion from sb(t) to s(t) and followed by downcon-
version from s(t) back to sb(t).

but chosen to normalize the energies of sb(t) and s(t) to be the same. Note that sb(t)
is bandlimited in [−W/2,W/2]. See Figure 2.7.

To reconstruct s(t) from sb(t), we observe that:

√
2S(f) = Sb(f − fc) + S∗b (−f − fc). (2.22)

Taking inverse Fourier transforms, we get

s(t) =
1√
2

{
sb(t)e

j2πfct + s∗b(t)e
−j2πfct

}
=
√

2< [
sb(t)e

j2πfct
]
. (2.23)

In terms of real signals, the relationship between s(t) and sb(t) is shown in Figure
2.8. The passband signal s(t) is obtained by modulating <[sb(t)] by

√
2 cos 2πfct

and =[sb(t)] by −√2 sin 2πfct and summing, to get < [
sb(t)e

j2πfct
]

(up-conversion).
The baseband signal <[sb(t)] (respectively =[sb(t)]) is obtained by modulating s(t)
by

√
2 cos 2πfct (respectively

√
2 sin 2πfct) followed by ideal low-pass filtering at the

baseband [−W/2,W/2] (down-conversion).
Let us now go back to the multipath fading channel (2.14) with impulse response

given by (2.18). Let xb(t) and yb(t) be the complex baseband equivalents of the trans-
mitted signal x(t) and the received signal y(t), respectively. Figure 2.9 shows the
system diagram from xb(t) to yb(t). This implementation of a passband communica-
tion system is known as quadrature amplitude modulation (QAM). The signal <[xb(t)]
is sometimes called the in-phase component, I, and =[xb(t)] the quadrature component,
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Q, (rotated by π/2.) We now calculate the baseband equivalent channel. Substituting
x(t) =

√
2<[xb(t)e

j2πfct] and y(t) =
√

2<[yb(t)e
j2πfct] into (2.14) we get:

< [
yb(t)e

j2πfct
]

=
∑

i

ai(t)<
[
xb(t− τi(t))e

j2πfc(t−τi(t))
]
,

= <
[{∑

i

ai(t)xb(t− τi(t))e
−j2πfcτi(t)

}
ej2πfct

]
. (2.24)

Similarly, one can obtain (see Exercise 2.13)

= [
yb(t)e

j2πfct
]

= =
[{∑

i

ai(t)xb(t− τi(t))e
−j2πfcτi(t)

}
ej2πfct

]
. (2.25)

Hence, the baseband equivalent channel is:

yb(t) =
∑

i

ab
i(t)xb(t− τi(t)), (2.26)

where
ab

i(t) := ai(t)e
−j2πfcτi(t). (2.27)

The input-output relationship in (2.26) is also that of a linear time-varying system,
and the baseband equivalent impulse response is:

hb(τ, t) =
∑

i

ab
i(t)δ(τ − τi(t)). (2.28)

This representation is easy to interpret in the time domain, where the effect of the
carrier frequency can be seen explicitly. The baseband output is the sum, over each
path, of the delayed replicas of the baseband input. The magnitude of the ith such
term is the magnitude of the response on the given path; this changes slowly, with
significant changes occurring on the order of seconds or more. The phase is changed
by π/2 (i.e., is changed significantly) when the delay on the path changes by 1/(4fc),
or equivalently, when the path length changes by a quarter wavelength, i.e., by c/(4fc).
If the path length is changing at velocity v, the time required for such a phase change
is c/(4fcv). Recalling that the Doppler shift D at frequency f is fv/c, and noting that
f ≈ fc for narrow band communication, the time required for a π/2 phase change is
1/(4D). For the single reflecting wall example, this is about 5 ms (assuming fc = 900
MHz and v = 60 km/h). The phases of both paths are rotating at this rate but in
opposite directions.

Note that the Fourier transform Hb(f ; t) of hb(τ, t) for a fixed t is simply H(f +
fc; t), i.e., the frequency response of the original system (at a fixed t) shifted by the
carrier frequency. This provides another way of thinking about the baseband equivalent
channel.
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Figure 2.9: System diagram from the baseband transmitted signal xb(t) to the baseband
received signal yb(t).

2.2.3 A Discrete Time Baseband Model

The next step in creating a useful channel model is to convert the continuous time
channel to a discrete time channel. We take the usual approach of the sampling
theorem. Assume that the input waveform x(t) is bandlimited to W . The baseband
equivalent is then limited to W/2 and can be represented as

xb(t) =
∑

n

x[n]sinc(Wt− n), (2.29)

where x[n] is given by xb(n/W ) and sinc(t) is defined as:

sinc(t) :=
sin(πt)

πt
. (2.30)

This representation follows from the sampling theorem, which says that any waveform
bandlimited to W/2 can be expanded in terms of the orthogonal basis {sinc(Wt−n)}n,
with coefficients given by the samples (taken uniformly at integer multiples of 1/W ).

Using (2.26), the baseband output is given by

yb(t) =
∑

n

x[n]
∑

i

ab
i(t)sinc (Wt−Wτi(t)− n) . (2.31)

The sampled outputs at multiples of 1/W , y[m] := yb(m/W ), are then given by

y[m] =
∑

n

x[n]
∑

i

ab
i(m/W )sinc[m− n− τi(m/W )W ]. (2.32)
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The sampled output y[m] can equivalently be thought as the projection of the waveform
yb(t) onto the waveform W sinc(Wt−m). Let ` := m− n. Then

y[m] =
∑

`

x[m− `]
∑

i

ab
i(m/W )sinc[`− τi(m/W )W ]. (2.33)

By defining

h`[m] :=
∑

i

ab
i(m/W )sinc[`− τi(m/W )W ], (2.34)

(2.33) can be written in the simple form

y[m] =
∑

`

h`[m] x[m− `]. (2.35)

We denote h`[m] as the `th (complex) channel filter tap at time m. Its value is a
function of mainly the gains ab

i(t) of the paths, whose delays τi(t) are close to `/W
(Figure 2.10). In the special case where the gains ab

i(t)’s and the delays τi(t)’s of the
paths are time-invariant, (2.34) simplifies to:

h` =
∑

i

ab
isinc[`− τiW ], (2.36)

and the channel is linear time-invariant. The `th tap can be interpreted as samples of
the low-pass filtered baseband channel response hb(τ) (c.f. (2.19)):

h` = (hb ∗ sinc)(`/W ). (2.37)

where ∗ is the convolution operation.
We can interpret the sampling operation as modulation and demodulation in a

communication system. At time n, we are modulating the complex symbol x[n] (in-
phase plus quadrature components) by the sinc pulse before the up-conversion. At the
receiver, the received signal is sampled at times m/W at the output of the low-pass
filter. Figure 2.11 shows the complete system. In practice, other transmit pulses, such
as the raised cosine pulse, are often used in place of the sinc pulse, which has rather
poor time-decay property and tends to be more susceptible to timing errors. This
necessitates sampling at a rate below the Nyquist sampling rate, but does not alter
the essential nature of the following descriptions. Hence we will confine to Nyquist
sampling.

Due to the Doppler spread, the bandwidth of the output yb(t) is generally slightly
larger than the bandwidth W/2 of the input xb(t), and thus the output samples {y[m]}
do not fully represent the output waveform. This problem is usually ignored in practice,
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Figure 2.10: Due to the decay of the sinc function, the ith path contributes most
significantly to the `th tap if its delay falls in the window [`/W − 1/(2W ), `/W +
1/(2W )].
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since the Doppler spread is small (of the order of 10’s-100’s of Hz) compared to the
bandwidth W . Also, it is very convenient for the sampling rate of the input and output
to be the same. Alternatively, it would be possible to sample the output at twice the
rate of the input. This would recapture all the information in the received waveform.
The number of taps would be almost doubled because of the reduced sample interval,
but it would typically be somewhat less than doubled since the representation would
not spread the path delays so much.

Discussion 2.1: Degrees of Freedom

The symbol x[m] is the mth sample of the transmitted signal; there are W
samples per second. Each symbol is a complex number; we say that it represents
one (complex) dimension or degree of freedom. The continuous time signal x(t) of
duration one second corresponds to W discrete symbols; thus we could say that
the bandlimited continuous time signal has W degrees of freedom per second.

The mathematical justification for this interpretation comes from the following
important result in communication theory: the signal space of complex continuous
time signals of duration T which have most of their energy within the frequency
band [−W/2,W/2] has dimension approximately WT . (A precise statement of
this result can be found in [?].) This result reinforces our interpretation that a
continuous time signal with bandwidth W can be represented by W complex
dimensions per second.

The received signal y(t) is also bandlimited to approximately W (due to the
Doppler spread, the bandwidth is slightly larger than W ) and has W complex
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dimensions per second. From the point of view of communication over the
channel, the received signal space is what matters because it dictates the number
of different signals which can be reliably distinguished at the receiver. Thus, we
define the degrees of freedom of the channel to be the dimension of the received
signal space, and whenever we refer to the signal space, we implicitly mean the
received signal space unless stated otherwise.

2.2.4 Additive White Noise

As a last step, we include additive noise in our input/output model. We make the
standard assumption that w(t) is zero-mean additive white Gaussian noise (AWGN)
with power spectral density N0/2 (i.e., E[w(0)w(t)] = N0

2
δ(t)). The model (2.14) is

now modified to be:
y(t) =

∑
i

ai(t)x(t− τi(t)) + w(t). (2.38)

See Figure 2.12. The discrete-time baseband-equivalent model (2.35) now becomes

y[m] =
∑

`

h`[m]x[m− `] + w[m], (2.39)

where w[m] is the low-pass filtered noise at the sampling instant m/W . Just like the
signal, the white noise w(t) is down-converted, filtered at the baseband and ideally
sampled. Thus, it can be verified (see Exercise 2.11) that

<(w[m]) =

∫ ∞

−∞
w(t)ψm,1(t)dt, (2.40)

=(w[m]) =

∫ ∞

−∞
w(t)ψm,2(t)dt, (2.41)

where

ψm,1(t) :=
√

2W cos (2πfct) sinc(Wt−m), φm,2(t) := −
√

2W sin (2πfct) , sinc(Wt−m).
(2.42)

It can further be shown that {ψm,1(t), ψm,2(t)}m forms an orthonormal set of waveforms,
i.e., the waveforms are orthogonal to each other. (See Exercise 2.12.) In Appendix A
we review the definition and basic properties of white Gaussian random vectors (i.e.,
vectors whose components are independent and identically distributed (i.i.d.) Gaussian
random variables.) A key property is that the projections of a white Gaussian random
vector onto any orthonormal vectors are independent and identically distributed Gaus-
sian random variables. Heuristically, one can think of continuous-time Gaussian white
noise as an infinite-dimensional white random vector and the above property carries
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Figure 2.12: A complete system diagram.

through: the projections onto orthogonal waveforms are uncorrelated and hence inde-
pendent. Hence the discrete-time noise process {w[m]} is white, i.e., independent over
time, moreover, the real and imaginary components are i.i.d. Gaussians with variances
N0/2. A complex Gaussian random variable X whose real and imaginary components
are i.i.d. satisfies a circular symmetry property: ejφX has the same distribution as
X for any φ. We shall call such a random variable circular symmetric complex Gaus-
sian, denoted by CN (0, σ2), where σ2 = E[|X|2]. The concept of circular symmetry is
discussed further in Section A.1.3 of Appendix A.

The assumption of AWGN essentially means that we are assuming that the primary
source of the noise is at the receiver or is radiation impinging on the receiver that is
independent of the paths over which the signal is being received. This is normally a
very good assumption for most communication situations.

2.3 Time and Frequency Coherence

2.3.1 Doppler Spread and Coherence Time

An important channel parameter is the time-scale of the variation of the channel. How
fast do the taps h`[m] vary as a function of time m? Recall that

h`[m] =
∑

i

ab
i(m/W )sinc [`− τi(m/W )W ] ,

=
∑

i

ai(m/W )e−j2πfcτi(m/W )sinc [`− τi(m/W )W ] . (2.43)
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Let us look at this expression term by term. From Section 2.2.2 we gather that signif-
icant changes in ai occur over periods of seconds or more. Significant changes in the
phase of the ith path occur at intervals of 1/(4Di), where Di = fcτ

′
i(t) is the Doppler

shift for that path. When the different paths contributing to the `th tap have different
Doppler shifts, the magnitude of h`[m] changes significantly. This is happening at the
time-scale inversely proportional to the largest difference between the Doppler shifts,
the Doppler spread Ds:

Ds := max
i,j

fc|τ ′i(t)− τ ′j(t)|, (2.44)

where the maximum is taken over all the paths that contribute significantly to a
tap.6 Typical intervals for such changes are on the order of 10 ms. Finally, changes
in the sinc term of (2.43) due to the time variation of each τi(t) are proportional to
the bandwidth, whereas those in the phase are proportional to the carrier frequency,
which is much larger. Essentially, it takes much longer for a path to move from one
tap to the next than for its phase to change significantly. Thus, the fastest changes in
the filter taps occur because of the phase changes, and these are significant over delay
changes of 1/(4Ds).

The coherence time, Tc, of a wireless channel is defined (in an order of magnitude
sense) as the interval over which h`[m] changes significantly as a function of m. What
we have found, then, is the important relation:

Tc =
1

4Ds

. (2.45)

This is a somewhat imprecise relation, since the largest Doppler shifts may belong
to paths that are too weak to make a difference. We could also view a phase change of
π/4 to be significant, and thus replace the factor of 4 above by 8. Many people instead
replace the factor of 4 by 1. The important thing is to recognize that the major
effect in determining time coherence is the Doppler spread, and that the relationship
is reciprocal; the larger the Doppler spread, the smaller the time coherence.

In the wireless communication literature, channels are often categorized as fast
fading and slow fading, but there is little consensus on what these terms mean. In
this book, we will call a channel fast fading if the coherence time Tc is much shorter
than the delay requirement of the application, and slow fading if Tc is longer. The
operational significance of this definition is that in a fast fading channel, one can
transmit the coded symbols over multiple fades of the channel, while in a slow fading

6The Doppler spread can in principle be different for different taps. Exercise 2.10 explores this
possibility.
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channel, one cannot. Thus, whether a channel is fast or slow fading depends not only
on the environment but also on the application; voice, for example, typically has a
short delay requirement of less than 100 ms, while some types of data applications can
have a laxer delay requirement.

2.3.2 Delay Spread and Coherence Bandwidth

Another important general parameter of a wireless system is the multipath delay
spread, Td, defined as the difference in propagation time between the longest and
shortest path, counting only the paths with significant energy. Thus,

Td := max
i,j

|τi(t)− τj(t)|. (2.46)

This is defined as a function of t, but we regard it as an order of magnitude quantity,
like the time coherence and Doppler spread. If a cell or LAN has a linear extent of a
few kilometers or less, it is very unlikely to have path lengths that differ by more than
300 to 600 meters. This corresponds to path delays of one or two µs. As cells become
smaller due to increased cellular usage, Td also shrinks. As was already mentioned,
typical wireless channels are underspread, which means that the delay spread Td is
much smaller than the coherence time Tc.

The bandwidths of cellular systems range between several hundred kHz and several
MHz, and thus, for the above multipath delay spread values, all the path delays in
(2.34) lie within the peaks of 2 or 3 sinc functions; more often, they lie within a single
peak. Adding a few extra taps to each channel filter because of the slow decay of
the sinc function, we see that cellular channels can be represented with at most 4 or
5 channel filter taps. On the other hand, there is a recent interest in ultrawideband
(UWB) communication, operating from 3.1 to 10.6 GHz. These channels can have up
to a few hundred taps.

When we study modulation and detection for cellular systems, we shall see that the
receiver must estimate the values of these channel filter taps. The taps are estimated
via transmitted and received waveforms, and thus the receiver makes no explicit use
of (and usually does not have) any information about individual path delays and path
strengths. This is why we have not studied the details of propagation over multiple
paths with complicated types of reflection mechanisms. All we really need is the
aggregate values of gross physical mechanisms such as Doppler spread, coherence time,
and multipath spread.

The delay spread of the channel dictates its frequency coherence. Wireless channels
change both in time and frequency. The time coherence shows us how quickly the
channel changes in time, and similarly, the frequency coherence shows how quickly
it changes in frequency. We first understood about channels changing in time, and
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correspondingly about the duration of fades, by studying the simple example of a direct
path and a single reflected path. That same example also showed us how channels
change with frequency. We can see this in terms of the frequency response as well.

Recall that the frequency response at time t is

H(f ; t) =
∑

i

ai(t)e
−j2πfτi(t). (2.47)

The contribution due to a particular path has linear phase in f . For multiple paths,
there is a differential phase, 2πf(τi(t)− τk(t)). This differential phase causes selective
fading in frequency. This says that Er(f, t) changes significantly, not only when t
changes by 1/(4D), but also when f changes by 1/2Td. This argument extends to an
arbitrary number of paths, so the coherence bandwidth, Wc, is given by

Wc =
1

2Td

. (2.48)

This relationship, like (2.45), is intended as an order of magnitude relation, essen-
tially pointing out that the coherence bandwidth is reciprocal to the multipath spread.
When the bandwidth of the input is considerably less than Wc, the channel is usually
referred to as flat fading. In this case, the delay spread Td is much less than the symbol
time 1/W , and a single channel filter tap is sufficient to represent the channel. When
the bandwidth is much larger than Wc, the channel is said to be frequency-selective, and
it has to be represented by multiple taps. Note that flat or frequency-selective fading
is not a property of the channel alone, but of the relationship between the bandwidth
W and the coherence bandwidth Td (Figure 2.13).

The physical parameters and the time scale of change of key parameters of the
discrete-time baseband channel model are summarized in Table 2.1. The different
types of channels are summarized in Table 2.2.
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Figure 2.13: (a) A channel over 200 MHz is frequency-selective, and the impulse re-
sponse has many taps. (b) The spectral content of the same channel. (c) The same
channel over 40 MHz is flatter, and has much fewer taps. (d) The spectral contents
of the same channel, limited to 40 MHz bandwidth. At larger bandwidths, the same
physical paths are resolved into a finer resolution.

Key Channel Parameters and Time Scales Symbol Representative Values
carrier frequency fc 1 GHz
communication bandwidth W 1 MHz
distance between transmitter and receiver d 1 km
velocity of mobile v 64 km/h

Doppler shift for a path D = fcv
c

50 Hz
Doppler spread of paths corresponding to a tap Ds 100 Hz
time scale for change of path amplitude d

v
1 minute

time scale for change of path phase 1
4D

5 ms
time scale for a path to move over a tap c

vW
20 s

coherence time Tc = 1
4Ds

2.5 ms

delay spread Td 1 µ s
coherence bandwidth Wc = 1

2Td
500 kHz

Table 2.1: A summary of the physical parameters of the channel and the time scale of
change of the key parameters in its discrete-time baseband model.
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Types of Channel Defining Characteristic
fast fading Tc ¿ delay requirement
slow fading Tc À delay requirement
flat fading W ¿ Wc

frequency-selective fading W À Wc

underspread Td ¿ Tc

Table 2.2: A summary of the types of wireless channels and their defining characteris-
tics.

2.4 Statistical Channel Models

2.4.1 Modeling Philosophy

We defined Doppler spread and multipath spread in the previous section as quantities
associated with a given receiver at a given location, velocity, and time. However, we
are interested in a characterization that is valid over some range of conditions. That
is, we recognize that the channel filter taps, {h`[m]} must be measured, but we want
a statistical characterization of how many taps are necessary and how quickly they
change.

Such a characterization requires a probabilistic model of the channel tap values,
perhaps gathered by statistical measurements of the channel. We are familiar with
describing additive noise by such a probabilistic model (as a Gaussian random vari-
able). We are also familiar with evaluating error probability while communicating over
a channel using such models. These error probability evaluations, however, depend
critically on the independence and Gaussian distribution of the noise variables.

It should be clear from the description of the physical mechanisms generating
Doppler spread and multipath spread that probabilistic models for the channel fil-
ter taps are going to be far less believable than the models for additive noise. On the
other hand, we need such models, even if they are quite inaccurate. Without models,
systems are designed using experience and experimentation, and creativity becomes
somewhat stifled. Even with highly over-simplified models, we can compare different
system approaches and get a sense of what types of approaches are worth pursuing.

To a certain extent, all analytical work is done with simplified models. For example,
white Gaussian noise (WGN) is often assumed in communication models, although we
know the model is valid only over sufficiently small frequency bands. With WGN,
however, we expect the model to be quite good when used properly. For wireless
channel models, however, probabilistic models are quite poor and only provide order-
of-magnitude guides to system design and performance. We will see that we can define
Doppler spread, multipath spread, etc. much more cleanly with probabilistic models,
but the underlying problem remains that these channels are very different from each
other and cannot really be characterized by probabilistic models. At the same time,
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there is a large literature based on probabilistic models for wireless channels, and it has
been highly useful for providing insight into wireless systems. However, it is important
to understand the robustness of results based on these models.

There is another question in deciding what to model. Recall the continuous-time
multipath fading channel

y(t) =
∑

i

ai(t)x (t− τi(t)) + w(t). (2.49)

This contains an exact specification of the delay and magnitude of each path. From
this, we derived a discrete time baseband model in terms of channel filter taps as

y[m] =
∑

`

h`[m]x[m− `] + w[m], (2.50)

where
h`[m] =

∑
i

ai(m/W )e−j2πfcτi(m/W )sinc [`− τi(m/W )W ] . (2.51)

We used the sampling theorem expansion in which x[m] = xb(m/W ) and y[m] =
yb(m/W ). Each channel tap h`[m] contains an aggregate of paths, with the delays
smoothed out by the baseband signal bandwidth.

Fortunately, it is the filter taps that must be modeled for input/output descriptions,
and also fortunately, the filter taps often contain a sufficient path aggregation so that
a statistical model might have a chance of success.

2.4.2 Rayleigh and Rician Fading

The simplest probabilistic model for the channel filter taps is based on the assumption
that there are a large number of statistically independent reflected and scattered paths
with random amplitudes in the delay window corresponding to a single tap. The phase
of ith path is 2πfcτi modulo 2π. Now, fcτi = di/λ, where di is the distance travelled by
the ith path and λ is the carrier wavelength. Since the reflectors and scatterers are far
away relative to the carrier wavelength, i.e., di À λ, it is reasonable to assume that the
phase for each path is uniformly distributed between 0 and 2π and that the phases of
different paths are independent. The contribution of each path in the tap gain h`[m]
is

ai(m/W )e−j2πfcτi(m/W )sinc [`− τi(m/W )W ] (2.52)

and this can be modeled as a circular symmetric complex random variable.7 Each
tap h`[m] is the sum of a large number of such small independent circular symmetric
random variables. It follows that <(h`[m]) is the sum of many small independent real

7See Section A.1.3 in Appendix A for a more in-depth discussion of circular symmetric random
variables and vectors.
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random variables, and so by the Central Limit Theorem, it can reasonably be modeled
as a zero-mean Gaussian random variable. Similarly, because of the uniform phase,
<(h`[m]ejφ) is Gaussian with the same variance for any fixed φ. This assures us that
h`[m] is in fact circular symmetric CN (0, σ2

` ) (see Section A.1.3 in Appendix A for an
elaboration). It is assumed here that the variance of h`[m] is a function of the tap `,
but independent of time m (there is little point in creating a probabilistic model that
depends on time). With this assumed Gaussian probability density, we know that the
magnitude |h`[m]| of the `th tap is a Rayleigh random variable with density (c.f. (A.20)
in Appendix A and Exercise 2.14):

x

σ2
`

exp

{−x2

2σ2
`

}
, x ≥ 0, (2.53)

and the squared magnitude |h`[m]|2 is exponentially distributed with density:

1

σ2
`

exp

{−x

σ2
`

}
, x ≥ 0. (2.54)

This model, which is called Rayleigh fading, is quite reasonable for scattering
mechanisms where there are many small reflectors, but is adopted primarily for its
simplicity in typical cellular situations with a relatively small number of reflectors.
The word Rayleigh is almost universally used for this model, but the assumption is
that the tap gains are circularly symmetric complex Gaussian random variables.

There is a frequently used alternative model in which the line of sight path (often
called a specular path) is large and has a known magnitude, and that there are also a
large number of independent paths. In this case, h`[m], at least for one value of `, can
be modeled as:

h`[m] =

√
κ

κ + 1
σ`e

jθ +

√
1

κ + 1
CN (0, σ2

` ) (2.55)

with the first term corresponding to the specular path arriving with uniform phase θ
and the second term corresponding to the aggregation of the large number of reflected
and scattered paths, independent of θ. The parameter κ (so-called K-factor) is the
ratio of the energy in the specular path to the energy in the scattered paths; the larger
κ is, the more deterministic is the channel. The magnitude of such a random variable
is said to have a Rician distribution. Its density has quite a complicated form; it is
often a better model of fading than the Rayleigh model.
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2.4.3 Tap Gain Autocorrelation Function

Modeling each h`[m] as a complex random variable provides part of the statistical
description that we need, but this is not the most important part. The more important
issue is how these quantities vary with time. As we will see in the rest of the book, the
rate of channel variation has significant impact on several aspects of the communication
problem. A statistical quantity that models this relationship is known as the tap gain
autocorrelation function, R`[n]. It is defined as

R`[n] := E {h∗` [m]h`[m + n]} . (2.56)

For each tap `, this gives the autocorrelation function of the sequence of random
variables modeling that tap as it evolves in time. We are tacitly assuming that this is
not a function of time m. Since the sequence of random variables {h`[m]} for any given
` has both a mean and covariance function that does not depend on m, this sequence is
wide sense stationary. We also assume that, as a random variable, h`[m] is independent
of h`′ [m

′] for all ` 6= `′ and all m,m′. This final assumption is intuitively plausible8

since paths in different ranges of delay contribute to h`[m] for different values of `.
The coefficient R`[0] is proportional to the energy received in the `th tap. The

multipath spread Td can be defined as the product of 1/W times the range of ` which
contains most of the total energy

∑∞
`=0 R`[0] This is somewhat preferable to our pre-

vious “definition” in that the statistical nature of Td becomes explicit and the reliance
on some sort of stationarity becomes explicit. Now, we can also define the coherence
time Tc more explicitly as the smallest value of n > 0 for which R`[n] is significantly
different from R`[0]. With both of these definitions, we still have the ambiguity of
what ‘significant’ means, but we are now facing the reality that these quantities must
be viewed as statistics rather than as instantaneous values.

The tap gain autocorrelation function is useful as a way of expressing the statistics
for how tap gains change given a particular bandwidth W , but gives little insight
into questions related to choice of a bandwidth for communication. If we visualize
increasing the bandwidth, we can see several things happening. First, the ranges of
delay that are separated into different taps ` become narrower (1/W seconds), so
there are fewer paths corresponding to each tap, and thus the Rayleigh approximation
becomes poorer. Second, the sinc functions of (2.51) become narrower, and R`[0] gives
a finer grained picture of the amount of power being received in the `th delay window
of width 1/W . In summary, as we try to apply this model to larger W , we get more
detailed information about delay and correlation at that delay, but the information
becomes more questionable.

Example 2.2: Clarke’s Model
8One could argue that a moving reflector would gradually travel from the range of one tap to

another, but as we have seen, this typically happens over a very large time-scale.
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Rx

Figure 2.14: The one-ring model.
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Figure 2.15: Plots of the autocorrelation function and Doppler spectrum in Clarke’s
model.

This is a popular statistical model for flat fading. The transmitter is fixed, the
mobile receiver is moving at speed v, and the transmitted signal is scattered by
stationary objects around the mobile. The scattered path arriving at the mobile
at the angle θ with respect to the direction of motion has a delay of τθ(t) and a
time-invariant gain aθ, and the input-output relationship is given by:

y(t) =

∫ 2π

0

aθx(t− τθ(t))dθ. (2.57)

Note that there is a continuum of paths: a slight generalization of the finite-path
model we have been considering.

The most general version of the model allows the received power distribution
p(θ) and the antenna gain pattern α(θ) to be arbitrary functions of the angle θ,
but the most common scenario assumes uniform power distribution and isotropic
antenna gain pattern, i.e., the amplitudes aθ = a for all angles θ. This models the
situation when the scatterers are located in a ring around the mobile (Figure
2.14).

Suppose the communication bandwidth W is much smaller than the reciprocal
of the delay spread. The complex baseband channel can be represented by a single
tap at each time:

y[m] = h0[m]x[m] + w[m]. (2.58)

The phase of the signal arriving at time 0 from an angle θ is 2πfcτθ(0) mod 2π,
where fc is the carrier frequency. Making the assumption that this phase is
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uniformly distributed in [0, 2π] and independently distributed across all angles θ,
Exercise 2.17 shows that the process {h0[m]} is stationary, Gaussian and the
autocorrelation function R0[n] is given by:

R0[n] = a2πJ0 (nπDs/W ) (2.59)

where J0(·) is the 0th-order Bessel function of the first kind:

J0(x) :=
1

π

∫ π

0

ejx cos θdθ. (2.60)

and Ds = 2fcv/c is the Doppler spread. The power spectral density S(f), defined
on [−W/2, +W/2], is given by

S(f) =

{
2a2

Ds

√
1−(2f/Ds)

2
−Ds/2 ≤ f ≤ +Ds/2

0 else.
(2.61)

This can be verified by computing the inverse Fourier transform of (2.61) to be
(2.59). Plots of the autocorrelation function and the spectrum for two different
speeds are shown in Figure 2.15. We see that for faster speeds (corresponding to a
larger Doppler spread), the autocorrelation function decays faster, and the
spectrum has a wider spread. If we define the coherence time Tc to be the value of
n/W such that R0[n] = 0.05R0[0], then

Tc =
J−1

0 (0.05)

πDs

, (2.62)
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i.e., the coherence time is inversely proportional to Ds.
In Exercise 2.17, you will also verify that S(f)df has the physical

interpretation of the received power along paths that have Doppler shifts in the
range [f, f + df ]. Thus, S(f) is also called the Doppler spectrum. Note that S(f)
is zero beyond the maximum Doppler shift Ds/2.
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Chapter 2: The Main Plot

Large-scale fading:

Variation of signal strength over distances of the order of cell sizes. Received
power decreases with distance r like:

1

r2
(free space)

1

r4
(reflection from ground plane).

Decay can be even faster due to shadowing and scattering effects.

Small-scale fading:

Variation of signal strength over distances of the order of the carrier wavelength,
due to constructive and destructive interference of multipaths. Key parameters:

Doppler spread Ds ←→ coherence time Tc ∼ 1/Ds

Doppler spread is proportional to the velocity of the mobile and to the angular
spread of the arriving paths.

delay spread Td ←→ coherence bandwidth Wc ∼ 1/Td

Delay spread is proportional to the difference between the lengths of the shortest
and the longest paths.

Input-output channel models:

• Continuous-time passband ((2.14)):

y(t) =
∑

i

ai(t)x(t− τi(t)).
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• Continuous-time complex baseband ((2.26)):

yb(t) =
∑

i

ai(t)e
−j2πfcτi(t)xb(t− τi(t)).

• Discrete-time complex baseband with AWGN ((2.39)):

y[m] =
∑

`

h`[m]x[m− `] + w[m].

The `th tap is the aggregation of the physical paths with delays in [`/W−1/(2W ), `/W+
1/(2W )].

Statistical channel models:

• {h`[m]}m is modeled as circular symmetric processes independent across the taps.

• If for all taps,

h`[m] ∼ CN (0, σ2
` )

the model is called Rayleigh.

• If for one tap,

h`[m] =

√
κ

κ + 1
σ`e

jθ +

√
1

κ + 1
CN (0, σ2

` )

the model is called Rician with K-factor κ.

• The tap gain autocorrelation function R`[n] := E[h∗` [0]h`[n]] models the depen-
dency over time.

• The delay spread is 1/W times the range of taps `′s which contains most of the
total gain

∑∞
`=0 R`[0]. The coherence time is 1/W times the range of n′s for which

R`[n] is significantly different from R`[0].
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Exercises

Exercise 2.1. Consider the electric field in (2.4).

1. It has been derived under the assumption that the motion is in the direction of
the line of sight from sending antenna to receive antenna. Find the electric field
assuming that φ is the angle between the line-of-sight and the direction of motion
of the receiver. Assume that the range of time of interest is small enough so that
changes in (θ, ψ) can be ignored.

2. Explain why, and under what conditions, it is a reasonable approximation to
ignore the change in (θ, ψ) over small intervals of time.

Exercise 2.2. Equation (2.13) was derived under the assumption that r(t) ≈ d.
Derive an expression for the received waveform for general r(t). Break the first term in
(2.11) into two terms, one with the same numerator but the denominator 2d− r0 − vt
and the other with the remainder. Interpret your result.

Exercise 2.3. In the two-path example in Sections 2.1.3 and 2.1.4, the wall is on
the right side of the receiver so that the reflected wave and the direct wave travel
in opposite directions. Suppose now that the reflecting wall is on the left side of
transmitter. Redo the analysis. What is the nature of the multipath fading, both over
time and over frequency? Explain any similarity or difference with the case considered
in Sections 2.1.3 and 2.1.4.

Exercise 2.4. A mobile receiver is moving at a speed v and is receiving signals arriving
along two reflected paths which make angles θ1 and θ2 with the direction of motion.
The transmitted signal is a sinusoid at frequency f .

1. Is the above information enough for estimating i) the coherence time Tc; ii) the
coherence bandwidth Wc? If so express them in terms of the given parameters.
If not, specify what additional information would be needed.

2. Consider an environment in which there are reflectors and scatterers in all direc-
tions from the receiver and an environment in which they are clustered within
a small angular range. Using part (1), explain how the channel would differ in
these two environments.

Exercise 2.5. Consider the propagation model in Section 2.1.5 where there is a re-
flected path from the ground plane.

1. Let r1 be the length of the direct path in Figure 2.6. Let r2 be the length of the
reflected path (summing the path length from the transmitter to the ground plane
and the path length from the ground plane to the receiver). Show that r2 − r1
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is asymptotically equal to b/r and find the value of the constant b. Hint: Recall
that for x small,

√
1 + x ≈ 1 + x/2 in the sense that

(√
1 + x− 1

)
/x → 1/2 as

x → 0.

2. Assume that the received waveform at the receive antenna is given by

Er(f, t) =
α cos 2π[ft− fr1/c]

r1

− α cos 2π[ft− fr2/c]

r2

. (2.63)

Approximate the denominator r2 by r1 in (2.63) and show that Er ≈ β/r2 for
r−1 much smaller than c/f . Find the value of β.

3. Explain why this asymptotic expression remains valid without first approximat-
ing the denominator r2 in (2.63) by r1.

Exercise 2.6. Consider the following simple physical model in just a single dimension.
The source is at the origin and transmits a isotropic wave of angular frequency ω. The
physical environment is filled with uniformly randomly located obstacles. We will
model the inter-obstacle distance as an exponential random variable, i.e., it has the
density9:

ηe−ηr, r ≥ 0. (2.64)

Here 1/η is the mean distance between obstacles and captures the density of the obsta-
cles. Viewing the source as a stream of photons, suppose each obstacle independently
(from one photon to the other and independent of the behavior of the other obstacles)
either absorbs the photon with probability γ or scatters it either to the left or to the
right (both with equal probability (1− γ) /2).

Now consider the path of a photon transmitted either to the left or to the right with
equal probability from some fixed point on the line. The probability density function
of the distance (denoted by r) to the first obstacle (the distance can be on either side
of the starting point, so r takes values on the entire line) is equal to

q(r) :=
ηe−η|r|

2
, r ∈ R. (2.65)

So the probability density function of the distance at which the photon is absorbed
upon hitting the first obstacle is equal to:

f1(r) := γq(r), r ∈ R. (2.66)

1. Show that the probability density function of the distance from the origin at
which the second obstacle is met is

f2(r) :=

∫ ∞

−∞
(1− γ) q(x)f1(r − x) dx, r ∈ R. (2.67)

9This random arrangement of points on a line is called a Poisson point process.
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2. Denote by fk(r), the probability density function of the distance from the origin
at which the photon is absorbed by exactly the kth obstacle it hits and show the
recursive relation:

fk+1(r) =

∫ ∞

−∞
(1− γ) q(x)fk(r − x) dx, r ∈ R. (2.68)

3. Conclude from the previous step that the probability density function of the
distance from the source at which the photon is absorbed (by some obstacle),
denoted by f(r), satisfies the recursive relation:

f(r) = γq(r) + (1− γ)

∫ ∞

−∞
q(x)f(r − x) dx, r ∈ R. (2.69)

Hint: Observe that f(r) =
∑∞

k=1 fk(r).

4. Show that

g(r) =

√
γη

2
e−η

√
γ|r|, (2.70)

is a solution to the recursive relation in (2.69). Hint: Observe that the convolu-
tion operation between the probability densities q(·) and f(·) in (2.69) is more
easily represented under Fourier transform.

5. Now consider the photons that are absorbed at a distance of more than r from
the source. This is the radiated power density at a distance r and is found by
integrating f(x) over the range (r,∞) if r > 0 and (−∞, r) if r < 0. Calculate
the radiated power density to be

e−γ
√

η|r|

2
, (2.71)

and conclude that the power decreases exponentially with distance r. Also ob-
serve that with very low absorption (γ → 0) or very few obstacles (η → 0), the
power density converges to 0.5; this is expected since the power splits equally on
either side of the line.

Exercise 2.7. In Exercise 2.6, we considered a single dimensional physical model of a
scattering and absorption environment and concluded that power decays exponentially
with distance. A reading exercise is to study [32] which considers a natural extension of
this simple model to two and three dimensional spaces. Further, it extends the analysis
to two and three dimensional physical models. While the analysis is more complicated,
we arrive at the same conclusion: the radiated power decays exponentially in distance.
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Exercise 2.8. Assume that a communication channel first filters the transmitted
passband signal before adding WGN. Suppose the channel is known and the channel
filter has an impulse response h(t). Suppose that a QAM scheme with symbol duration
T is developed without knowledge of the channel filtering. A baseband filter θ(t) is
developed satisfying the Nyquist property that {θ(t − kT )}k is an orthonormal set.
The matched filter θ(−t) is used at the receiver before sampling and detection.

If one is aware of the channel filter h(t), one may want to redesign either the
baseband filter at the transmitter or the baseband filter at the receiver so that there
is no intersymbol interference between receiver samples and so that the noise on the
samples is i.i.d.

1. Which filter should one redesign?

2. Give an expression for the impulse response of the redesigned filter (assume a
carrier frequency fc).

3. Draw a figure of the various filters at passband to show why your solution is
correct. (We suggest you do this before answering the first two parts.)

Exercise 2.9. Consider the two-path example in Section 2.1.4 with d = 2 km and
the receiver at 1.5 km from the transmitter moving at velocity 60 km/h away from the
transmitter. The carrier frequency is 900 MHz.

1. Plot in MATLAB the magnitudes of the taps of the discrete-time baseband chan-
nel at a fixed time t. Give a few plots for several bandwidths W so as to exhibit
both flat and frequency-selective fading.

2. Plot the time variation of the phase and magnitude of a typical tap of the discrete-
time baseband channel for a bandwidth where the channel is (approximately) flat
and for a bandwidth where the channel is frequency selective. How do the time-
variations depend on the bandwidth? Explain.

Exercise 2.10. For each tap of the discrete time channel response, the Doppler spread
is the range of Doppler shifts of the paths contributing to that tap. Give an example
of an environment (i.e., location of reflectors/scatterers with respect to the location of
the transmitter and the receiver) in which the Doppler spread is the same for different
taps and an environment in which they are different.

Exercise 2.11. Verify (2.40) and (2.41).

Exercise 2.12. In this problem we consider generating passband orthogonal wave-
forms from baseband ones.



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 56

1. Show that if the waveforms {θ(t−nT )}n form an orthogonal set, then the wave-
forms {ψn,1, ψn,2}n also form an orthogonal set, provided that θ(t) is bandlimited
to [−fc, fc]. Here,

ψn,1(t) = θ(t− nT ) cos 2πfct

ψn,2(t) = θ(t− nT ) sin 2πfct.

How should we normalize the energy of θ(t) to make the ψ(t)’s orthonormal?

2. For a given fc, find an example where the result in part 1 is false when the
condition that θ(t) is bandlimited to [−fc, fc] is violated.

Exercise 2.13. Verify (2.25). Does this equation contain any more information about
the communication system in Figure 2.9 beyond what is in (2.24)? Explain.

Exercise 2.14. Compute the probability density function of the magnitude |X| of a
complex circular symmetric Gaussian random variable X with variance σ2.

Exercise 2.15. In the text we have discussed the various reasons why the channel tap
gains h`[m] vary in time (as a function of m) and how the various dynamics operate
at different time-scales. The analysis is based on the assumption that communication
takes place in a bandwidth W around a carrier frequency fc, with fc À W . This
assumption is not valid for ultra-wideband communication systems, where the trans-
mission bandwidth is from 3.1 GHz to 10.6 GHz, as regulated by the FCC. Redo the
analysis for this system. What is the main mechanism that causes the tap gains to
vary at the fastest time-scale, and what is this fastest time-scale determined by?

Exercise 2.16. In Section 2.4.2, we argue that the channel gain h`[m] at a particular
time m can be assumed to be circular symmetric. Extend the argument to show that
it is also reasonable to assume that the complex random vector

h :=




h`[m]
h`[m + 1]

·
·

h`[m + n]




is circular symmetric for any n.

Exercise 2.17. In this question, we will analyze in detail Clarke’s one-ring model
discussed at the end of the chapter. Recall that the scatterers are assumed to be
located in a ring around the receiver moving at speed v. The path coming at angle
θ with respect to the direction of motion of the mobile has a delay of τθ(t) and a
time-invariant gain a (not dependent on the angle), and the input-output relationship
is given by:

y(t) =

∫ 2π

0

ax(t− τθ(t))dθ. (2.72)
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1. Give an expression for the impulse response h(τ, t) for this channel, and give an
expression for τθ(t) in terms of τθ(0). (You can assume that the distance the
mobile travelled in [0, t] is small compared to the radius of the ring.)

2. Suppose communication takes place at carrier frequency fc and over a narrow-
band of bandwidth W such that the delay spread of the channel Td satisfies
Td ¿ 1/W . Argue that the discrete-time baseband model can be approximately
represented by a single tap:

y[m] = h[m]x[m] + w[m] (2.73)

and give an approximate expression for that tap in terms of the aθ’s and τθ(t)’s.
Hint: Your answer should contain no sinc functions.

3. Argue that it is reasonable to assume that the phase of the path from an angle
θ at time 0,

2πfcτθ(0)(mod2π)

is uniformly distributed in [0, 2π] and that it is i.i.d. across θ.

4. Show that, based on the assumptions in part (3), {h[m]} is a stationary Gaussian
process. Verify that the autocorrelation function R0[n] is given by (2.59).

5. Verify that the Doppler spectrum S(f) is given by (2.61). Hint: It is easier to
show that the inverse Fourier transform of (2.61) is (2.59).

6. Verify that S(f)df is indeed the received power from the paths that have Doppler
shifts in [f, f + df ]. Is this surprising?

Exercise 2.18. Consider a one-ring model where the scatterers are located in a contin-
uum and uniformly on a circle of radius 1 km around the receiver and the transmitter
is 2 km away. The transmit power is P . The power attenuation along a path from the
transmitter to a scatterer to the receiver is

G · 1

s2
· 1

r2
, (2.74)

where G is a constant and r and s are the distance from the transmitter to the scatterer
and the distance from the scatterer to the receiver respectively. Communication takes
place at a carrier frequency fc = 1.9 GHz and the bandwidth is W Hz. You can assume
that, at any time, the phases of each arriving path in the baseband representation of
the channel are independent and uniformly distributed between 0 and 2π.

1. What are the key differences and the similarities between this model and the
Clarke’s model in the text?
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2. Find approximate conditions on the bandwidth W for which one gets a flat fading
channel.

3. Suppose the bandwidth is such that the channel is frequency selective. Find
approximately the amount of power in tap ` of the discrete-time baseband im-
pulse response of the channel (i.e., compute the power-delay profile.). Make any
simplifying assumptions but state them. (You can leave your answers in terms
of integrals if you cannot evaluate them.)

4. Compute and sketch the power-delay profile as the bandwidth becomes very
large.

5. Suppose now the receiver is moving at speed v towards the (fixed) transmitter.
What is the Doppler spread of tap `? Argue heuristically from physical con-
siderations what the Doppler spectrum (i.e., power spectral density) of tap `
is.

6. We have made the assumptions that the scatterers are all on a circle of radius 1
km around the receiver and the paths arrive at uniform phases at the receiver.
Mathematically, are the two assumptions consistent? If not, do you think it
matters, in terms of the validity of your answers to the earlier parts of this
question?

Exercise 2.19. In this exercise, we study the effect of correlation between the mobile
and the base station antennas. Often in modeling multiple input multiple output
(MIMO) fading channels the fading coefficients between different transmit and receive
antennas are assumed to be independent random variables. This problem explores
whether this is a reasonable assumption based on Clarke’s one ring scattering model
and the antenna separation.

1. (Antenna separation at the mobile) Assume a mobile with velocity v moving
away from the base station, with uniform scattering from the ring around it.

(a) Compute the Doppler spread Ds for a carrier frequency fc, and the corre-
sponding coherence time Tc.

(b) Assuming that fading states separated by Tc are approximately uncorre-
lated, at what distance should we place a second antenna at the mobile
to get an independently faded signal? Hint: How much distance does the
mobile travel in Tc?

2. (Antenna separation at the base station) Assume that the scattering ring has
radius R and that the distance between the base station and the mobile is d.
Further assume for the time being that the base station is moving away from the
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mobile with velocity v′. Repeat the previous part to find the minimum antenna
spacing at the base station for uncorrelated fading. Hint: Is the scattering still
uniform around the base station ?

3. Typically, the scatterers are locally around the mobile and far away from the
base station. What is the implication of your result in part (2) for this scenario?
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Chapter 3

Point-to-Point Communication:
Detection, Diversity and Channel
Uncertainty

In this chapter we look at various basic issues that arise in communication over fading
channels. We start by analyzing uncoded transmission in a narrowband fading channel.
We study both coherent and noncoherent detection. In both cases the error probability
is much higher than in a non-faded AWGN channel. The reason is that there is
a significant probability that the channel is in a deep fade. This motivates us to
investigate various diversity techniques which improve the performance. The diversity
techniques discussed operate over time, frequency or space, but the basic idea is the
same. By sending signals that carry the same information through different paths,
multiple independently faded replicas of data symbols are obtained at the receiver
end and more reliable detection can be achieved. The simplest diversity schemes use
repetition coding. More sophisticated schemes exploit channel diversity and, at the
same time, efficiently use the degrees of freedom in the channel. Compared to repetition
coding, they provide coding gains in addition to diversity gains. In space diversity, we
look at both transmit and receive diversity schemes. In frequency diversity, we look at
three approaches:
• single-carrier with inter-symbol interference equalization,

• direct sequence spread spectrum,

• orthogonal frequency division multiplexing.

Finally, we study the impact of channel uncertainty on the performance of diversity
combining schemes. We will see that in some cases, having too many diversity paths
can have an adverse effect due to channel uncertainty.

To familiarize ourselves with the basic issues, the emphasis of this chapter is on
concrete techniques for communication over fading channels In Chapter 5 we take a

60
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more fundamental and systematic look and use information theory to derive the best
performance one can achieve. At that fundamental level, we will see many of the issues
discussed here recur.

The derivations in this chapter make repeated use of a few key results in vector
detection under Gaussian noise. We develop and summarize the basic results in Ap-
pendix A, emphasizing the underlying geometry. The reader is encouraged to take
a look at the appendix before proceeding with this chapter and to refer back to it
often. In particular, a thorough understanding of the canonical detection problem in
Summary 2 will be very useful.

3.1 Detection in a Rayleigh Fading Channel

3.1.1 Noncoherent Detection

We start with a very simple detection problem in a fading channel. For simplicity,
let us assume a flat fading model where the channel can be represented by a single
discrete-time complex filter tap h0[m], which we abbreviate as h[m]:

y[m] = h[m]x[m] + w[m], (3.1)

where w[m] ∼ CN (0, N0). We suppose Rayleigh fading; i.e., h[m] ∼ CN (0, 1), where
we normalize the variance to be 1. For the time being, however, we do not specify the
dependence between the fading coefficients h[m]’s at different times m nor do we make
any assumption on the prior knowledge the receiver might have of h[m]’s. (This latter
assumption is sometimes called noncoherent communication.)

First consider uncoded binary antipodal signaling (or binary phase-shift-keying,
BPSK) with amplitude a, i.e., x[m] = ±a, and the symbols x[m] are independent over
time. This signaling scheme fails completely, even in the absence of noise, since the
phase of the received signal y[m] is uniformly distributed between 0 and 2π regardless
of whether x[m] = a or x[m] = −a is transmitted. Further, the received amplitude
is independent of the transmitted symbol. Binary antipodal signaling is binary phase
modulation and it is easy to see that phase modulation in general is similarly flawed.
Thus, signal structures are required in which either different signals have different
magnitudes, or coding between symbols is used. Next we look at orthogonal signaling,
a special type of coding between symbols.

Consider the following simple orthogonal modulation scheme: a form of binary
pulse-position modulation. For a pair of time samples, either transmit

xA :=

(
x[0]
x[1]

)
=

(
a
0

)
, (3.2)

xB :=

(
0
a

)
. (3.3)
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We would like to perform detection based on

y :=

(
y[0]
y[1]

)
. (3.4)

This is a simple hypothesis testing problem, and it is straightforward to derive the
maximum likelihood (ML) rule:

Λ(y)

xA

≥
<

xB

0, (3.5)

where Λ(y) is the log-likelihood ratio

Λ(y) := ln

{
f(y|xA)

f(y|xB)

}
. (3.6)

It can be seen that, if xA is transmitted, y[0] ∼ CN (0, a2 + N0) and y[1] ∼ CN (0, N0)
and y[0], y[1] are independent. Similarly, ifxB is transmitted, y[0] ∼ CN (0, N0) and
y[1] ∼ CN (0, a2+N0). Further, y[0] and y[1] are independent. Hence the log-likelihood
ratio can be computed to be

Λ(y) =
{|y[0]|2 − |y[1]|2} a2

(a2 + N0)N0

. (3.7)

The optimal rule is simply to decide xA is transmitted if |y[0]|2 > |y[1]|2 and decide xB

otherwise. Note that the rule does not make use of the phases of the received signal,
since the random unknown phases of the channel gains h[0], h[1] render them useless
for detection. Geometrically, we can interpret the detector as projecting the received
vector y onto each of the two possible transmit vectors xA and xB and comparing the
energies of the projections (Figure 3.1). Thus, this detector is also called an energy or
a square-law detector. It is somewhat surprising that the optimal detector does not
depend on how h[0] and h[1] are correlated.

We can analyze the error probability of this detector. By symmetry, we can assume
that xA is transmitted. Under this hypothesis, y[0] and y[1] are independent circular
symmetric complex Gaussian random variables with variances a2 + N0 and N0 respec-
tively. (See Section A.1.3 in the appendices for a discussion on circular symmetric
Gaussian random variables and vectors.) As shown there, |y[0]|2, |y[1]|2 are exponen-
tially distributed with mean a2 + N0 and N0 respectively.1 The probability of error
can now be computed by direct integration:

pe = P
{|y[1]|2 > |y[0]|2|xA

}
=

[
2 +

a2

N0

]−1

. (3.8)

1Recall that a random variable U is exponentially distributed with mean µ if its pdf is fU (u) =
1
µe−u/µ.
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a

a

xA

xB

y

|y0|

|y1|

Figure 3.1: The noncoherent detector projects the received vector y onto each of
the two orthogonal transmitted vectors xA and xB and compares the lengths of the
projections.
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We make the general definition

SNR :=
average received signal energy per (complex) symbol time

noise energy per (complex) symbol time
(3.9)

which we use consistently throughout the book for any modulation scheme. The noise
energy2 per complex symbol time is N0. For the orthogonal modulation scheme here,
the average received energy per symbol time is a2/2 and so

SNR :=
a2

2N0

. (3.10)

Substituting into (3.8), we can express the error probability of the orthogonal scheme
in terms of SNR:

pe =
1

2(1 + SNR)
. (3.11)

This is a very discouraging result. To get an error probability pe = 10−3 one would
require SNR ≈ 500 (27 dB). Stupendous amounts of power would be required for more
reliable communication.

3.1.2 Coherent Detection

Why is the performance of the noncoherent maximum likelihood (ML) receiver on a
fading channel so bad? It is instructive to compare its performance with detection in
an AWGN channel without fading:

y[m] = x[m] + w[m]. (3.12)

For antipodal signaling (BPSK), x[m] = ±a, a sufficient statistic is <{y[m]} and the
error probability is

pe = Q

(
a√
N0/2

)
= Q

(√
2SNR

)
, (3.13)

where SNR = a2/N0 is the received signal to noise ratio per symbol time, and Q(·)
is the complementary cumulative distribution function of an N(0, 1) random variable.
This function decays exponentially with x2; more specifically,

Q(x) < e−x2/2, x > 0 (3.14)

2The orthogonal modulation scheme considered here uses only real symbols and hence transmits
only on the I-channel. Hence it may seem more natural to define the SNR in terms of noise energy
per real symbol, i.e., N0/2. However, later we will consider modulation schemes that use complex
symbols and hence transmit on both the I and Q channels. In order to be consistent throughout, we
choose to define SNR this way.
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and

Q(x) >
1√
2πx

(
1− 1

x2

)
e−x2/2, x > 1. (3.15)

Thus, the detection error probability decays exponentially in SNR in the AWGN channel
while it decays only inversely with the SNR in the fading channel. To get an error
probability of 10−3, an SNR of about 7 dB is needed in an AWGN channel (as compared
to 27 dB in the noncoherent channel). Note that 2

√
SNR is the separation between the

two constellation points as a multiple of the standard deviation of the Gaussian noise;
the above observation says that when this separation is much larger than 1, the error
probability is very small.

Compared to detection in the AWGN channel, the detection problem considered in
the previous section has two differences: the channel gains h[m]’s are random, and the
receiver is assumed not to know them. Suppose now that the channel gains are tracked
at the receiver so that they are known at the receiver (but still random). In practice,
this is done either by sending a known sequence (called a pilot or training sequence) or
in a decision directed manner, estimating the channel using symbols detected earlier.
The accuracy of the tracking depends, of course, on how fast the channel varies. For
example, in a narrowband 30kHz channel (such as that used in the North American
TDMA cellular standard IS-136) with a Doppler spread of 100Hz, the coherence time
Tc is roughly 80 symbols and in this case there is plenty of time to estimate the channel
with minimal overhead expended in the pilot.3 For our current purpose, let us suppose
that the channel estimates are perfect.

Knowing the channel gains, coherent detection of BPSK can now be performed on
a symbol by symbol basis. We can focus on one symbol time and drop the time index

y = hx + w (3.16)

Detection of x from y can be done exactly as in the AWGN case, except that the
decision is now based on the sign of the real sufficient statistic

r := <{(h/|h|)∗ y} = |h|x + z, (3.17)

where z ∼ N(0, N0/2). If the transmitted symbol is x = ±a, then for a given value of
h, the error probability of detecting x is

Q

(
a|h|√
N0/2

)
= Q

(√
2|h|2SNR

)
(3.18)

where SNR = a2/N0 is the average received signal-to-noise ratio per symbol time.
(Recall that we normalized the channel gain such that E[|h|2] = 1.) We average over

3The channel estimation problem for a broadband channel with many taps in the impulse response
is more difficult; we will get to this in Section 3.5.
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the random gain h to find the overall error probability. For Rayleigh fading when
h ∼ CN (0, 1), direct integration yields

pe = E
[
Q

(√
2|h|2SNR

)]
=

1

2

(
1−

√
SNR

1 + SNR

)
. (3.19)

(See Exercise 3.1.) Figure 3.2 compares the error probabilities of coherent BPSK and
noncoherent orthogonal signaling over the Rayleigh fading channel, as well as BPSK
over the AWGN channel. We see that while the error probability for BPSK over the
AWGN channel decays very fast with the SNR, the error probabilities for the Rayleigh
fading channel are much worse, whether the detection is coherent or noncoherent. At
high SNR, Taylor series expansion yields

√
SNR

1 + SNR
= 1− 1

2SNR
+ O

(
1

SNR2

)
. (3.20)

Substituting into (3.19), we get the approximation

pe ≈ 1

4SNR
, (3.21)

which decays inversely proportional to the SNR, just as in the noncoherent orthogonal
signaling scheme (c.f. (3.11)). There is only a 3 dB difference in the required SNR
between the coherent and noncoherent schemes; in contrast, at an error probability of
10−3, there is a 17 dB difference between the performance on the AWGN channel and
coherent detection on the Rayleigh fading channel.4

We see that the main reason why detection in fading channel has poor performance
is not because of the lack of knowledge of the channel at the receiver. It is due to
the fact that the channel gain is random and there is a significant probability that the
channel is in a “deep fade”. At high SNR, we can in fact be more precise about what
a “deep fade” means by inspecting (3.18). The quantity |h|2SNR is the instantaneous
received SNR. Under typical channel conditions, i.e., |h|2SNR À 1, the conditional
error probability is very small, since the tail of the Q-function decays very rapidly. In
this regime, the separation between the constellation points is much larger than the
standard deviation of the Gaussian noise. On the other hand, when |h|2SNR is of the
order of 1 or less, the separation is of the same order as the standard deviation of the
noise and the error probability becomes significant. The probability of this event is

P
{|h|2SNR < 1

}
=

∫ 1/SNR

0

e−xdx (3.22)

4Communication engineers often compare schemes based on the difference in the required SNR to
attain the same error probability. This corresponds to the horizontal gap between the error probability
versus SNR curves of the two schemes.
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Figure 3.2: Performance of coherent BPSK vs noncoherent orthogonal signaling over
Rayleigh fading channel vs BPSK over AWGN channel.

=
1

SNR
+ O

(
1

SNR2

)
. (3.23)

This probability has the same order of magnitude as the error probability itself (c.f.
(3.21)). Thus, we can define a ”deep fade” via an order-of-magnitude approximation

Deep fade event: |h|2 < 1
SNR

.

P {deep fade} ≈ 1
SNR

.

We conclude that high-SNR error events most often occur because the channel is in
deep fade and not as a result of the additive noise being large. In contrast, in the
AWGN channel the only possible error mechanism is for the additive noise to be large.
Thus, the error probability performance over the AWGN channel is much better.

We have used the explicit error probability expression (3.19) to help identify the
typical error event at high SNR. We can in fact turn the table around and use it as
a basis for an approximate analysis of the high-SNR performance (Exercises 3.2 and
3.3). Even though the error probability pe can be directly computed in this case,
the approximate analysis provides much insight as to how typical errors occur. Under-
standing typical error events in a communication system often suggests how to improve
it. Moreover, the approximate analysis gives some hints as to how robust the conclu-
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sion is to the Rayleigh fading model. In fact, the only aspect of the Rayleigh fading
model that is important to the conclusion is the fact that P {|h|2 < ε} is proportional
to ε for ε small. This holds whenever the pdf of |h|2 is positive and continuous at 0.

3.1.3 From BPSK to QPSK: Exploiting the Degrees of Free-
dom

In Section 3.1.2, we have considered BPSK modulation, x[m] = ±a. This uses only the
real dimension (the I channel), while in practice both the I and Q channels are used
simultaneously in coherent communication, increasing spectral efficiency. Indeed, an
extra bit can be transmitted by instead using QPSK (quadrature phase shift keying)
modulation, i.e., the constellation is

{a(1 + j), a(1− j), a(−1 + j), a(−1− j)} ; (3.24)

in effect, a BPSK symbol is transmitted on each of the I and Q channels simultaneously.
Since the noise is independent across the I and Q channels, the bits can be detected
separately and the bit error probability on the AWGN channel (c.f. (3.12)) is

Q

(√
2a2

N0

)
, (3.25)

the same as BPSK (c.f. (3.13)). For BPSK, the SNR (as defined in (3.9)) is given by

SNR =
a2

N0

, (3.26)

while for QPSK,

SNR =
2a2

N0

, (3.27)

is twice that of BPSK since both the I and Q channels are used. Equivalently, for
a given SNR, the bit error probability of BPSK is Q(

√
2SNR) (c.f. (3.13)) and that

of QPSK is Q(
√

SNR). The error probability of QPSK under Rayleigh fading can be
similarly obtained by replacing SNR by SNR/2 in the corresponding expression (3.19)
for BPSK to yield

pe =
1

2

(
1−

√
SNR

2 + SNR

)
≈ 1

2SNR
. (3.28)

at high SNR. For expositional simplicity, we will consider BPSK modulation in much
of the discussions in this chapter, but the results can be directly mapped to QPSK
modulation.
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Figure 3.3: QPSK versus 4-PAM: for the same minimum separation between constel-
lation points, the 4-PAM constellation requires higher transmit power.

One important point worth noting is that it is much more energy-efficient to use
both the I and Q channels rather than just one of them. For example, if we had to send
the two bits carried by the QPSK symbol on the I channel alone, then we would have
to transmit a 4-PAM symbol. The constellation is {−3b,−b, b, 3b} and the average
error probability on the AWGN channel is

3

2
Q

(√
2b2

N0

)
. (3.29)

To achieve approximately the same error probability as QPSK, the argument inside
the Q-function should be the same as that in (3.25) and hence b should be the same as
a, i.e., the same minimum separation between points in the two constellations (Figure
3.3). But QPSK requires a transmit energy of 2a2 per symbol, while 4-PAM requires a
transmit energy of 5b2 per symbol. Hence, for the same error probability, approximately
2.5 times more transmit energy is needed: a 4 dB worse performance. Exercise 3.4
shows that this loss is even more significant for larger constellations. The loss is due
to the fact that it is more energy-efficient to pack, for a desired minimum distance
separation, a given number of constellation points in a higher-dimensional space than
in a lower-dimensional space. We have thus arrived at a general design principle (c.f.
Discussion 1):

A good communication scheme exploits all the available degrees of freedom in
the channel.
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Scheme Bit Error Prob. (High SNR) Data Rate (bits/s/Hz)
Coherent BPSK 1

4SNR
1

Coherent QPSK 1
2SNR

2
Coherent 4-PAM 5

4SNR
2

Coherent 16-QAM 5
2SNR

4
Noncoherent orth. mod. 1

2SNR
1/2

Differential BPSK 1
2SNR

1
Differential QPSK 1

SNR
2

Table 3.1: Performance of coherent and noncoherent schemes under Rayleigh fading.
The data rates are in bits/s/Hz, which is the same as bits per complex symbol time.
The performance of differential QPSK is derived in Exercise 3.5. It is also 3-dB worse
than coherent QPSK.

This important principle will recur throughout the book, and in fact will be shown
to be of a fundamental nature as we talk about channel capacity in Chapter 5. Here,
the choice is between using just the I channel and using both the I and Q channels,
but the same principle applies to many other situations. As another example, the
noncoherent orthogonal signaling scheme discussed in Section 3.1.1 conveys one bit
of information and uses one real dimension per two symbol times (Figure 3.4). This
scheme does not assume any relationship between consecutive channel gains, but if we
assume that they do not change much from symbol to symbol, an alternative scheme
is differential BPSK, which conveys information in the relative phases of consecutive
transmitted symbols. That is, if the BPSK information symbol is u[m] at time m
(u[m] = ±1), the transmitted symbol at time m is given by

x[m] = u[m]x[m− 1]. (3.30)

Exercise 3.5 shows that differential BPSK can be demodulated noncoherently at the
expense of a 3dB loss in performance compared to coherent BPSK (at high SNR). But
since noncoherent orthogonal modulation also has a 3dB worse performance compared
to coherent BPSK, this implies that differential BPSK and noncoherent orthogonal
modulation have the same error probability performance. On the other hand, differ-
ential BPSK conveys one bit of information and uses one real dimension per single
symbol time, and therefore has twice the spectrally efficiency of orthogonal modula-
tion. Better performance is achieved because differential BPSK uses more efficiently
the available degrees of freedom.
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Figure 3.4: Geometry of orthogonal modulation. Signalling is performed over one real
dimension, but two (complex) symbol times are used.
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3.1.4 Diversity

The performance of the various schemes considered so far for fading channels is sum-
marized in Table 3.1. Some schemes are spectrally more efficient than others, but
from a practical point of view, they are all bad: the error probabilities all decay very
slowly, like 1/SNR. From Section 3.1.2, it can be seen that the root cause of this poor
performance is that reliable communication depends on the strength of a single signal
path. There is a significant probability that this path will be in a deep fade. When
the path is in a deep fade, any communication scheme will likely suffer from errors. A
natural solution to improve the performance is to ensure that the information symbols
pass through multiple signal paths, each of which fades independently, making sure
that reliable communication is possible as long as one of the paths is strong. This
technique is called diversity, and it can dramatically improve the performance over
fading channels.

There are many ways to obtain diversity. Diversity over time can be obtained via
coding and interleaving: information is coded and the coded symbols are dispersed over
time in different coherence periods so that different parts of the codewords experience
independent fades. Analogously, one can also exploit diversity over frequency if the
channel is frequency-selective. In a channel with multiple transmit or receive antennas
spaced sufficiently far enough, diversity can be obtained over space as well. In a
cellular network, macrodiversity can be exploited by the fact that the signal from
a mobile can be received at two base-stations. Since diversity is such an important
resource, a wireless system typically uses several types of diversity.

In the next few sections, we will discuss diversity techniques in time, frequency and
space. In each case, we start with a simple scheme based on repetition coding: the
same information symbol is transmitted over several signal paths. While repetition
coding achieves the maximal diversity gain, it is usually quite wasteful of the degrees
of freedom of the channel. More sophisticated schemes can increase the data rate and
achieve a coding gain along with the diversity gain.

To keep the discussion simple we begin by focusing on the coherent scenario: the
receiver has perfect knowledge of the channel gains and can coherently combine the
received signals in the diversity paths. As discussed in the previous section, this knowl-
edge is learnt via training (pilot) symbols and the accuracy depends on the coherence
time of the channel and the received power of the transmitted signal. We discuss
the impact of channel measurement error and noncoherent diversity combining in Sec-
tion 3.5.

3.2 Time Diversity

Time diversity is achieved by averaging the fading of the channel over time. Typically,
the channel coherence time is of the order of 10’s to 100’s of symbols, and therefore
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Interleaving

x2

Codeword
x3

Codeword
x0

Codeword
x1

Codeword

|hl|

L = 4

l

No Interleaving

Figure 3.5: The codewords are transmitted over consecutive symbols (top) and inter-
leaved (bottom). A deep fade will wipe out the entire codeword in the former case
but only one coded symbol from each codeword in the latter. In the latter case, each
codeword can still be recovered from the other three unfaded symbols.

the channel is highly correlated across consecutive symbols. To ensure that the coded
symbols are transmitted through independent or nearly independent fading gains, in-
terleaving of codewords is required (Figure 3.5). For simplicity, let us consider a flat
fading channel. We transmit a codeword x = [x1, . . . , xL]t of length L symbols and the
received signal is given by

y` = h`x` + w`, ` = 1, . . . , L. (3.31)

Assuming ideal interleaving so that consecutive symbols x` are transmitted sufficiently
far apart in time, we can assume that the h`’s are independent. The parameter L is
commonly called the number of diversity branches. The additive noises w1, . . . , wL are
i.i.d. CN (0, N0) random variables.
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3.2.1 Repetition Coding

The simplest code is a repetition code, in which x` = x1 for ` = 1, . . . , L. In vector
form, the overall channel becomes

y = hx1 + w, (3.32)

where y = [y1, . . . , yL]t, h = [h1, . . . , hL]t and w = [w1, . . . , wL]t.
Consider now coherent detection of x1, i.e., the channel gains are known to the

receiver. This is the canonical vector Gaussian detection problem in Summary 2 of
Appendix A. The scalar

h∗

‖h‖y = ‖h‖x1 +
h∗

‖h‖w (3.33)

is a sufficient statistic. Thus, we have an equivalent scalar detection problem with noise
(h∗/‖h‖)w ∼ CN (0, N0IL). The receiver structure is a matched filter and is also called
a maximal ratio combiner: it weighs the received signal in each branch in proportion
to the signal strength and also aligns the phases of the signals in the summstion to
maximize the output SNR. This receiver structure is also called coherent combining.

Consider BPSK modulation, with x1 = ±a. The error probability, conditioned on
h, can be derived exactly as in (3.18):

Q
(√

2‖h‖2SNR
)

(3.34)

where as before SNR = a2/N0 is the average received signal-to-noise ratio per (complex)
symbol time, and ‖h‖2SNR is the received SNR for a given channel vector h. We
average over ‖h‖2 to find the overall error probability. Under Rayleigh fading with
each gain h` i.i.d. CN (0, 1),

‖h‖2 =
L∑

`=1

|h`|2 (3.35)

is a sum of the squares of 2L independent real Gaussian random variables, each term
|h`|2 being the sum of the squares of the real and imaginary parts of h`. It is Chi-square
distributed with 2L degrees of freedom, and the density is given by

f(x) =
1

(L− 1)!
xL−1e−x, x ≥ 0. (3.36)

The average error probability can be explicitly computed to be (c.f. Exercise 3.6:

pe =

∫ ∞

0

Q
(√

2xSNR
)

f(x) dx,

=

(
1− µ

2

)L L−1∑

`=0

(
L− 1 + `

`

)(
1 + µ

2

)`

, (3.37)
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Figure 3.6: Error probability as a function of SNR for different numbers of diversity
branches L.

where

µ :=

√
SNR

1 + SNR
. (3.38)

The error probability as a function of the SNR for different numbers of diversity
branches L is plotted in Figure 3.6. Increasing L dramatically decreases the error
probability.

At high SNR, we can see the role of L analytically: consider the leading term in
the Taylor series expansion in 1/SNR to arrive at the approximations

1 + µ

2
≈ 1, and

1− µ

2
≈ 1

4SNR
. (3.39)

Furthermore,
L−1∑

`=0

(
L− 1 + `

`

)
=

(
2L− 1

L

)
. (3.40)

Hence,

pe ≈
(

2L− 1

L

)
1

(4SNR)L
(3.41)

at high SNR. In particular, the error probability decreases as the Lth power of SNR,
corresponding to a slope of −L in the error probability curve (in dB/dB scale).

To understand this better, we examine the probability of the deep fade event, as in
our analysis in Section 3.1.2. The typical error event at high SNR is when the overall
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channel gain is small. This happens with probability

P
{‖h‖2 < 1/SNR

}
. (3.42)

Figure 3.7 plots the distribution of ‖h‖2 for different values of L; clearly the tail of
the distribution near zero becomes lighter for larger L. For small x, the probability
density function of ‖h‖2 is approximately

f(x) ≈ 1

(L− 1)!
xL−1 (3.43)

and so

P
{‖h‖2 < 1/SNR

} ≈
∫ 1

SNR

0

1

(L− 1)!
xL−1dx =

1

L!

1

SNRL
. (3.44)

This analysis is too crude to get the correct constant before the 1/SNRL term in (3.41),
but does get the correct exponent L. Basically, an error occurs when

∑L
`=1 |h`|2 is of the

order or smaller than 1/SNR, and this happens when all the magnitudes of the gains
|h`|2’s are small, on the order of 1/SNR. Since the probability that each |h`|2 is less
than 1/SNR is approximately 1/SNR and the gains are independent, the probability of
the overall gain being small is of the order 1/SNRL. Typically, L is called the diversity
gain of the system.

3.2.2 Beyond Repetition Coding

The repetition code is the simplest possible code. Although it achieves a diversity gain,
it does not exploit the degrees of freedom available in the channel effectively because it
simply repeats the same symbol over the L symbol times. By using more sophisticated
codes, a coding gain can also be obtained beyond the diversity gain. There are many
possible codes that one can use. We first focus on the example of a rotation code to
explain some of the issues in code design for fading channels.

Consider the case L = 2. A repetition code which repeats a BPSK symbol u = ±a
twice obtains a diversity gain of 2 but would only transmit one bit of information over
the two symbol times . Transmitting two independent BPSK symbols u1, u2 over the
two times would use the available degrees of freedom more efficiently, but of course
offers no diversity gain: an error would be made whenever one of the two channel gains
h1, h2 is in deep fade. To get both benefits, consider instead a scheme that transmits
the vector

x = R

[
u1

u2

]
(3.45)

over the two symbol times, where

R :=

[
cos θ − sin θ
sin θ cos θ

]
(3.46)
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Figure 3.7: The probability density function of ‖h‖2 for different values of L. The
larger the L, the faster the probability density function drops off around 0.

is a rotation matrix (for some θ ∈ (0, 2π)). This is a code with 4 codewords:

xA = R

[
a
a

]
,xB = R

[ −a
a

]
,xC = R

[ −a
−a

]
,xD = R

[
a
−a

]
; (3.47)

they are shown in Figure 3.8(a).5 The received signal is given by

y` = h`x` + w`, ` = 1, 2. (3.48)

It is difficult to obtain an explicit expression for the exact error probability. So, we
will proceed by looking at the union bound. Due to the symmetry of the code, without
loss of generality we can assume xA is transmitted. The union bound says that

pe ≤ P {xA → xB}+ P {xA → xC}+ P {xA → xD} (3.49)

where P {xA → xB} is the pairwise error probability of confusing xA with xB when
xA is transmitted and when these are the only two hypotheses. Conditioned on the

5Here communication is over the (real) I channel since both x1 and x2 are real, but as in Section
3.1.3, the spectral efficiency can be doubled by using both the I and the Q channels. Since the two
channels are orthogonal, one can apply the same code separately to the symbols transmitted in the 2
channels to get the same performance gain.
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Figure 3.8: (a) Codewords of rotation code. (b) Codewords of repetition code.

channel gains h1 and h2, this is just the binary detection problem in Summary 2 with

uA =

[
h1xA1

h2xA2

]
and uB =

[
h1xB1

h2xB2

]
. (3.50)

Hence,

P {xA → xB|h1, h2} = Q

(
‖uA − uB‖
2
√

N0/2

)
= Q

(√
SNR (|h1|2|d1|2 + |h2|2|d2|2)

2

)

(3.51)
where SNR = a2/N0 and

d :=
1

a
(xA − xB) =

[
2 cos θ
2 sin θ

]
(3.52)

is the normalized difference between the codewords, normalized such that the transmit
energy is 1 per symbol time. We use the upper bound Q(x) ≤ e−x2/2, for x > 0, in
(3.51) to get

P {xA → xB|h1, h2} ≤ exp

(−SNR (|h1|2|d1|2 + |h2|2|d2|2)
4

)
. (3.53)

Averaging with respect to h1 and h2 under the independent Rbayleigh fading assump-
tion, we get

P {xA → xB} ≤ Eh1,h2

[
exp

(−SNR (|h1|2|d1|2 + |h2|2|d2|2)
4

)]

=

(
1

1 + SNR|d1|2/4
)(

1

1 + SNR|d2|2/4
)

. (3.54)
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Here we have used the fact that the moment generating function for a unit mean
exponential random variable X is E[esX ] = 1/(1 − s) for s < 1. While it is possible
to get an exact expression for the pairwise error probability, this upper bound is more
explicit; moreover, it is asymptotically tight at high SNR (Exercise 3.7).

We first observe that if d1 = 0 or d2 = 0, then the diversity gain of the code is only
1. If they are both nonzero, then at high SNR the above bound on the pairwise error
probability becomes

P {xA → xB} ≤ 16

|d1d2|2 SNR−2, (3.55)

Call

δAB := |d1d2|2, (3.56)

the squared product distance between xA and xB, when the average energy of the code
is normalized to be 1 per symbol time (c.f. (3.52)). This determines the pairwise error
probability between the two codewords. Similarly, we can define δij to be the squared
product distance between xi and xj, i, j = A,B, C, D. Combining (3.55) with (3.49)
yields a bound on the overall error probability:

pe ≤ 16

(
1

δAB

+
1

δAC

+
1

δAD

)
SNR−2,

≤ 48

minj=B,C,D δAj

SNR−2. (3.57)

We see that as long as δij > 0 for all i, j, we get a diversity gain of 2. The minimum
squared product distance minj=B,C,D δAj then determines the coding gain of the scheme
beyond the diversity gain. This parameter depends on θ, and we can optimize over θ
to maximize the coding gain. Here

δAB = δAD = 4 sin2 2θ, and δAC = 16 cos2 2θ. (3.58)

The angle θ∗ that maximizes the minimum squared product distance makes δAB equal
δAC , yielding θ∗ = (1/2) tan−1 2 and min δij = 16/5. The bound in (3.57) now becomes

pe ≤ 15 SNR−2. (3.59)

To get more insight into why the product distance is important, we see from (3.51)
that the typical way for xA to be confused with xB is for the squared Euclidean distance
|h1|2|d1|2 + |h2|2|d2|2 between the received codewords to be of the order of 1/SNR. This
event holds roughly when both |h1|2|d1|2 and |h2|2|d2|2 are of the order of 1/SNR, and
this happens with probability approximately

(
1

|d1|2SNR

)(
1

|d2|2SNR

)
=

1

|d1|2|d2|2 SNR−2. (3.60)
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Thus, it is important that both |d1|2 and |d2|2 are large to ensure diversity against
fading in both components.

It is interesting to see how this code compares to the repetition scheme. To keep
the bit rate the same (2 bits over 2 real-valued symbols), the repetition scheme would
be using 4-PAM modulation {−3b,−b, b, 3b}. The codewords of the repetition scheme
are shown in Figure 3.8(b). From (3.51), the pairwise error probability between two
adjacent codewords (say, xA and xB) is

P {xA → xB} = E
[
Q

(√
SNR/2 · (|h1|2|d1|2 + |h2|2|d2|2)

)]
. (3.61)

But now SNR = 5b2/N0 is the average SNR per symbol time for the 4-PAM constel-
lation,6 and d1 = d2 = 2/

√
5 are the normalized component differences between the

adjacent codewords. The minimum squared product distance for the repetition code
is therefore 16/25 and we can compare this to the minimum squared product distance
of 16/5 for the previous rotation code. Since the error probability is proportional to
SNR−2 in both cases, we conclude that the rotation code has an improved coding gain
over the repetition code in terms of a saving in transmit power by a factor of

√
5

(3.5 dB) for the same product distance. This improvement comes from increasing the
overall product distance, and this is in turn due to spreading the codewords in the
2-dimensional space rather than packing them on a single-dimensional line as in the
repetition code. This is the same reason that QPSK is more efficient than BPSK (as
we have discussed in Section 3.1.3).

We summarize and generalize the above development to any time diversity code.

6As we have seen earlier, the 4-PAM constellation requires 5 times more energy than BPSK for
the same separation between the constellation points.
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Summary 3.1 Time Diversity Code Design Criterion

Ideal time-interleaved channel

y` = h`x` + w`, ` = 1, . . . , L, (3.62)

where h`’s are i.i.d. CN (0, 1) Rayleigh faded channel gains.

x1, . . . ,xM are the codewords of a time diversity code with block length L,
normalized such that

1

ML

M∑
i=1

‖xi‖2 = 1. (3.63)

Union bound on overall probability of error:

pe ≤ 1

M

∑

i6=j

P {xi → xj} (3.64)

Bound on pairwise error probability:

P {xi → xj} ≤
L∏

`=1

1

1 + SNR |xi` − xj`|2 /4
(3.65)

where xi` is the `th component of codeword xi, and SNR := 1/N0.

Let Lij be the number of components on which the codewords xi and xj differ.
Diversity gain of the code is

min
i6=j

Lij. (3.66)

If Lij = L for all i 6= j, then the code achieves the full diversity L of the channel,
and

pe ≤ 4L

M

∑

i6=j

1

δij

SNR−L ≤ 4L(M − 1)

mini6=j δij

SNR−L (3.67)

where

δij :=
L∏

`=1

|xi` − xj`|2 (3.68)

is the squared product distance between xi and xj.
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125 sub-channels

25Mhz

200khz

TS0 TS2 TS3 TS5 TS6 TS7TS4TS1

8 users per subchannel

Figure 3.9: The 25 Mhz band of a GSM system is divided into 200 kHz sub-channels
which are further divided into time slots for 8 different users.

The rotation code discussed above is specifically designed to exploit time diversity
in fading channels. In the AWGN channel, however, rotation of the constellation
does not affect performance since the i.i.d. Gaussian noise is invariant to rotations.
On the other hand, codes that are designed for the AWGN channel, such as linear
block codes or convolutional codes, can be used to extract time diversity in fading
channels when combined with interleaving. Their performance can be analyzed using
the general framework above. For example, the diversity gain of a binary linear block
code where the coded symbols are ideally interleaved is simply the minimum Hamming
distance between the codewords or equivalently the minimum weight of a codeword;
the diversity gain of a binary convolutional code is given by the free distance of the
code, which is the minimum weight of the coded sequence of the convolutional code.
The performance analysis of these codes and various decoding techniques is further
pursued in Exercise 3.11.

It should also be noted that the above code design criterion is derived assuming
i.i.d. Rayleigh fading across the symbols. This can be generalized to the case when
the coded symbols pass through correlated fades of the channel (see Exercise 3.12).
Generalization to the case when the fading is Rician is also possible and is studied
in Exercise 3.18. Nevertheless these code design criteria all depend on the specific
channel statistics assumed. Motivated by information theoretic considerations, we
take a completely different approach in Chapter 9 where we seek a universal criterion
which works for all channel statistics.
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User 1’s time slots

User 1’s coded bitstream

Figure 3.10: How interleaving is done in GSM.

Example 3.3: Time Diversity in GSM
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Global System for Mobile (GSM) is a digital cellular standard developed in
Europe in the 1980’s. GSM is a frequency division duplex (FDD) system and uses
two 25 MHz bands, one for the uplink (mobiles to base station) and one for the
downlink (base station to mobiles). The original bands set aside for GSM are the
890-915 MHz band (uplink) and the 935-960 MHz band (downlink). The bands
are further divided into 200 kHz sub-channels and each sub-channel is shared by 8
users in a time division fashion (time-division multiple access (TDMA)). The data
of each user are sent over time slots of length 577 microseconds (µs) and the time
slots of the 8 users together form a frame of length 4.615 ms (Figure 3.9).

Voice is the main application for GSM. Voice is coded by a speech encoder
into speech frames each of length 20 ms. The bits in each speech frame are
encoded by a convolutional code of rate 1/2, with the two generator polynomials
D4 + D3 + 1 and D4 + D3 + D + 1. The free distance of this code is ????. The
number of coded bits for each speech frame is 456. To achieve time diversity,
these coded bits are interleaved across 8 consecutive time slots assigned to that
specific user: the 0th, 8th, . . ., 448th bits are put into the first time slot, the 1st,
9th, . . ., 449th bits are put into the second time slot, etc. Since one time slot
occurs every 4.615 ms for each user, this translates into a delay of roughly 40 ms,
a delay judged tolerable for voice. The 8 time slots are shared between two 20 ms
speech frames. The interleaving structure is summarized in Figure 3.10.

The maximum possible time diversity gain is 8, but the actual gain that can
be obtained depends on how fast the channel varies, and that depends primarily
on the mobile speed. If the mobile speed is v, then the largest possible Doppler
spread (assuming full scattering in the environment) is Ds = 2fcv/c, where fc is
the carrier frequency and c is the speed of light. (Recall the example in Section
2.1.4.) The coherence time is roughly Tc = 1/(4Ds) = c/(8fcv) (c.f. (2.45)). For
the channel to fade more or less independently across the different time slots for a
user, the coherence time should be less than 5 ms. For fc = 900 MHz, this
translates into a mobile speed of at least 30 km/h.

For a walking speed of say 3 km/h, there may be too little time diversity. In
this case, GSM can go into a frequency hopping mode, where consecutive frames
(each composed of the time slots of the 8 users) can hop from one 200 kHz
sub-channel to another. With a typical delay spread of about 1µs, the coherence
bandwidth is 500 kHz (c.f. Table 2.1). The total bandwidth equal to 25 MHz is
thus much larger than the typical coherence bandwidth of the channel and the
consecutive frames can be expected to fade independently. This provides the same
effect as having time diversity. Section 3.4 discusses other ways to exploit
frequency diversity.
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3.3 Antenna Diversity

To exploit time diversity, interleaving and coding over several coherence time periods
is necessary. When there is a strict delay constraint and/or the coherence time is large,
this may not be possible. In this case other forms of diversity have to be obtained.
Antenna diversity, or spatial diversity, can be obtained by placing multiple antennas
at the transmitter and/or the receiver. If the antennas are placed sufficiently far apart,
the channel gains between different antenna pairs fade more or less independently, and
independent signal paths are created. The required antenna separation depends on the
local scattering environment as well as on the carrier frequency. For a mobile which
is near the ground with many scatterers around, the channel decorrelates over shorter
spatial distances, and typical antenna separation of half to one carrier wavelength is
sufficient. For base stations on high towers, larger antenna separation of several to 10’s
of wavelengths may be required. (A more careful discussion of these issues is found in
Chapter 7.)

We will look at both receive diversity, using multiple receive antennas (single-input,
multi-output SIMO channels) , and transmit diversity, using multiple transmit anten-
nas (multi-input, single-output MISO channels). Interesting coding problems arise
in the latter and have led to recent excitement in space-time codes. Channels with
multiple transmit and multiple receive antennas (so-called multi-input multi-output
or MIMO channels) provide even more potential. In addition to providing diversity,
MIMO channels also provide additional degrees of freedom for communication. We
will touch on some of the issues here using a 2 × 2 example; the full study of MIMO
communication will be the subject of Chapters 7 to 10.

3.3.1 Receive Diversity

In a flat fading channel with 1 transmit antenna and L receive antennas (Figure
3.11(a)), the channel model is as follows:

y`[m] = h`[m]x[m] + w`[m] ` = 1, . . . , L (3.69)

where the noise w`[m] ∼ CN (0, N0) and independent across the antennas. We would
like to detect x[1] based on y1[1], . . . , yL[1]. This is exactly the same detection problem
as in the use of a repetition code over time, with L diversity branches now over space
instead of over time. If the antennas are spaced sufficiently far apart, then we can
assume that the gains h`[1] are independent Rayleigh, and we get a diversity gain of
L.

With receive diversity, there are actually two types of gain as we increase L. This
can be seen by looking at the expression (3.34) for the error probability of BPSK
conditioned on the channel gains:

Q
(√

2‖h‖2SNR
)

. (3.70)



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 86

(c)(a) (b)

Figure 3.11: (a) Receive diversity; (b) transmit diversity; (c) transmit and receive
diversity.

We can break up the total received SNR conditioned on the channel gains into a
product of two terms:

‖h‖2SNR = LSNR · 1

L
‖h‖2. (3.71)

The first term corresponds to a power gain (also called array gain): by having multiple
receive antennas and coherent combining at the receiver, the effective total received
signal power increases linearly with L: doubling L yields a 3 dB power gain.7 The
second term reflects the diversity gain: by averaging over multiple independent signal
paths, the probability that the overall gain is small is decreased. The diversity gain L is
reflected in the SNR exponent in (3.41); the power gain affects the constant before the
1/SNRL. Note that if the channel gains h`[1] are fully correlated across all branches,
then we only get a power gain but no diversity gain as we increase L. On the other
hand, even when all the h` are independent there is a diminishing marginal return as
L increases: due to the law of large numbers, the second term in (3.71),

1

L
‖h‖2 =

1

L

L∑

`=1

|h`[1]|2, (3.72)

converges to 1 with increasing L (assuming each of the channel gains is normalized to
have unit variance). The power gain, on the other hand, suffers from no such limitation:
a 3 dB gain is obtained for every doubling of the number of antennas.8

7Although mathematically the same situation holds in the time diversity repetition coding case,
the increase in received SNR there comes from increasing the total transmit energy required to send
a single bit; it is therefore not appropriate to call that a power gain in that scenario.

8This will of course ultimately not hold since the received power cannot be larger than the transmit
power, but the number of antennas for our model to break down will have to be humongous.
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3.3.2 Transmit Diversity: Space-Time Codes

Now consider the case when there are L transmit antennas and 1 receive antenna, the
MISO channel (Figure 3.11(b)). This is common in the downlink of a cellular system
since it is often cheaper to have multiple antennas at the base station than to having
multiple antennas at every handset. It is easy to get a diversity gain of L: simply
transmit the same symbol over the L different antennas during L symbol times. At
any one time, only one antenna is turned on and the rest are silent. This is simply
a repetition code, and, as we have seen in the previous section, repetition codes are
quite wasteful of degrees of freedom. More generally, any time diversity code of block
length L can be used on this transmit diversity system: simply use one antenna at
a time and transmit the coded symbols of the time diversity code successively over
the different antennas. This provides a coding gain over the repetition code. One can
also design codes specifically for the transmit diversity system. There have been a lot
of research activities in this area under the rubric of space-time coding and here we
discuss the simplest, and yet one of the most elegant, space-time code: the so-called
Alamouti scheme. This is the transmit diversity scheme proposed in several third-
generation cellular standards. Alamouti scheme is designed for 2 transmit antennas;
generalization to more than 2 antennas is possible, to some extent.

Alamouti Scheme

With flat fading, the two transmit, single receive channel is written as

y[m] = h1[m]x1[m] + h2[m]x2[m] + w[m], (3.73)

where hi is the channel gain from transmit antenna i. The Alamouti scheme transmits
two complex symbols u1 and u2 over two symbol times: at time 1, x1[1] = u1, x2[1] = u2;
at time 2, x1[2] = −u∗2, x2[2] = u∗1. If we assume that the channel remains constant
over the two symbol times and set h1 = h1[1] = h1[2], h2 = h2[1] = h2[2], then we can
write in matrix form:

[
y[1] y[2]

]
=

[
h1 h2

] [
u1 −u∗2
u2 u∗1

]
+

[
w[1] w[2]

]
. (3.74)

We are interested in detecting u1, u2, so we rewrite this equation as
[

y[1]
y[2]∗

]
=

[
h1 h2

h∗2 −h∗1

] [
u1

u2

]
+

[
w[1]
w[2]∗

]
. (3.75)

We observe that the columns of the square matrix are orthogonal. Hence, the detection
problem for u1, u2 decomposes into two separate, orthogonal, scalar problems. We
project y onto each of the two columns to obtain the sufficient statistics

ri = ‖h‖ui + wi, i = 1, 2, (3.76)
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where h = [h1, h2]
t and wi ∼ CN (0, N0) and w1, w2 are independent. Thus, the

diversity gain is 2 for the detection of each symbol. Compared to the repetition code,
2 symbols are now transmitted over two symbol times instead of 1 symbol, but with
half the power in each symbol (assuming that the total transmit power is the same in
both cases).

The Alamouti scheme works for any constellation for the symbols u1, u2, but sup-
pose now they are BPSK symbols, thus conveying a total of 2 bits over 2 symbol times.
In the repetition scheme, we need to use 4-PAM symbols to achieve the same data rate.
To achieve the same minimum distance as the BPSK symbols in the Alamouti scheme,
we need 5 times the energy per symbol. Taking into account the factor of 2 energy
saving since we are only transmitting one symbol at a time in the repetition scheme,
we see that the repetition scheme requires a factor of 2.5 (4 dB) more power than the
Alamouti scheme. Again, the repetition scheme suffers from an inefficient utilization
of the available degrees of freedom in the channel: over the two symbol times, bits
are packed into only one dimension of the received signal space, namely along the di-
rection [h1, h2]

t. In contrast, the Alamouti scheme spreads the information onto two
dimensions - along the orthogonal directions [h1, h

∗
2]

t and [h2,−h∗1]
t.

The Determinant Criterion for Space-time Code Design

In Section 3.2, we saw that a good code exploiting time diversity should maximize
the minimum product distance between codewords. Is there an analogous notion for
space-time codes? To answer this question, let us think of a space-time code as a
set of complex codewords {Xi}, where each Xi is an L by N matrix. Here, L is the
number of transmit antennas and N is the block length of the code. For example, in
the Alamouti scheme, each codeword is of the form

[
u1 −u∗2
u2 u∗1

]
, (3.77)

with L = 2 and N = 2. In contrast, each codeword in the repetition scheme is of the
form [

u 0
0 u

]
. (3.78)

More generally, any block length L time diversity code with codewords {xi} translates
into a block length L transmit diversity code with codeword matrices {Xi}, where

Xi = diag {xi1, . . . , xiL} . (3.79)

For convenience, we normalize the codewords so that the average energy per symbol
time is 1, hence SNR = 1/N0. Assuming that the channel remains constant for N
symbol times, we can write

yt = h∗X + wt, (3.80)
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where

y :=




y[1]
·
·

y[N ]


 , h :=




h∗1
·
·

h∗L


 , w :=




w[1]
·
·

w[N ]


 . (3.81)

To bound the error probability, consider the pairwise error probability of confusing
XB with XA, when XA is transmitted. Conditioned on the fading gains h, we have
the familiar vector Gaussian detection problem (see Summary 2): here we are deciding
between the vectors h∗XA and h∗XB under additive circular symmetric white Gaussian
noise. A sufficient statistic is <{v∗y}, where v := h∗(XA − XB). The conditional
pairwise error probability is

P {XA → XB |h} = Q

(
‖h∗(XA −XB)‖

2
√

N0/2

)
. (3.82)

Hence, the pairwise error probability averaged over the channel statistics is

P {XA → XB} = E

[
Q

(√
SNR h∗(XA −XB)(XA −XB)∗h√

2

)]
. (3.83)

The matrix (XA − XB)(XA − XB)∗ is Hermitian9 and is thus diagonalizable by a
unitary transformation, i.e., we can write (XA−XB)(XA−XB)∗ = UΛU∗, where U is
unitary10 and Λ = diag {λ2

1, . . . , λ
2
L}. Here λ`’s are the singular values of the codeword

difference matrix XA −XB. Therefore, we can rewrite the pairwise error probability
as

P {XA → XB} = E


Q




√
SNR

∑L
`=1 |h̃`|2λ2

`√
2





 , (3.84)

where h̃ := U∗h. In the Rayleigh fading model, the fading coefficients h` are i.i.d.
CN (0, 1) and then h̃ has the same distribution as h (c.f. (A.22) in Appendix A). Thus
we can bound the average pairwise error probability, as in (3.54),

P {XA → XB} ≤
L∏

`=1

1

1 + SNR λ2
`/4

. (3.85)

If all the λ2
` are strictly positive for all the codeword differences, then the maximal

diversity gain of L is achieved. Since the number of positive eigenvalues λ2
` equals the

9A complex square matrix X is Hermitian if X∗ = X.
10A complex square matrix U is unitary if U∗U = UU∗ = I.
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rank of the codeword difference matrix, this is possible only if N ≥ L. If indeed all
the λ2

` are positive, then,

P {XA → XB} ≤ 4L

SNRL ∏L
`=1 λ2

`

=
4L

SNRL det[(XA −XB)(XA −XB)∗]
, (3.86)

and a diversity gain of L is achieved. The coding gain is determined by the minimum of
the determinant det[(XA−XB)(XA−XB)∗] over all codeword pairs. This is sometimes
called the determinant criterion.

In the special case when the transmit diversity code comes from a time diversity
code, the space-time code matrices are diagonal (c.f. (3.79)), and λ` = |d`|2, the squared
magnitude of the component difference between the corresponding time diversity code-
words. The determinant criterion then coincides with the squared product distance
criterion (3.68) we already derived for time diversity codes.

We can compare the coding gains obtained by the Alamouti scheme with the rep-
etition scheme. That is, how much less power does the Alamouti scheme consume to
achieve the same error probability as the repetition scheme? For the Alamouti scheme
with BPSK symbols ui, the minimum determinant is 4. For the repetition scheme with
4-PAM symbols, the minimum determinant is 16/25. (Verify!) This translates into the
Alamouti scheme having a coding gain of roughly a factor of 6 over the repetition
scheme, consistent with the analysis above.

The Alamouti transmit diversity scheme has a particularly simple receiver struc-
ture. Essentially, a linear receiver allows us to decouple the two symbols sent over
the two transmit antennas in two time slots. Effectively, both symbols pass through
non-interfering parallel channels, both of which afford a diversity of order 2. In Ex-
ercise 3.16, we derive some properties a code construction must satisfy to mimic this
behavior for more than 2 transmit antennas.

3.3.3 MIMO: A 2× 2 Example

Degrees of Freedom

Consider now a MIMO channel with two transmit and two receive antennas (Figure
3.11(c)). Let hij be the Rayleigh distributed channel gain from transmit antenna j
to receive antenna i. Suppose both the transmit antennas and the receive antennas
are spaced sufficiently far apart such that the fading gains hij’s can be assumed to be
independent. There are four independently faded signal paths between the transmitter
and the receiver, suggesting that the maximum diversity gain that can be achieved is 4.
The same repetition scheme described in the last section can achieve this performance:
transmit the same symbol over the two antennas in two consecutive symbol times (at
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each time, nothing is sent over the other antenna). If the transmitted symbol is x, the
received symbols at the two receive antennas are

yi[1] = hi1x + wi[1], i = 1, 2 (3.87)

at time 1, and
yi[2] = hi2x + wi[2], i = 1, 2 (3.88)

at time 2. By performing maximal-ratio combining of the four received symbols, an
effective channel with gain

∑2
i=1

∑2
j=1 |hij|2 is created, yielding a 4-fold diversity gain.

However, just as in the case of the 2× 1 channel, the repetition scheme utilizes the
degrees of freedom in the channel poorly; it only transmits one data symbol per two
symbol times. In this regard, the Alamouti scheme performs better by transmitting two
data symbols over two symbol times. Exercise 3.20 shows that the Alamouti scheme
used over the 2 × 2 channel provides effectively two independent channels, analogous
to (3.76), but with the gain in each channel equal to

∑2
i=1

∑2
j=1 |hij|2. Thus, both

the data symbols see a diversity gain of 4, the same as that offered by the repetition
scheme.

But does the Alamouti scheme utilize all the available degrees of freedom in the
2× 2 channel? How many degrees of freedom does the 2× 2 channel have anyway?

In Section 2.2.3 we have defined the degrees of freedom of a channel as the dimension
of the received signal space. In a channel with two transmit and a single receive
antenna, this is equal to one for every symbol time. The repetition scheme utilizes
only half a degree of freedom per symbol time, while the Alamouti scheme utilizes all
of it.

With L receive, but a single transmit antenna, the received signal lies in an L-
dimensional vector space, but it does not span the full space. To see this explicitly,
consider the channel model from (3.69) (suppressing the symbol time index m):

y = hx + w, (3.89)

where y := [y1, . . . , yL]t , h = [h1, . . . , hL] and w = [w1, . . . , wL]. The signal of interest,
hx, lies in a one-dimensional space.11 Thus, we conclude that the degrees of freedom
of a multiple receive, single transmit antenna channel is still 1 per symbol time.

But in a 2 × 2 channel, there are potentially two degrees of freedom per symbol
time. To see this, we can write the channel as

y = h1x1 + h2x2 + w, (3.90)

where xj and hj are the transmitted symbol and the vector of channel gains from
transmit antenna j respectively, and y = [y1, y2]

t and w = [w1, w2]
t are the vectors of

received signals and CN (0, N0) noise respectively. As long as h1 and h2 are linearly

11This is why the scalar (h∗/‖h‖)y is a sufficient statistic to detect x (c.f. (3.33)).
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Figure 3.12: (a) In the 1× 2 channel, the signal space is 1-dimensional, spanned by h.
(b) In the 2× 2 channel, the signal space is 2-dimensional, spanned by h1 and h2

independent, the signal space dimension is 2: the signal from transmit antenna j arrives
in its own direction hj and with two receive antennas, the receiver can distinguish
between the two signals. Compared to a 2 by 1 channel, there is an additional degree
of freedom coming from space. Figure 3.12 summarizes the situation.

Spatial Multiplexing

Now we see that neither the repetition scheme nor the Alamouti scheme utilize all
the degrees of freedom in a 2 × 2 channel. A very simple scheme that does is the
following: transmit independent uncoded symbols over the different antennas as well
as over the different symbol times. This is an example of a spatial multiplexing scheme:
independent data streams are multiplexed in space. (It is also called V-BLAST in the
literature.) To analyze the performance of this scheme, we extend the derivation of
the pairwise error probability bound (3.85) from a single receive antenna to multiple
receive antennas. Exercise 3.19 shows that with nr receive antennas, the corresponding
bound on the probability of confusing codeword XB with codeword XA is

P {XA → XB} ≤
[

L∏

`=1

1

1 + SNR λ2
`/4

]nr

. (3.91)

where λ`’s are the singular values of the codeword difference XA −XB. This bound
holds for space-time codes of general block lengths. Our specific scheme does not
code across time and is thus “space-only”. The block length is 1, the codewords are
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2-dimensional vectors x1,x2 and the bound simplifies to

P {x1 → x2} ≤
[

1

1 + SNR ‖x1 − x2‖2/4

]2

≤ 16

SNR2 ‖x1 − x2‖4
. (3.92)

The exponent of the SNR factor is the diversity gain: the spatial multiplexing scheme
achieves a diversity gain of 2. Since there is no coding across the transmit antennas, it
is clear that no transmit diversity can be exploited; thus the diversity comes entirely
from the dual receive antennas. The factor ‖x1 − x2‖4 plays a role analogous to the
determinant det [(XA −XB)(XA −XB)∗] in determining the coding gain (c.f. (3.86)).

Compared to the Alamouti scheme, we see that V-BLAST has a smaller diversity
gain (2 compared to 4). On the other hand, the full use of the spatial degrees of freedom
should allow a more efficient packing of bits, resulting in a better coding gain. To see
this concretely, suppose we use BPSK symbols in the spatial multiplexing scheme to
deliver 2 bits/s/Hz. Assuming that the average transmit energy per symbol time is
normalized to be 1 as before, we can use (3.92) to explicitly calculate a bound on the
worst-case pairwise error probability:

max
i6=j

P {xi → xj} ≤ 4 · SNR−2. (3.93)

On the other hand, the corresponding bound for the Alamouti scheme using 4-PAM
symbols to deliver the same 2 bits/s/Hz can be calculated from (3.86) to be

max
i6=j

P {xi → xj} ≤ 1600 · SNR−4. (3.94)

We see that indeed the bound for the Alamouti scheme has a much poorer constant
before the factor that decays with SNR.

We can draw two lessons from the V-BLAST scheme. First, we see a new role for
multiple antennas: in addition to diversity, they can also provide additional degrees
of freedom for communication. This is in a sense a more powerful view of multiple
antennas, one that will be further explored in Chapter 7. Second, the scheme also
reveals limitations in our performance analysis framework for space-time codes. In
the earlier sections, our approach has always been to seek schemes which extract the
maximum diversity from the channel and then they were compared on the basis of the
coding gain, which is a function of how efficient the schemes utilize the available degrees
of freedom. This approach falls short in comparing V-BLAST and the Alamouti scheme
for the 2 × 2 channel: V-BLAST has poorer diversity than the Alamouti scheme but
yet is more efficient in exploiting the spatial degrees of freedom, resulting in a better
coding gain. A more powerful framework combining the two performance measures
into a unified metric is needed; this is one of the main subjects of Chapter 9. There
we will also address the issue of whether it is possible to find a scheme which achieves
full diversity and the full degrees of freedom of the channel.
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Low-Complexity Detection: the Decorrelator

One advantage of the Alamouti scheme is its low-complexity ML receiver: the decoding
decouples into two orthogonal single-symbol detection problems. ML detection of V-
BLAST does not enjoy the same advantage: joint detection of the two symbols is
required. The complexity grows exponentially with the number of antennas. A natural
question to ask is: what performance can sub-optimal single-symbol detectors achieve?
We will study MIMO receiver architectures in depth in Chapters 7 and 9, but here we
will give an example of a simple detector, the decorrelator, and analyze its performance
in the 2× 2 channel.

To motivate the definition of this detector, let us rewrite the channel (3.90) in
matrix form:

y = Hx + w, (3.95)

where H = [h1,h2] is the channel matrix. The input x := [x1, x2]
t is composed of two

independent symbols x1, x2 To decouple the detection of the two symbols, one idea is
to invert the effect of the channel:

ỹ = H−1y = x + H−1w = x + w̃ (3.96)

and detect each of the symbols separately. This is in general suboptimal compared
to joint ML detection, since the noise samples w̃1 and w̃2 are correlated. How much
performance do we lose?

Let us focus on the detection of the symbol x1 from transmit antenna 1. By direct
computation, the variance of the noise w̃1 is

|h22|2 + |h21|2
|h11h22 − h21h12|2N0. (3.97)

Hence, we can rewrite the first component of the vector equation in (3.96) as

ỹ1 = x1 +

√
|h22|2 + |h21|2

|h11h22 − h21h12| z1, (3.98)

where z1 ∼ CN (0, N0), the scaled version of w̃1, is independent of x1. Equivalently,
the scaled output can be written as

y′1 :=
h11h22 − h21h12

|h22|2 + |h21|2 ỹ1

= (φ∗2h1) x1 + z1, (3.99)

where

hi :=

[
hi1

hi2

]
, φi :=

1√
|hi2|2 + |hi1|2

[
h∗i2

−h∗i1

]
, i = 1, 2. (3.100)
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Figure 3.13: Demodulation of x1: the received vector y is projected onto the direction
φ2 orthogonal to h2. The effective channel for x1 is in deep fade whenever the projection
of h1 onto φ2 is small.

Geometrically, one can interpret hj as the “direction” of the signal from transmit
antenna j and φj as the direction orthogonal to hj. Equation (3.99) says that when
demodulating the symbol from antenna 1, channel inversion eliminates the interference
from transmit antenna 2 by projecting the received signal y in the direction orthogonal
to h2 (Figure 3.13). The signal part is (φ∗2h1)x1. The scalar gain φ∗2h1 is circular
symmetric Gaussian, being the projection of a two-dimensional i.i.d. circular symmetric
Gaussian random vector (h1) onto an independent unit vector (φ2) (c.f. (A.22) in
Appendix A). The scalar channel (3.99) is therefore Rayleigh faded like a 1×1 channel
and has only unit diversity. Note that if there were no interference from antenna 2,
the diversity gain would have been 2: the norm ‖h1‖2 of the entire vector h1 has to be
small for poor reception of x1. However, here, the component of h1 perpendicular to h2

being small already wrecks havoc; this is the price paid for nulling out the interference
from antenna 2. In contrast, the ML detector, by jointly detecting the two symbols,
retains the diversity gain of 2.

We have discussed V-BLAST in the context of a point-to-point link with two trans-
mit antennas. But since there is no coding across the antennas, we can equally think
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of the two transmit antennas as two distinct users each with a single antenna. In the
multiuser context, the receiver described above is sometimes called the interference
nuller, zero-forcing receiver or the decorrelator. It nulls out the effect of the other
user (interferer) while demodulating the symbol of one user. Using this receiver, we
see that dual receive antennas can perform one of two functions in a wireless system:
they can either provide a 2-fold diversity gain in a point-to-point link when there is
no interference, or they can be used to null out the effect of an interfering user but
provide no diversity gain more than 1. But they cannot do both. This is however not
an intrinsic limitation of the channel but rather a limitation of the decorrelator; by
performing joint ML detection instead, the two users can in fact be simultaneously
supported with a 2-fold diversity gain each.

Summary 3.2 2× 2 MIMO Schemes
The performance of the various schemes for the 2× 2 channel is summarized

below.

Diversity gain Degrees of freedom utilized
per symbol time

Repetition 4 1/2
Alamouti 4 1
V-BLAST (ML) 2 2
V-BLAST (nulling) 1 2
channel itself 4 2

3.4 Frequency Diversity

3.4.1 Basic Concept

So far we have focused on narrowband flat fading channels. These channels are modeled
by a single-tap filter, as most of the multipaths arrive during one symbol time. In
wideband channels, however, the transmitted signal arrives over multiple symbol times
and the multipaths can be resolved at the receiver. The frequency response is no longer
flat, i.e., the transmission bandwidth W is greater than the coherence bandwidth Wc

of the channel. This provides another form of diversity: frequency.
We begin with the discrete-time baseband model of the wireless channel in Sec-

tion 2.2. Recalling (2.35) and (2.39), the sampled output y[m] can be written as

y[m] =
∑

`

h`[m] x[m− `] + w[m]. (3.101)
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Here h`[m] denotes the `th channel filter tap at time m. To understand the concept of
frequency diversity in the simplest setting, consider first the one-shot communication
situation when one symbol x[0] is sent at time 0, and no symbols are transmitted after
that. The receiver observes

y[`] = h`[`]x[0] + w[`], ` = 0, 1, 2, . . . (3.102)

If we assume that the channel response has a finite number of taps L, then the delayed
replicas of the signal are providing L branches of diversity in detecting x[0], since the
tap gains h`[`] are assumed to be independent. This diversity is achieved by the ability
of resolving the multipaths at the receiver due to the wideband nature of the channel,
and is thus called frequency diversity.

A simple communication scheme can be built on the above idea by sending an
information symbol every L symbol times. The maximal diversity gain of L can be
achieved, but the problem with this scheme is that it is very wasteful of degrees of
freedom: only one symbol can be transmitted every delay spread. This scheme can
actually be thought of as analogous to the repetition codes used for both time and
spatial diversity, where one information symbol is repeated L times. In this setting,
once one tries to transmit symbols more frequently, inter-symbol interference (ISI)
occurs: the delayed replicas of previous symbols interfere with the current symbol.
The problem is then how to deal with the ISI while at the same time exploiting the
inherent frequency diversity in the channel. Broadly speaking, there are three common
approaches:

• single-carrier systems with equalization: By using linear and non-linear
processing at the receiver, ISI can be mitigated to some extent. Optimal ML
detection of the transmitted symbols can be implemented using the Viterbi al-
gorithm. However, the complexity of the Viterbi algorithm grows exponentially
with the number of taps, and it is typically used only when the number of signif-
icant taps is small. Alternatively, linear equalizers attempt to detect the current
symbol while linearly suppressing the interference from the other symbols, and
they have lower complexity.

• direct sequence spread spectrum: In this method, information symbols are
modulated by a pseudonoise sequence and transmitted over a bandwidth W
much larger than the data rate. Because the symbol rate is very low, ISI is
small, simplifying the receiver structure significantly. Although this leads to
an inefficient utilization of the total degrees of freedom in the system from the
perspective of one user, this scheme allows multiple users to share the total
degrees of freedom, with users appearing as pseudonoise to each other.

• multi-carrier systems: Here, transmit precoding is performed to convert the
ISI channel into a set of non-interfering, orthogonal sub-carriers, each experi-
encing narrowband flat fading. Diversity can be obtained by coding across the
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symbols in different sub-carriers. This method is also called Discrete Multi-Tone
(DMT) or Orthogonal Frequency Division Multiplexing (OFDM). Frequency-hop
spread spectrum can be viewed as a special case where one carrier is used at a
time.

For example, GSM is a single-carrier system, IS-95 CDMA and IEEE 802.11b (a
wireless LAN standard) are based on direct sequence spread spectrum, and IEEE
802.11a is a multi-carrier system,

Below we study these three approaches in turn. An important conceptual point
is that, while frequency diversity is something intrinsic in a wideband channel, the
presence of ISI is not, as it depends on the modulation technique used. For example,
under OFDM, there is no ISI, but sub-carriers that are separated apart by more than
the coherence bandwidth fade more or less independently and hence frequency diversity
is still present.

Narrowband systems typically operate in a relatively high SNR regime. In contrast,
the energy is spread across many degrees of freedom in many wideband systems, and the
impact of the channel uncertainty on the ability of the receiver to extract the inherent
diversity in frequency-selective channels becomes more pronounced. This point will be
discussed in Section 3.5, but in the present section, we assume that the receiver has a
perfect estimate of the channel.

3.4.2 Single-Carrier with ISI Equalization

Single carrier with ISI equalization is the classic approach to communication over
frequency-selective channels, and has been used in wireless as well as wireline applica-
tions such as voiceband modems. Much work has been done in this area but here we
focus on the diversity aspects.

Starting at time 1, a sequence of uncoded independent symbols x[1], x[2], . . . is
transmitted over the frequency-selective channel (3.101). Assuming that the channel
taps do not vary over these N symbol times, the received symbol at time m is:

y[m] =
L−1∑

`=0

h`x[m− `] + w[m], (3.103)

where x[m] = 0 for m < 1. For simplicity, we assume here that the taps h` are i.i.d.
Rayleigh with equal variance 1/L, but the discussion below holds more generally (see
Exercise 3.25).

We want to detect each of the transmitted symbols from the received signal. The
process of extracting the symbols from the received signal is called equalization. In
contrast to the simple scheme in the previous section where a symbol is sent every L
symbol times, here a symbol is sent every symbol time and hence there is significant
ISI. Can we still get the maximum diversity gain of L, even though there is no coding
across the transmitted symbols?
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Frequency-Selective Channel Viewed as a MISO Channel

To analyze this problem, it is insightful to transform the frequency-selective channel
into a flat fading MISO channel with L transmit antennas and a single receive antenna
and channel gains h0, . . . , hL−1. Consider the following transmission scheme on the
MISO channel: at time 1, the symbol x[1] is transmitted on antenna 1 and the other
antennas are silent. At time 2, x[1] is transmitted at antenna 2, x[2] is transmitted on
antenna 1 and the other antennas remain silent. At time m, x[m − `] is transmitted
on antenna `+1, for ` = 0, . . . , L−1. See Figure 3.14. The received symbol at time m
in this MISO channel is precisely the same as that in the frequency-selective channel
under consideration.

Once we transform the frequency-selective channel into a MISO channel, we can
exploit the machinery developed in Section 3.3.2. First, it is clear that if we want to
achieve full diversity on a symbol, say x[N ], we need to observe the received symbols
up to time N + L − 1. Over these symbol times, we can write the system in matrix
form (as in (3.80)):

yt = h∗X + wt (3.104)

where yt := [y[1], . . . , y[N + L− 1]],h∗ := [h0, . . . , hL−1],w
t := [w[0], . . . w[N + L− 1]]

and the L by N + L− 1 space-time code matrix

X =




x[1] x[2] · · · x[N ] · · x[N + L− 1]
0 x[1] x[2] · · · x[N ] · x[N + L− 2]
0 0 x[1] x[2] · · · · ·
· · · · · · · · ·
0 0 · · x[1] x[2] · · x[N ]




(3.105)

corresponds to the transmitted sequence x = [x[1], . . . , x[N + L− 1]]t.

Error Probability Analysis

Consider the maximum likelihood detection of the sequence x based on the received
vector y (MLSD). With MLSD, the pairwise error probability of confusing xA with
xB, when xA is transmitted is, as in (3.85),

P {xA → xB} ≤
L∏

`=1

1

1 + SNR λ2
`/4

, (3.106)

where λ2
` ’s are the eigenvalues of the matrix (XA−XB)(XA−XB)∗ and SNR is the total

received SNR per received symbol (summing over all paths). This error probability
decays like SNR−L whenever the difference matrix XA −XB is of rank L.
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Figure 3.14: The MISO scenario equivalent to the frequency-selective channel.
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By a union bound argument, the probability of detecting the particular symbol
x[N ] incorrectly is bounded by

∑

xB :xB [N ]6=xA[N ]

P {xA → xB} , (3.107)

summing over all the transmitted vectors xB which differ with xA in the N th symbol.12

To get full diversity, the difference matrix XA −XB must be full rank for every such
vector xB (c.f. (3.86)). Suppose m∗ is the symbol time in which the vectors xA and
xB first differ. Since they differ at least once within the first N symbol times, m∗ ≤ N
and the difference matrix is of the form

XA−XB =




0 · 0 xA[m∗]− xB[m∗] · · · ·
0 · · 0 xA[m∗]− xB[m∗] · · ·
0 · · · 0 · · ·
· · · · · · · ·
0 · · · · 0 xA[m∗]− xB[m∗] ·




.

(3.108)
By inspection, all the rows in the difference matrix are linearly independent. Thus
XA −XB is of full rank (i.e., the rank is equal to L). We can summarize:

Uncoded transmission combined with maximum likelihood sequence detection
achieves full diversity on symbol x[N ] using the observations up to time N +L−1,
i.e., a delay of L− 1 symbol times.

Compared to the scheme in which a symbol is transmitted every L symbol times, the
same diversity gain of L is achieved and yet an independent symbol can be transmitted
every symbol time. This translates into a significant “coding gain” (Exercise 3.26).

In the analysis here it was convenient to transform the frequency-selective channel
into a MISO channel. However, we can turn the transformation around: if we transmit
the space-time code of the form in (3.105) on a MISO channel, then we have converted
the MISO channel into a frequency-selective channel. This is the delay diversity scheme
and it was one of the first proposed transmit diversity schemes for the MISO channel.

Implementing MLSD: the Viterbi Algorithm

Given the received vector y of length n, MLSD requires solving the optimization prob-
lem

max
x
P {y|x} . (3.109)

12Strictly speaking, the MLSD only minimizes the sequence error probability, not the symbol error
probability. However, this is the standard detector implemented for ISI equalization via the Viterbi
algorithm, to be discussed next. In any case, the symbol error probability performance of the MLSD
serves as an upper bound to the optimal symbol error performance.
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Figure 3.15: A finite state machine when x[m] are ±1 BPSK symbols and L = 2.
There are a total of 4 states.
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Figure 3.16: The trellis representation of the channel.

s

m − 1 m

shorter path

u
∗

Figure 3.17: The dynamic programming principle. If the first m − 1 segments of the
shortest path to state s at stage m were not the shortest path to state u∗ at stage
m− 1, then one could have found an even shorter path to state s.
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A brute-force exhaustive search would require a complexity that grows exponentially
with the block length n. An efficient algorithm needs to exploit the structure of the
problem and moreover should be recursive in n so that the problem does not have to
be solved from scratch for every symbol time. The solution is the ubiquitous Viterbi
algorithm.

The key observation is that the memory in the frequency-selective channel can be
captured by a finite state machine. At time m, define the state (an L dimensional
vector)

s[m] :=




x[m− L + 1]
x[m− L + 2]

·
x[m]


 (3.110)

An example of the finite state machine when the x[m]’s are BPSK symbols is given in
Figure 3.15. The number of states is ML, where M is the constellation size for each
symbol x[m].

The received symbol y[m] is given by

y[m] = h∗s[m] + w[m], (3.111)

with h representing the frequency-selective channel, as in (3.104). The MLSD problem
(3.109) can be rewritten as

min
s[1],,...,s[n]

− logP {y[1], . . . , y[n] | s[1], . . . , s[n]} , (3.112)

subject to the transition constraints on the state sequence (i.e., the second component
of s[m] is the same as the first component of s[m + 1]). Conditioned on the state
sequence s[1], . . . , s[n], the received symbols are independent and the log-likelihood
ratio breaks into a sum:

logP {y[1], . . . , y[n] | s[1], . . . , s[n]} =
n∑

m=1

logP {y[m] | s[m]} . (3.113)

The optimization problem in (3.112) can be represented as the problem of finding
the shortest path through an n-stage trellis, as shown in Figure 3.16. Each state se-
quence (s[1], . . . , s[n]) is visualized as a path through the trellis, and given the received
sequence y[1], . . . , y[n], the cost associated with the mth transition is

cm(s[m]) := − logP {y[m] | s[m]} . (3.114)

The solution is given recursively by the optimality principle of dynamic programming.
Let Vm(s) be the cost of the shortest path to a given state s at stage m. Then Vm(s)
for all states s can be computed recursively:
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V1(s) = c1(s) (3.115)

Vm(s) = min
u

[Vm−1(u) + cm(s)] , m > 1. (3.116)

Here the minimization is over all possible states u, i.e., we only consider the states
that the finite state machine can be in at stage m− 1 and, further, can still end up at
state s at stage m. The correctness of this recursion is based on the following intuitive
fact: if the shortest path to state s at stage m goes through the state u∗ at stage m−1,
then the part of the path up to stage m − 1 must itself be the shortest path to state
u∗. See Figure 3.17. Thus, to compute the shortest path up to stage m, it suffices
to augment only the shortest paths up to stage m − 1, and these have already been
computed.

Once Vm(s) is computed for all states s, the shortest path to stage m is simply the
minimum of these values over all states s. Thus, the optimization problem (3.112) is
solved. Moreover, the solution is recursive in n.

The complexity of the Viterbi algorithm is linear in the number of stages n. Thus,
the cost is constant per symbol, a vast improvement over brute-force exhaustive search.
However, its complexity is also proportional to the size of the state space, which is ML,
where M is the constellation size of each symbol. Thus, while MLSD can be done for
channels with a small number of taps, it becomes impractical when L becomes large.

The computational complexity of MLSD leads to an interest in seeking sub-optimal
equalizers which yield comparable performance. Some candidates are linear equaliz-
ers (such as the zero-forcing and minimum mean square error (MMSE) equalizers,
which involve simple linear operations on the received symbols followed by simple hard
decoders), and their decision-feedback versions (DFE’s), where previously detected
symbols are removed from the received signal before linear equalization is performed.
We will discuss these equalizers further in Discussion 10, where we exploit a correspon-
dence between the MIMO channel and the frequency-selective channel.

3.4.3 Direct Sequence Spread Spectrum

A common communication system that employs a wide bandwidth is a direct sequence
(DS) spread spectrum system. Its basic components are shown in Figure 3.18. Infor-
mation is encoded and modulated by a pseudonoise (PN) sequence and transmitted
over a bandwidth W . In contrast to the system we analyzed in the last section where
an independent symbol is sent at each symbol time, the data rate R bits/s in a spread
spectrum system is typically much smaller than the transmission bandwidth W Hz.
The ratio W/R is sometimes called the processing gain of the system. For example,
IS-95 (CDMA) is a direct sequence spread spectrum system. The bandwidth is 1.2288
MHz and a typical data rate ( voice) is 9.6 kbits/s, so the processing gain is 128.
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Figure 3.18: Basic elements of a direct-sequence spread spectrum system.

Thus, very few bits are transmitted per degree of freedom per user. In spread spec-
trum jargon, each sample period is called a chip, and another way of describing a
spread spectrum system is that the chip rate (or the sample rate) is much larger than
the data rate.

Because the symbol rate per user is very low in a spread spectrum system, ISI is
typically negligible and equalization is not required. Instead, as we will discuss next,
a much simpler receiver called the Rake receiver can be used to extract frequency di-
versity. In the cellular setting, multiple spread spectrum users would share the large
bandwidth so that the aggregate bit rate can be high even though the rate of each
user is low. The large processing gain of a user serves to mitigate the interference from
other users, which appear as random noise. In addition to providing frequency diver-
sity against multipath fading and allowing multiple access, spread spectrum systems
serve other purposes, such as anti-jamming from intentional interferers, and achieving
message privacy in the presence of other listeners. We will discuss the multiple access
aspects of spread spectrum systems in Chapter 4. For now, we focus on how DS spread
spectrum systems can achieve frequency diversity.

The Rake Receiver

Suppose we transmit one of two n-chips long pseudonoise sequences xA orxB. Consider
the problem of binary detection over a wideband multipath channel. In this context,
a binary symbol is transmitted over n chips. The received signal is given by

y[m] =
∑

`

h`[m]x[m− `] + w[m]. (3.117)

We assume that h`[m] is nonzero only for ` = 0, . . . L− 1, i.e., the channel has L taps.
One can think of L/W as the delay spread Td. Also, we assume that h`[m] does not
vary with m during the transmission of the sequence, i.e., the channel is considered
time-invariant. This holds if n ¿ TcW , where Tc is the coherence time of the channel.
We also assume that there is negligible interference between consecutive symbols, so
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that we can consider the binary detection problem in isolation for each symbol. This
assumption is valid if n À L, which is quite common in a spread spectrum system with
high processing gain. Otherwise, ISI between consecutive symbols becomes significant,
and an equalizer would be needed to mitigate the ISI. Note however we assume that
simultaneously n À TdW and n ¿ TcW , which is possible only if Td ¿ Tc. In a
typical cellular system, Td is of the order of microseconds and Tc of the order of 10’s of
milliseconds, so this assumption is quite reasonable. (Recall from Chapter 2, Table 2.2
that a channel satisfying this condition is called an underspread channel.)

With the above assumptions, the output is just a convolution of the input with the
LTI channel plus noise

y[m] = (h ∗ x)[m] + w[m],m = 1, . . . n + L (3.118)

where h` is the `th tap of the time-invariant channel filter response, with h` = 0 for ` < 0
and ` > L−1. Assuming the channel h is known to the receiver, two sufficient statistics,
rA and rB, can be obtained by projecting the received vector y := [y[1], . . . , y[n + L]]t

onto the n+L dimensional vectors vA and vB, where vA := [(h∗xA)[1], . . . , (h∗xA)[n+
L]]t and vB := [(h ∗ xB)[1], . . . , (h ∗ xB)[n + L]]t, i.e.,

rA := v∗Ay, rB := v∗By. (3.119)

The computation of rA and rB can be implemented by first matched filtering the
received signal to xA and to xB. The outputs of the matched filters are passed through
a filter matched to the channel response h and then sampled at time n + L. (See
Figure 3.19). This is called the Rake receiver. What the Rake actually does is take
inner products of the received signal with shifted versions of the candidate transmitted
sequences. Each output is then weighted by the channel tap gain of the appropriate
delay and summed. The signal path associated with a particular delay is sometimes
called a finger of the Rake receiver.
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Q
Q

Qs
h - k?
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-´
´
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Figure 3.19: The Rake receiver. Here, h̃ is the filter matched to h, i.e., h̃` = h∗−`. Each

tap of h̃ represents a finger of the Rake.
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As discussed earlier, we are continuing with the assumption that the channel gains
h`’s are known at the receiver. In practice, these gains have to be estimated and tracked
from either a pilot signal or in a decision-directed mode using the previously detected
symbols. (The channel estimation problem will be discussed in Section 3.5.2.) Also,
due to hardware limitations, the actual number of fingers used in a Rake receiver may
be less than the total number of taps L in the range of the delay spread. In this case,
there is also a tracking mechanism in which the Rake receiver continuously searches
for the strong paths (taps) to assign the limited number of fingers to.

Performance Analysis

Let us now analyze the performance of the Rake receiver. To simplify our notation,
we specialize to antipodal modulation (i.e., xA = −xB = u); the analysis for other
modulation schemes is similar. One key aspect of spread spectrum systems is that the
transmitted signal (±u) has a pseudonoise characteristic. The defining characteristic
of a pseudonoise sequence is that its shifted versions are nearly orthogonal to each
other. More precisely, if we write u = [u[1], . . . , u[n]], and

u(`) := [0, . . . , 0, u[1], . . . , u[n], 0, . . . 0]t (3.120)

as the n + L dimensional version of u shifted by ` chips (hence there are ` zeros
preceding u and L− ` zeros following u above), the pseudonoise property means that
for every ` = 0, . . . , L− 1,

|(u(`))∗(u(`′))| ¿
n∑

i=1

|u[i]|2, ` 6= `′. (3.121)

To simplify the analysis, we assume full orthogonality: (u(`))∗(u(`′)) = 0 if ` 6= `′.
We will now show that the performance of the Rake is the same as that in the

diversity model with L branches for repetition coding described in Section 3.2. We can
see this by looking at a set of sufficient statistics for the detection problem different
from the ones we used earlier. First, we rewrite the channel model in vector form

y =
L−1∑

`=0

h`x
(`) + w, (3.122)

where w := [w[1], . . . , w[n + L]]t and x(`) = ±u(`), the version of the transmitted
sequence (either u or -u) shifted by ` chips. The received signal (without the noise)
therefore lies in the span of the L vectors {u(`)/‖u‖}`. By the pseudonoise assumption,
all these vectors are orthogonal to each other. A set of L sufficient statistics {r(`)}`

can be obtained by projecting y onto each of these vectors

r(`) = h`x + w(`), ` = 1, . . . , L− 1, (3.123)
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where x = ±‖u‖. Further, the orthogonality of u(`)’s implies that w(`)’s are i.i.d.
CN (0, N0). Comparing with (3.32), this is exactly the same as the L-branch diversity
model for the case of repetition code interleaved over time. Thus, we see that the Rake
receiver in this case is nothing more than a maximal ratio combiner of the signals from
the L diversity branches. The error probability is given by

pe = E


Q




√√√√2‖u‖2

L∑

`=1

|h`|2/N0





 . (3.124)

If we assume a Rayleigh fading model such that the tap gains h` are i.i.d. CN (0, 1/L),
i.e., the energy is spread equally among all the L taps (normalizing such that the
E [

∑
` |h`|2] = 1), then the error probability can be explicitly computed (as in (3.37)):

pe =

(
1− µ

2

)L L−1∑

`=0

(
L− 1 + `

`

)(
1 + µ

2

)`

, (3.125)

where

µ :=

√
SNR

1 + SNR
(3.126)

and SNR := ‖u‖2
N0L

can be interpreted as the average signal to noise ratio per diversity

branch. Noting that ‖u‖2 is the average total energy received per bit of information,
we can define Eb := ‖u‖2. Hence, the SNR per branch is 1/L · Eb/N0. Observe that
the factor of 1/L accounts for the splitting of energy due to spreading: the larger the
spread bandwidth W , the larger L is, and the more diversity one gets, but there is less
energy in each branch.13 As L → ∞,

∑L
`=1 |h`|2 converges to 1 with probability 1 by

the law of large numbers, and from (3.124) we see that

pe → Q
(√

2Eb/N0

)
, (3.127)

i.e., the performance of the AWGN channel with the same Eb/N0 is asymptotically
achieved.

The above analysis assumes an equal amount of energy in each tap. In a typical
multipath delay profile, there is more energy in the taps with shorter delays. The
analysis can be extended to the cases when the h`’s have unequal variances as well.
(See Section 14.5.3 in [79]).

13This is assuming a very rich scattering environment; leading to many paths, all of equal energy.
In reality, however, there are just a few paths that are strong enough to matter.
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3.4.4 Orthogonal Frequency Division Multiplexing

Both the single-carrier system with ISI equalization and the DS spread spectrum sys-
tem with Rake reception are based on a time-domain view of the channel. But we
know that if the channel is linear time-invariant, sinusoids are eigenfunctions and they
get transformed in a particularly simple way. ISI occurs in a single-carrier system
because the transmitted signals are not sinusoids. This suggests that if the channel
is under-spread (i.e., the coherence time is much larger than the delay spread) and is
therefore approximately time-invariant for a sufficiently long time-scale, then transfor-
mation into the frequency domain can be a fruitful approach to communication over
frequency-selective channels. This is the basic idea behind OFDM.

We begin with the discrete-time baseband model

y[m] =
∑

`

h`[m] x[m− `] + w[m]. (3.128)

For simplicity, we first assume that for each `, the `th tap is not changing with m and
hence the channel is linear time invariant. Again assuming a finite number of non-zero
taps L := TdW , we can rewrite the channel model in (3.128) as

y[m] =
L−1∑

`=0

h`x[m− `] + w[m]. (3.129)

Sinusoids are eigenfunctions of LTI systems, but they are of infinite duration. If we
transmit over only a finite duration, say Nc symbols, then the sinusoids are no longer
eigenfunctions. One way to restore the eigenfunction property is by adding a cyclic
prefix to the symbols. For every block of symbols of length Nc, denoted by

d = [d[0], d[1], . . . , d[Nc − 1]]t ,

we create an Nc + L− 1 input block as

x = [d[Nc − L + 1], d[Nc − L + 2], . . . , d[Nc − 1], d[0], d[1], . . . , d[Nc − 1]]t , (3.130)

i.e., we add a prefix of length L − 1 consisting of data symbols rotated cyclically
(Figure 3.20). With this input to the channel (3.129), consider the output

y[m] =
L−1∑

`=0

h`x[m− `] + w[m], m = 1 . . . Nc + L− 1.

The ISI extends over the first L− 1 symbols and the receiver ignores it by considering
the output over the time interval m ∈ [L,Nc + L− 1]. Due to the additional cyclic
prefix, the output over this time interval (of length Nc) is

y[m] =
L−1∑

`=0

h`d [(m− L− `) modulo Nc] + w[m]. (3.131)
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x[N + L− 1] = d[N − 1]

Prefix

d̃N−1

d̃0

IDFT

d[N − 1]

d[0]
Cyclic

x[L] = d[0]

x[L− 1] = d[N − 1]

x[1] = d[N − L + 1]

Figure 3.20: The cyclic prefix operation.

See Figure 3.21.
Denoting the output of length Nc by

y = [y[L], . . . , y[Nc + L− 1]]t ,

and the channel by a vector of length Nc

h = [h0, h1, . . . , hL−1, 0, . . . , 0]t , (3.132)

(3.131) can be written as
y = h⊗ d + w. (3.133)

Here we denoted
w = [w[L], . . . , w[Nc + L− 1]]t , (3.134)

as a vector of i.i.d. CN (0, N0) random variables. We also used the notation of ⊗ to
denote the cyclic convolution in (3.131). Recall that the discrete Fourier transform
(DFT) of d is defined to be

d̃n :=
1√
Nc

Nc−1∑
m=0

d[m] exp

(−j2πnm

Nc

)
, n = 0, . . . , N − 1. (3.135)
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x[L + 1] = d[1]

x[N + L− 1] = d[N − 1]

x[1]

x[L− 1] = d[N − 1]

x[L] = d[0]

hL−1

0

0

h1

h0

Figure 3.21: Convolution between the channel (h) and the input (x) formed from the
data symbols (d) by adding a cyclic prefix. The output is obtained by multiplying the
corresponding values of x and h on the circle, and output at different times are obtained
by rotating the x-values with respect to the h-values. The current configuration yields
the output y[L].
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Taking the discrete Fourier transform (DFT) of both sides of (3.133) and using the
identity

DFT (h⊗ d)n =
√

Nc DFT (h)n ·DFT (d)n , n = 0, . . . , Nc − 1, (3.136)

we can rewrite (3.133) as

ỹn = h̃nd̃n + w̃n, n = 0, . . . , Nc − 1. (3.137)

Here we have denoted w̃0, . . . , w̃Nc−1 as the Nc-point DFT of the noise vector w[1], . . . , w[Nc].
The vector [h̃0, . . . , h̃Nc−1]

t is defined as the DFT of the L-tap channel h, scaled by√
Nc,

h̃n =
L−1∑

`=0

h` exp

(−j2πn`

Nc

)
. (3.138)

The scaling ensures that the nth component h̃n is equal to the frequency response of
the channel (see (2.20)) at f = nW/Nc.

We can redo everything in terms of matrices, a viewpoint which will prove par-
ticularly useful in Chapter 7 when we will draw a connection between the frequency-
selective channel and the MIMO channel. The circular convolution operation u = h⊗d
can be viewed as a linear transformation

u = Cd, (3.139)

where

C :=




h0 0 · 0 hL−1 hL−2 · h1

h1 h0 0 · 0 hL−1 · h2

· · · · · · · ·
0 · 0 hL−1 hL−2 · h1 h0


 (3.140)

is a circulant matrix, i.e., the rows are cyclic shifts of each other. On the other hand,
the DFT of d can be represented as an Nc-length vector Ud, where U is the unitary
matrix with its (k, n)th entry equal to

1√
Nc

exp

(−j2πkn

Nc

)
, k, n = 0, . . . , Nc − 1. (3.141)

This can be viewed as a coordinate change, expressing d in the basis defined by the
rows of U. Equation (3.136) is equivalent to

Uu = ΛUd, (3.142)

where Λ is the diagonal matrix with diagonal entries the DFT of h, i.e.,

Λnn = h̃n :=
(√

NcUh
)

n
, n = 0, . . . , Nc − 1.
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Comparing (3.139) and (3.142), we come to the conclusion that

C = U−1ΛU. (3.143)

Equation (3.143) is the matrix version of the key DFT property (3.136). In geomet-
ric terms, this means that the circular convolution operation is diagonalized in the
coordinate system defined by the rows of U, and the eigenvalues of C are the DFT
coefficients of the channel h. Equation (3.133) can thus be written as

y = Cd + w = U−1ΛUd + w. (3.144)

This representation suggests a natural rotation at the input and at the output to
convert the channel to a set of non-interfering channels with no ISI. In particular, the
actual data symbols (denoted by the length Nc vector d̃) in the frequency domain are
rotated through the IDFT (inverse DFT) matrix U−1 to arrive at the vector d. At the
receiver, the output vector of length Nc (obtained by ignoring the first L symbols) is
rotated through the DFT matrix U to obtain the vector ỹ. The final output vector ỹ
and the actual data vector d̃ are related through

ỹn = h̃nd̃n + w̃n, n = 0, . . . , Nc − 1. (3.145)

We have denoted w̃ := Uw as the DFT of the random vector w and we see that
since w is isotropic, w̃ has the same distribution as w, i.e., a vector of i.i.d. CN (0, N0)
random variables (c.f. (A.26) in Appendix A).

These operations are illustrated in Figure 3.22, which affords the following inter-
pretation. The data symbols modulate Nc tones or sub-carriers which occupying the
bandwidth W and are uniformly separated by W

Nc
. The data symbols on the sub-carriers

are then converted (through the IDFT) to time domain. The procedure of introducing
the cyclic prefix before transmission allows for the removal of ISI. The receiver ignores
the part of the output signal containing the cyclic prefix (along with the ISI terms)
and converts the length-Nc symbols back to the frequency domain through a DFT.
The data symbols on the sub-carriers are maintained to be orthogonal as they prop-
agate through the channel and hence go through narrowband parallel channels. This
interpretation justifies the name of OFDM for this communication scheme. Finally,
we remark that DFT and IDFT can be very efficiently implemented (and denoted as
FFT and IFFT, respectively) whenever Nc is a power of 2.

OFDM Block Length

The OFDM scheme converts communication over a multipath channel into communi-
cation over simpler parallel narrowband channels. However, this simplicity is achieved
at a cost of underutilizing two resources, resulting in a loss of performance. First, the
cyclic prefix occupies an amount of time which cannot be used to communicate data.
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d[N − 1]

ỹ0

x[N + L − 1] = d[N − 1]

Prefix
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y[N + L − 1]d̃N−1
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x[L − 1] = d[N − 1]

x[L] = d[0]

x[1] = d[N − L + 1]

d̃0 d[0]
Channel

Figure 3.22: The OFDM transmission and reception schemes.

This loss amounts to a fraction L
Nc+L

of the total time. The second loss is in the power

transmitted. A fraction L
Nc+L

of the average power is allocated to the cyclic prefix and
cannot be used towards communicating data. Thus to minimize the overhead (in both
time and power) due to the cyclic prefix we prefer to have Nc as large as possible. The
time-varying nature of the wireless channel, however, constrains the largest value Nc

can reasonably take.
We started the discussion in this section by considering a simple channel model

(3.129) that did not vary with time. If the channel is slowly time varying (as discussed
in Section 2.2.1, this is a reasonable assumption) then the coherence time Tc is much
larger than the delay spread Td (the underspread scenario). For underspread channels,
the block length of the OFDM communication scheme Nc can be chosen larger than the
multipath length TdW , but still much smaller than the coherence block length TcW .
Under these conditions, the channel model of linear time invariance approximates a
slowly time varying channel over the block length Nc.

The constraint on the OFDM block length can also be understood in the fre-
quency domain. A block length of Nc corresponds to an inter-sub-carrier spacing equal
to W/Nc. In a wireless channel, the Doppler spread introduces uncertainty in the
frequency of the received signal; from Table 2.1 we see that the Doppler spread is
inversely proportional to the coherence time of the channel: Ds = 1/4Tc. For the
inter-sub-carrier spacing to be much larger than the Doppler spread, the OFDM block
length Nc should be constrained to be much smaller than TcW . This is the same
constraint as above.

Apart from an underutilization of time due to the presence of the cyclic prefix, we
also mentioned the additional power due to the cyclic prefix. OFDM schemes that
put a zero signal instead of the cyclic prefix have been proposed to reduce this loss.
However due to the abrupt transition in the signal, such schemes introduce harmonics
that are difficult to filter in the overall signal. Further, the cyclic prefix can be used
for timing and frequency acquisition in wireless applications, and this capability would
be lost if a zero signal replaces the cyclic prefix.
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Frequency Diversity

Let us revert to the non-overlapping narrowband channel representation of the ISI chan-
nel in (3.145). The correlation between the channel frequency coefficients h̃0, . . . , h̃Nc−1

depends on the coherence bandwidth of the channel. From our discussion in Section 2.3,
we have learned that the coherence bandwidth is inversely proportional to the multi-
path spread. In particular, we have from (2.48) that

Wc =
1

2Td

=
W

2L
,

where we use our notation for L as denoting the length of the ISI. Since each sub-carrier
is W

Nc
wide, we expect approximately

NcWc

W
=

Nc

2L

as the number of neighboring sub-carriers whose channel coefficients are heavily cor-
related (see Exercise 3.28). One way to exploit the frequency diversity is to consider
ideal interleaving across the sub-carriers (analogous to the time interleaving done in
Section 3.2) and consider the model of (3.31)

y` = h`x` + w`, ` = 1, . . . L.

The difference is that now ` represents the sub-carriers while it is used to denote
time in (3.31). However, with the ideal frequency interleaving assumption we retain
the same independent assumption on the channel coefficients. Thus, the discussion of
Section 3.2 on schemes harnessing diversity is directly applicable here. In particular,
an L-fold diversity gain (proportional to the number of ISI symbols L) can be obtained.
Since the communication scheme is over sub-carriers, the form of diversity is due to
the frequency-selective channel and is termed frequency diversity (as compared to the
time diversity discussed in Section 3.2 which arises due to the time variations of the
channel).

Summary 3.3 Communication over Frequency-Selective Channels

We have studied three approaches to extract frequency diversity in a
frequency-selective channel (with L taps). We summarize their key attributes and
compare their implementational complexity.

1. Single-carrier with ISI equalization:

Using maximum likelihood sequence detection (MLSD), full diversity of L can be
achieved for uncoded transmission sent at symbol rate.
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MLSD can be performed by the Viterbi algorithm. The complexity is constant
per symbol time but grows exponentially with the number of taps L.

The complexity is entirely at the receiver.

2. Direct sequence spread spectrum:

Information is spread, via a pseudonoise sequence, across a bandwidth much
larger than the data rate. ISI is typically negligible.

The signal received along the L nearly orthogonal diversity paths is maximal-ratio
combined using the Rake receiver. Full diversity is achieved.

Compared to MLSD, complexity of the Rake receiver is much lower. ISI is
avoided because of the very low spectral efficiency per user, but the spectrum is
typically shared between many interfering users. Complexity is thus shifted to the
problem of interference management.

3. Orthogonal frequency division multiplexing:

Information is modulated on non-interfering sub-carriers in the frequency domain.

The transformation between the time and frequency domains is done by means of
adding/subtracting a cyclic prefix and IDFT/DFT operations. This incurs an
overhead in terms of time and power.

Frequency diversity is attained by coding over independently faded sub-carriers.
This coding problem is identical to that for time diversity.

Complexity is shared between the transmitter and the receiver in performing the
IDFT and DFT operations; the complexity of these operations is insensitive to
the number of taps, scales moderately with the number of sub-carriers Nc and is
very manageable with current implementation technology.

Complexity of diversity coding across sub-carriers can be traded off with the
amount of diversity desired.
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3.5 Impact of Channel Uncertainty

In the past few sections we assumed perfect channel knowledge so that coherent com-
bining can be performed at the receiver. In fast varying channels, it may not be easy
to estimate accurately the phases and magnitudes of the tap gains before they change.
In this case, one has to understand the impact of estimation errors on performance.
In some situations, noncoherent detection, which does not require an estimate of the
channel, may be the preferred route. In Section 3.1.1, we have already come across a
simple noncoherent detector for fading channels without diversity. In this section, we
will extend this to channels with diversity.

When we compared coherent and noncoherent detection for channels without di-
versity, the difference was seen to be relatively small (c.f. Figure 3.2). An important
question is what happens to that difference as the number of diversity paths L in-
creases. The answer depends on the specific diversity scenario. We first focus on the
situation where channel uncertainty has the most impact: DS spread spectrum over
channels with frequency diversity. Once we understand this case, it is easy to extend
the insights to other scenarios.

3.5.1 Noncoherent Detection for DS Spread Spectrum

We considered this scenario in 3.4.3, except now the receiver has no knowledge of the
channel gains h`’s. As we saw in Section 3.1.1, no information can be communicated in
the phase of the transmitted signal (in particular, antipodal signaling cannot be used)
in conjunction with noncoherent detection. Instead, we consider binary orthogonal
modulation,14 i.e., xA and xB are orthogonal and ‖xA‖ = ‖xB‖.

Recall that the central pseudonoise property of the transmitted sequences in DS
spread spectrum is that the shifted versions are nearly orthogonal. For simplicity of
analysis, we continue with the assumption that shifted versions of the transmitted
sequence are exactly orthogonal; this holds for both xA and xB here. We make the
further assumption that versions of the two sequences with different shifts are also

orthogonal to each other, i.e., (x
(`)
A )∗(x(`′)

B ) = 0 for ` 6= `′ (the so-called zero cross-
correlation property). This approximately holds in many spread spectrum systems. For
example, in the uplink of IS-95, the transmitted sequence is obtained by multiplying the
selected codeword of an orthogonal code by a (common) pseudonoise ±1 sequence, so
that the low cross-correlation property carries over from the auto-correlation property
of the pseudonoise sequence.

Proceeding as in the analysis of coherent detection, we start with the channel model
in vector form (3.122) and observe that the projection of y onto the 2L orthogonal

14Typically M -ary orthogonal modulation is used. For example, the uplink of IS-95 employs non-
coherent detection of 64-ary orthogonal modulation.
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vectors {x(`)
A /‖xA‖,x(`)

B /‖xB‖}` yields 2L sufficient statistics

r
(`)
A = h`x1 + w

(`)
A , ` = 1, . . . , L− 1

r
(`)
B = h`x2 + w

(`)
B , ` = 1, . . . , L− 1

where w
(`)
A ’s and w

(`)
B ’s are i.i.d. CN (0, N0), and

(
x1

x2

)
=





( ‖xA‖
0

)
if xA is transmitted

(
0

‖xB‖
)

if xB is transmitted
(3.146)

This is essentially a generalization of the noncoherent detection problem in Section 3.1.1
from 1 branch to L branches. Just as in the 1 branch case, a square-law type detector
is the optimal noncoherent detector: decide in favor of xA if

L−1∑

`=0

|r(`)
A |2 ≥

L−1∑

`=0

|r(`)
B |2, (3.147)

otherwise decide in favor of xB. The performance can be analyzed as in the 1 branch
case: the error probability has the same form as in (3.125), but with µ given by

µ =
1/L · Eb/N0

2 + 1/L · Eb/N0

, (3.148)

where Eb := ‖xA‖2. (See Exercise 3.31.) As a basis of comparison, the performance
of coherent detection of binary orthogonal modulation can be analyzed as for the
antipodal case; it is again given by (3.125) but with µ given by (see Exercise 3.33):

µ =

√
1/L · Eb/N0

2 + 1/L · Eb/N0

. (3.149)

It is interesting to compare the performance of coherent and noncoherent detection
as a function of the number of diversity branches. This is shown in Figures 3.23 and
3.24. For L = 1, the gap between the performance of both schemes is small, but they
are bad anyway, as there is a lack of diversity. This point was already made in Section
3.1. As L increases, the performance of coherent combining improves monotonically
and approaches the performance of an AWGN channel. In contrast, the performance
of noncoherent detection first improves with L but then degrades as L is increased
further. The initial improvement comes from a diversity gain. There is however a
law of diminishing return on the diversity gain. At the same time, when L becomes
too large, the SNR per branch becomes very poor and noncoherent combining cannot
effectively exploit the available diversity. This leads to an ultimate degradation in
performance. In fact, it can be shown that as L →∞, the error probability approaches
1/2.
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Figure 3.23: Comparison of error probability under coherent detection (solid) and
noncoherent detection (dotted), as a function of the number of taps L. Here Eb/N0 =
10dB.
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Figure 3.24: Comparison of error probability under coherent detection (solid) and
noncoherent detection (dotted), as a function of the number of taps L. Here Eb/N0 =
15dB.
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3.5.2 Channel Estimation

The significant performance difference between coherent and noncoherent combining
when the number of branches is large suggests the importance of channel knowledge
in wideband systems. We have assumed perfect channel knowledge when we analyzed
the performance of the coherent Rake receiver, but in practice, the channel taps have
to be estimated and tracked. It is therefore important to understand the impact of
channel measurement errors on the performance of the coherent combiner. We now
turn to the issue of channel estimation.

In data detection, the transmitted sequence is one of several possible sequences
(representing the data symbol). In channel estimation, the transmitted sequence is
assumed to be known at the receiver. In a pilot-based scheme, a known sequence
(called a pilot, sounding tone, or training sequence) is transmitted and this is used to
estimate the channel.15 In a decision-feedback scheme, the previously detected symbols
are used instead to update the channel estimates. If we assume that the detection is
error free, then the development below applies to both pilot-based and decision-directed
schemes.

Focus on one symbol duration, and suppose the transmitted sequence is a known
pseudonoise sequence u. We return to the channel model in vector form (c.f. (3.122))

y =
L−1∑

`=0

h`u
(`) + w, (3.150)

We see that since the shifted versions of u are orthogonal to each other and the taps
are assumed to be independent of each other, projecting y onto u(`)/‖u(`)‖ will yield
a sufficient statistic to estimate h` (see Summary 3)

r(`) := (u(`))∗y = h`‖u(`)‖+ w(`) =
√
Eh` + w(`), (3.151)

where E := ‖u(`)‖2. This is implemented by filtering the received signal by a filter
matched to u and sampling at the appropriate chip time. This operation is the same
as the first stage of the Rake receiver, and the channel estimator can in fact be combined
with the Rake receiver if done in a decision-directed mode. (See Figure 3.19.)

Typically, channel estimation is obtained by averaging over several such measure-
ments. For simplicity, we assume that the channel is constant over K symbol times,
and we obtain K such measurements over these symbol times:

r
(`)
k :=

√
Eh` + w

(`)
k , k = 1, . . . K. (3.152)

15The downlink of IS-95 uses a pilot, which is assigned its own pseudonoise sequence and transmitted
superimposed on the data.
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Assuming that h` ∼ CN (0, 1/L), the minimum mean-square estimate of h` given these
measurements is (c.f. (A.84) in Summary 3)

ĥ` =

√E
KE + LN0

K∑

k=1

r
(`)
k . (3.153)

The mean-square error associated with this estimate is (c.f. (A.85) in Summary 3)

1

L
· 1

1 + KE
LN0

, (3.154)

the same for all branches.
The key parameter affecting the estimation error is

SNRest :=
KE
LN0

. (3.155)

When SNRest À 1, the mean-square estimation error is much smaller than the variance
of h` (equal to 1/L) and the impact of the channel estimation error on the performance
of the coherent Rake receiver is not significant; perfect channel knowledge is a reason-
able assumption in this regime. On the other hand, when SNRest ¿ 1, the mean-square
error is close to 1/L, the variance of h`. In this regime, we hardly have any informa-
tion about the channel gains and the performance of the coherent combiner cannot
be expected to be better than the noncoherent combiner, which we know has poor
performance whenever L is large.

How should we interpret the parameter SNRest? Since the channel is constant over
the coherence time Tc, we can interpret KE as the total received energy over the
channel coherence time Tc. We can rewrite SNRest as

SNRest =
PTc

LN0

(3.156)

where P is the received power of the signal from which channel measurements are
obtained. Hence, SNRest can be interpreted as the signal-to-noise ratio available to
estimate the channel per coherence time per tap. Thus, channel uncertainty has a
significant impact on the performance of the Rake receiver whenever this quantity is
significantly below 0 dB.

If the measurements are done in a decision-feedback mode, P is the received power
of the data stream itself. If the measurements are done from a pilot, then P is the
received power of the pilot. On the downlink of a CDMA system, it is more economical
to have a pilot common to all users; moreover, the power allocated to the pilot can
be larger than the power of the signals for the individual users. This results in a
larger SNRest, thus makes coherent combining easier. On the uplink, however, it is not
possible to have a common pilot, and the channel estimation will have to be done with
a weaker pilot allotted to the individual user, or even noncoherently. With a lower
received power from the individual users, SNRest can be considerably smaller.
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3.5.3 Other Diversity Scenarios

There are two reasons why wideband DS spread spectrum systems are significantly
impacted by channel uncertainty:
• the amount of energy per resolvable path decreases inversely with increasing num-

ber of paths, making their gains harder to estimate when there are many paths;

• the number of diversity paths depends both on the bandwidth and the delay spread
and given these parameters, the designer has no control over this number.

What about in other diversity scenarios?
In antenna diversity with L receive antennas, the received energy per antenna is the

same regardless of the number of antennas, so the channel measurement problem is the
same as with a single receive antenna and does not become harder. In antenna diversity
with L transmit antennas, the received energy per diversity path does decrease with the
number of antennas used, but certainly we can restrict the number L to be the number
of different channels that can be reliably learnt by the receiver. A similar scenario
is true in time diversity where we can choose the depth of interleaving, effectively
controlling the number of diversity paths L over which we jointly code.

How about in OFDM systems with frequency diversity? Here, the designer has
control over how many sub-carriers to spread the signal energy over. Thus while the
number of available diversity branches L may increase with the bandwidth, the signal
energy can be restricted to a fixed number of sub-carriers L′ < L over any one OFDM
time block. Such communication can be restricted to concentrated time-frequency
blocks and Fig 3.25 visualizes one such scheme (for L′ = 2), where the choice of the
L′ sub-carriers is different for different OFDM blocks and is hopped over the entire
bandwidth. Since the energy in each OFDM block is concentrated within a fixed
number of sub-carriers at any one time, coherent reception is possible. On the other
hand, the maximum diversity gain of L can still be achieved by coding across the
sub-carriers within one OFDM block as well as across different blocks.

One possible drawback is that since the total power is only concentrated within
a subset of sub-carriers, the total degrees of freedom available in the system are not
utilized. This is certainly the case in the context of point-to-point communication; in
a system with other users sharing the same bandwidth, however, the other degrees of
freedom can be utilized by the other users and need not go wasted. In fact, one key
advantage of OFDM over DS spread spectrum is the ability to maintain orthogonality
across multiple users in a multiple access scenario. We will return to this point in
Chapter 4.
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Time

Frequency

Figure 3.25: An illustration of a scheme that uses only a fixed part of the bandwidth
at every time. Here, one small square denotes a single sub-carrier within one OFDM
block. The time-axis indexes the different OFDM blocks; the frequency-axis indexes
the different sub-carriers.
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Chapter 3: The Main Plot

Baseline

We first looked at detection on a narrowband flat fading Rayleigh channel. Under
both coherent and noncoherent detection, the error probability behaves like

pe ≈ SNR−1 (3.157)

at high SNR. In contrast, the error probability decreases exponentially with the
SNR in the AWGN channel. The typical error event for the fading channel is due
to the channel being in a deep fade rather than the Gaussian noise being large.

Diversity

Diversity was presented as an effective approach to improve performance
drastically by providing redundancy across independently faded branches.

Three modes of diversity were considered:
• time - the interleaving of coded symbols over different coherence time periods;

• space - the use of multiple transmit and/or receive antennas;

• frequency - the use of a bandwidth greater than the coherence bandwidth of the
channel.

In all cases, a simple scheme that repeats the information symbol across the
multiple branches achieves full diversity. With L i.i.d. Rayleigh branches of
diversity, the error probability behaves like

pe ≈ c · SNR−L (3.158)

at high SNR.

Examples of repetition schemes:
• repeating the same symbol over different coherence periods;

• repeating the same symbol over different transmit antennas one at a time;

• repeating the same symbol across OFDM sub-carriers in different coherence bands;



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 126

• transmitting a symbol once every delay spread in a frequency-selective channel so
that multiple delayed replicas of the symbol are received without interference.

Code Design and Degrees of Freedom

More sophisticated schemes cannot achieve higher diversity gain but can provide a
coding gain by improving the constant c in (3.158). This is achieved by utilizing
the available degrees of freedom better than in the repetition schemes.

Examples:

• rotation and permutation codes for time diversity and for frequency diversity in
OFDM;

• Alamouti scheme for transmit diversity;

• uncoded transmission at symbol rate in a frequency-selective channel with ISI
equalization.

Criteria to design schemes with good coding gain were derived for the different
scenarios by using the union bound (based on pairwise error probabilities) on the
actual error probability:

• product distance between codewords for time diversity;

• determinant criterion for space-time codes.

Channel Uncertainty

The impact of channel uncertainty is significant in scenarios where there are many
diversity branches but only a small fraction of signal energy is received along each
branch. Direct sequence spread spectrum is a prime example.

The gap between coherent and noncoherent schemes is very significant in this
regime. Noncoherent schemes do not work well as they cannot combine the signals
along each branch effectively.

Accurate channel estimation is crucial. Given the amount of transmit power
devoted to channel estimation, the efficacy on detection performance depends on
the key parameter SNRest, the received SNR per coherence time per diversity
branch. If SNRest À 0 dB, then detection performance is near coherent. If
SNRest ¿ 0 dB, then effective combining is impossible.
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Impact of channel uncertainty can be ameliorated in some schemes where the
transmit energy can be focused on smaller number of diversity branches.
Effectively SNRest is increased. OFDM is an example.
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3.6 Bibliographical Notes

Reliable communication over fading channels have been studied since the 1970s. Im-
proving the performance via diversity is also an old topic. Standard digital communi-
cation texts contain many formulas for the performance of coherent and non-coherent
diversity combiners, which we have used liberally in this chapter (see Chapter 14 of
Proakis [79], for example).

The product distance criterion for improving the coding gain while still achieving
full diversity is relatively new; the QAM rotation example is taken from [11]. Transmit
antenna diversity has been studied extensively in the late 1990s and the determinant
code design criterion was introduced by [92]. The delay diversity scheme was introduced
by Seshadri and Winters [85]. The Alamouti scheme was introduced by Alamouti [3]
and generalized to orthogonal designs by Tarokh, Jafarkhani and Calderbank [94].
The diversity analysis of the decorrelator was performed by Winters, Salz and Gitlin
[118], in the context of a space-division multiple access system with multiple receive
antennas.

The topic of equalization has been studied extensively and is covered comprehen-
sively in standard textbooks on communication theory; for example, see the book by
Barry, Lee and Messerschmitt [4]. The analysis of MLSE is adopted from [43].

The OFDM approach to communicate over a wideband channel was proposed in
[?]. Circular convolution and the DFT are classical undergraduate material in digital
signal processing (Chapter 8, and Section 8.7.5, in particular, of [72]).

The spread spectrum approach to harness frequency diversity has been well sum-
marized (along with a system view) by Viterbi [116]. The Rake receiver was designed
by Price and Green [78]. The impact of channel uncertainty on the performance has
been studied by various authors, including Médard and Gallager [70], Tse and Telatar
[96] and Subramanian and Hajek [89].
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Exercises

Exercise 3.1. Verify (3.19) and the high SNR approximation (3.21). Hint: Write the
expression as a double integral and interchange the order of integration.

Exercise 3.2. In Section 3.1.2 we studied the performance of antipodal signaling
under coherent detection over a Rayleigh fading channel. In particular, we saw that
the error probability pe decreases like 1/SNR. In this question, we study a deeper
characterization of the behavior of pe with increasing SNR.

1. A precise way of saying that pe decays like 1/SNR with increasing SNR is the
following:

lim
SNR→∞

pe · SNR = c,

where c is a constant. Identify the value of c for the Rayleigh fading channel.

2. Now we want to test how robust the above result is with respect to the fading
distribution. Let h be the channel gain, and suppose |h|2 has an arbitrary con-
tinuous pdf f satisfying f(0) > 0. Does this give enough information to compute
the high SNR error probability like in the previous part? If so, compute it. If not,
specify what other information you need. Hint: You may need to interchange
limit and integration in your calculations. You can assume that this can be done
without worrying about making your argument rigorous.

3. Suppose now we have L independent branches of diversity with gains h1, . . . , hL,
and |h`|2 having an arbitrary distribution as in the previous part. Is there enough
information for you to find the high SNR performance of repetition coding and
coherent combining? If so, compute it. If not, what other information do you
need?

4. Using the result in the previous part or otherwise, compute the high SNR perfor-
mance under Rician fading. How does the parameter κ affect the performance?

Exercise 3.3. This exercise shows how the high SNR slope of the probability of error
(3.19) versus SNR curve can be obtained using a typical error event analysis, without
the need for directly carrying out the integration.

Fix ε > 0 and define the ε-typical error events Eε and E−ε, where

Eε := {h : |h|2 < 1/SNR1−ε}. (3.159)

1. By conditioning on the event Eε, show that at high SNR

lim
SNR→∞

log pe

log SNR
≤ − (1− ε) . (3.160)
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2. By conditioning on the event E−ε, show that

lim
SNR→∞

log pe

log SNR
≥ −(1 + ε). (3.161)

3. Hence conclude that

lim
SNR→∞

log pe

log SNR
= −1. (3.162)

This says that that the asymptotic slope of the error probability versus SNR plot
(in dB/dB scale) is −1.

Exercise 3.4. In Section 3.1.2, we saw that there is a 4 dB energy loss when using 4-
PAM on only the I-channel rather than using QPSK on both the I and the Q channels,
although both modulations convey two bits of information. Compute the corresponding
loss when one wants to transmit k bits of information using 2k-PAM rather than 2k-
QAM. You can assume k to be even. How does the loss depend on k?

Exercise 3.5. Consider the use of the differential BPSK scheme proposed in Section
3.1.3 for the Rayleigh flat fading channel.

1. Find a natural non-coherent scheme to detect u[m] based on y[m− 1] and y[m],
assuming the channel is constant across the two symbol times. Your scheme does
not have to be the ML detector.

2. Analyze the performance of your detector at high SNR. You may need to make
some approximations. How does the high SNR performance of your detector
compare to that of the coherent detector?

3. Repeat your analysis for differential QPSK.

Exercise 3.6. In this exercise we further study coherent detection in Rayleigh fading.

1. Verify Equation (3.37).

2. Analyze the error probability performance of coherent detection of binary or-
thogonal signaling with L branches of diversity, under an i.i.d. Rayleigh fading
assumption (i.e., verify Equation (3.149)).

Exercise 3.7. In this exercise, we study the performance of the rotated QAM code
in Section 3.2.2.

1. Give an explicit expression for the exact pairwise error probability P {xA → xB}
in (3.49). Hint: The techniques from Exercise 3.1 will be useful here.
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2. This pairwise error probability was upper bounded in (3.54). Show that the
product of SNR and the difference between the upper bound and the actual
pairwise error probability goes to zero with increasing SNR. In other words, the
upper bound in (3.54) is tight up to the leading term in 1/SNR.

Exercise 3.8. In the text, we mainly use real symbols to simplify the notation. In
practice, complex constellations are used (i.e., symbols are sent along both the I and
Q components). The simplest complex constellation is QPSK: the constellation is
{a(1 + j), a(1− j), a(−1− j), a(−1 + j)}.

1. Compute the error probability of QPSK detection for a Rayleigh fading channel
with repetition coding over L branches of diversity. How does the performance
compare to a scheme which uses only real symbols?

2. In Section 3.2.2, we developed a diversity scheme based on rotation of real sym-
bols (thus using only the I channel). One can develop an analogous scheme for
QPSK complex symbols, using a 2 by 2 complex unitary matrix instead. Find
an analogous pairwise code-design criterion as in the real case.

3. Real orthonormal matrices are special cases of complex unitary matrices. Within
the class of real orthonormal matrices, find the optimal rotation to maximize your
criterion.

4. Find the optimal unitary matrix to maximize your criterion.

Exercise 3.9. In Section 3.2.2, we have used a rotated QPSK constellation to demon-
strate the possible improvement over repetition coding in a time diversity channel with
two diversity paths. Continuing with the same model, now consider transmitting at
a higher rate (than the 4 symbols transmitted by the QPSK scheme) using a QAM
constellation (with 4n2 points, for some n > 1). Consider rotating the QAM by a
rotation matrix of the form in (3.46). Using the performance criterion of the minimum
squared product distance, construct the optimal rotation matrix.

Exercise 3.10. In Section 3.2.2, we looked at the example of the rotation code to
achieve time diversity (with the number of branches, L, equal to 2). Another coding
scheme is the permutation code. Shown in Figure 3.26 are two 16-QAM constellations.
Each codeword in the permutation code for L = 2 is obtained by picking a pair of
points, one from each constellation, which are represented by the same icon. The
codeword is transmitted over two (complex) symbol times.

1. Why do you think this is called a permutation code?

2. What is the data rate of this code?

3. Compute the diversity gain and the minimum product distance for this code.
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Figure 3.26: A permutation code.

4. How does the performance of this code compare to the rotation code of the
same rate, in terms of the transmit power required? (When we discussed the
rotation code in Section 3.2.2, for simplicity we only used the (real) I channel,
but in practice and for fair comparison with the code considered here, one should
simultaneously use the (imaginary) Q channel as well to double the rate. Since
the two channels are orthogonal, one can apply the same rotation separately to
the symbols transmitted in the 2 channels.)

Exercise 3.11. In the text, we considered the use of rotation codes to obtain time
diversity. Rotation codes are designed specifically for fading channels. Alternatively,
one can use standard AWGN codes like binary linear block codes. This question looks
at the diversity performance of such codes.

Consider a perfectly interleaved Rayleigh fading channel:

y` = h`x` + w`, ` = 1, . . . , L

where h`’s and w`’s are i.i.d. CN (0, 1) and CN (0, N0) random variables respectively.
A (L, k) binary linear block code is specified by a k by L generator matrix G whose
entries are 0’s or 1’s. k information bits form a k-dimensional binary-valued vector
b which is mapped16 into the binary codeword c = Gtb of length L, which is then
mapped into L BPSK symbols and transmitted over the fading channel. The receiver
is assumed to have a perfect estimate of the channel gains h`.

1. Compute a bound on the error probability of ML decoding in terms of the SNR
and parameters of the code. Hence, compute the diversity gain in terms of code
parameter(s).

16Addition and multiplication are done in the binary field.
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2. Use your result in (1) to compute the diversity gain of the (3, 2) code with
generator matrix:

G =

[
1 0 1
0 1 1

]
. (3.163)

How does the performance of this code compare to the rate 1/2 repetition code?

3. The ML decoding is also called soft decision decoding as it takes the entire re-
ceived vector y and finds the transmitted codeword closest in Euclidean dis-
tance to it. Alternatively, a sub-optimal but lower-complexity decoder uses
hard-decision decoding, which for each ` first makes a hard decision ĉ` on the
`th transmitted coded symbol based only on the corresponding received symbol
y`, and then find the codeword that is closest in Hamming distance to ĉ. Com-
pute the diversity gain of this scheme in terms of basic parameters of the code.
How does it compare to the diversity gain achieved by soft decision decoding?
Compute the diversity gain of the code in (2) under hard decision decoding.

4. Suppose now you still do hard decision decoding except that you are allowed to
also declare an “erasure” on some of the transmitted symbols (i.e. you can refuse
to make a hard decision on some of the symbols.) Can you design a scheme that
yields a better diversity gain than the scheme in part (3)? Can you do as well
as soft decision decoding? Justify your answers. Try your scheme out on the
example in part (2). Hint: the trick is to figure out when to declare an erasure.
You may want to start thinking of the problems in terms of the example in part
(2). The typical error event view in Exercise 3.3 may also be useful here.

Exercise 3.12. In our study of diversity models (c.f. (3.31)), we have modeled the
L branches to have independent fading coefficients. Here we explore the impact of
correlation between the L diversity branches. In the time diversity scenario, consider
the correlated model: h[1], . . . , h[L] are jointly complex Gaussian with zero mean and
covariance Kh (CN (0,Kh) in our notation).

1. Redo the diversity calculations for repetition coding (Section 3.2.1) for this cor-
related channel model by calculating the rate of decay of error probability with
SNR. What is the dependence of the asymptotic (in SNR) behavior of the typical
error event on the correlation Kh? You can answer this by characterizing the
rate of decay of (3.42) at high SNR (as a function of Kh).

2. We arrived at the product distance code design criterion to harvest coding gain
along with time diversity in Section 3.2.2. What is the analogous criterion for
correlated channels? Hint: Jointly complex Gaussian random vectors are related
to i.i.d. complex Gaussian vectors via a linear transformation that depends on
the covariance matrix.
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3. For transmit diversity with independent fading across the transmit antennas,
we have arrived at the generalized product distance code design criterion in
Section 3.3.2. Calculate the code design criterion for the correlated fading channel
here (the channel h in (3.80) is now CN (0,Kh)).

Exercise 3.13. The optimal coherent receiver for repetition coding with L branches of
diversity is a maximal ratio combiner. For implementation reasons, a simpler receiver
one often builds is a selection combiner. It does detection based on the received signal
along the branch with the strongest gain only, and ignores the rest. For the i.i.d.
Rayleigh fading model, analyze the high SNR performance of this scheme. How much
of the inherent diversity gain can this scheme get? Quantify the performance loss from
optimal combining. Hint: You may find the techniques developed in Exercise 3.2 useful
for this problem.

Exercise 3.14. It is suggested that full diversity gain can be achieved over a Rayleigh
faded MISO channel by simply transmitting the same symbol at each of the transmit
antennas simultaneously. Is it correct?

Exercise 3.15. An L×1 MISO channel can be converted into a time-diversity channel
with L diversity branches by simply transmitting over one antenna at a time.

1. In this way, any code designed for a time-diversity channel with L diversity
branches can be used for a MISO (multi-input single-output) channel with L
transmit antennas. If the code achieves k-fold diversity in the time-diversity
channel, how much diversity can it obtain in the MISO channel? What is the
relationship between the minimum product distance metric of the code when
viewed as a time-diversity code and its minimum determinant metric when viewed
as a transmit-diversity code?

2. Using this transformation, the rotation code can be used as a transmit diversity
scheme. Compare the performance of this code and the Alamouti scheme in a
2× 1 Rayleigh fading channel, using BPSK symbols. Which one is better? How
about using QPSK symbols?

3. Use the permutation code (c.f. Figure 3.26) from Exercise 3.10 on the 2 × 1
Rayleigh fading channel and compare (via a numerical simulation) its perfor-
mance with the Alamouti scheme using QPSK symbols (so the rate is the same
in both the schemes).

Exercise 3.16. In this exercise, we derive some properties a code construction must
satisfy to mimic the Alamouti scheme behavior for more than 2 transmit antennas.
Consider communication over n time slots on the L transmit antenna channel (c.f.
(3.80)):

yt = h∗X + wt. (3.164)
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Here X is the L × n space-time code. Over L time slots, we want to communicate n
independent constellation symbols, d1, . . . , dn; the space-time code X is a deterministic
function of these symbols.

1. Consider the following property for every channel realization h and space-time
codeword X

(h∗X)t = Ad. (3.165)

Here we have written d = [d1, . . . , dn]t and A = [a1, . . . , an], a matrix with
orthogonal columns. The vector d depends solely on the codeword X and the
matrix A depends solely on the channel h. Show that, if the space-time codeword
X satisfies the property in (3.165), the joint receiver to detect d separates into
individual linear receivers, each separately detecting d1, . . . , dn.

2. We would like the effective channel (after the linear receiver) to provide each
symbol dm (m = 1, . . . , n) with full diversity, namely L. Show that, if we impose
the condition that

‖am‖ = ‖h‖, m = 1, . . . n, (3.166)

then each data symbol dm has full diversity.

3. Show that a space-time code X satisfying (3.165) (the linear receiver property)
and (3.166) (the full diversity property) must be of the form

XX∗ = ‖d‖2 In, (3.167)

i.e., the columns of X must be orthogonal. Such an X is called an orthogonal
design. Indeed, we observe that the codeword X in the Alamouti scheme (c.f.
(3.77)) is an orthogonal design with L = n = 2.

Exercise 3.17. This exercise is a sequel to Exercise 3.16. It turns out that if we
require n = L, then for L > 2 there are no orthogonal designs. (This result is proved
in Theorem 5.4.2 in [94].) If we settle for n < L then orthogonal designs exist for
L > 2. In particular, Theorem 5.5.2 of [94] constructs orthogonal designs for all L and
n ≤ L/2. This does not preclude the existence of orthogonal designs with rate larger
than 0.5. Demonstrate this by constructing an orthogonal design for n = 3 and L = 4.

Exercise 3.18. The pairwise error probability analysis for the i.i.d. Rayleigh fading
channel has led us to the product distance (for time diversity) and generalized product
distance (for transmit diversity) code design criteria. Extend this analysis for the i.i.d.
Rician fading channel.

1. Does the diversity order change for repetition coding over a time diversity channel
with the L branches i.i.d. Rician distributed?
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2. What is the new code design criterion, analogous to product distance, based on
the pairwise error probability analysis?

Exercise 3.19. In this exercise we study the performance of space time codes (the
subject of Section 3.3.2) in the presence of multiple receive antennas.

1. Derive, as an extension of (3.83), the pairwise error probability for space time
codes with nr receive antennas.

2. Assuming that the channel matrix has i.i.d. Rayleigh components derive, as an
extension of (3.86), a simple upper bound for the pairwise error probability.

3. Conclude that the code design criterion remains unchanged with multiple receive
antennas.

Exercise 3.20. We have studied the performance of the Alamouti scheme in a channel
with two transmit and one receive antenna. Suppose now we have an additional receive
antenna. Derive the ML detector for the symbols based on the received signals at both
receive antennas. Show that the scheme effectively provides two independent scalar
channels. What is the gain of each of the channels?

Exercise 3.21. In this exercise we study some expressions for error probabilities that
arise in Section 3.3.3.

1. Verify eqns. (3.93) and (3.94). In which SNR range is (3.93) smaller than (3.94)?

2. Repeat the derivation of (3.93) and (3.94) for a general target rate of R bits/s/Hz
(suppose that R is an integer). How does the SNR range in which the spatial
multiplexing scheme performs better depend on R?

Exercise 3.22. In Section 3.3.3, the performance comparison between the spatial
multiplexing scheme and the Alamouti scheme is done for PAM symbols. Extend the
comparison to QAM symbols with the target data rate R bits/s/Hz (suppose that
R ≥ 4 is an even integer).

Exercise 3.23. In the text, we have developed code design criteria for pure time
diversity and pure spatial diversity scenarios. In some wireless systems, one can get
both time and spatial diversity simultaneously, and we want to develop a code design
criterion for that. More specifically, consider a channel with L transmit antennas and
1 receive antenna. The channel remains constant over blocks of k symbol times, but
changes to an independent realization every k symbols (as a result of interleaving,
say). The channel is assumed to be independent across antennas. All channel gains
are Rayleigh distributed.

1. What is the maximal diversity gain that can be achieved by coding over n such
blocks?
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2. Develop a pairwise code design criterion over this channel. Show how this crite-
rion reduces to the special cases we have derived for pure time and pure spatial
diversity.

Exercise 3.24. A mobile having a single receive antenna sees a Rayleigh flat fading
channel

y[m] = h[m]x[m] + w[m],

where w[m] ∼ CN (0, N0) and i.i.d. and {h[m]} is a complex circular symmetric station-
ary Gaussian process with a given correlation function R[m] which is monotonically
decreasing with m. (Recall that R[m] is defined to be E[h[0]h[m]∗].)

1. Suppose now we want to put an extra antenna on the mobile at a separation
d. Can you determine, from the information given so far, the joint distribution
of the fading gains the two antennas see at a particular symbol time? If so,
compute it. If not, specify any additional information you have to assume and
then compute it.

2. We transmit uncoded BPSK symbols from the base station to the mobile with
dual antennas. Give an expression for the average error probability for the ML
detector.

3. Give a back-of-the-envelope approximation to the high SNR error probability,
making explicit the effect of the correlation of the channel gains across antennas.
What is the diversity gain from having two antennas in the correlated case? How
does the error probability compare to the case when the fading gains are assumed
to be independent across antennas? What is the effect of increasing the antenna
separation d?

Exercise 3.25. Show that full diversity can still be obtained with the maximum
likelihood sequence equalizer in Section 3.4.2 even when the channel taps h`’s have
different variances (but are still independent). You can use a heuristic argument based
on typical error analysis.

Exercise 3.26. Consider the maximum likelihood sequence equalizer described in
Section 3.4.2. We computed the achieved diversity gain but did not compute an explicit
bound on the error probability on detecting each of the symbol x[m]. Below you can
assume that BPSK modulation is used for the symbols.

1. Suppose N = L. Find a bound on the error probability of the MLSE incorrectly
detecting x[0]. Hint: finding the worst-case pairwise error probability does not
require much calculations, but you should be a little careful in applying the union
bound.
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2. Use your result to estimate the coding gain over the scheme that completely
avoids ISI by sending a symbol every L symbol times. How does the coding gain
depend on L?

3. Extend your analysis to general block length N ≥ L and the detection of x[m]
for m ≤ N − L.

Exercise 3.27. Consider the equalization problem described in Section 3.4.2. We
studied the performance of MLSE. In this exercise, we will look at the performance of
a linear equalizer. For simplicity, suppose N = L = 2.

1. Over the two symbol times (time 0 and time 1), one can think of the ISI channel
as a 2 × 2 MIMO channel between the input and output symbols. Identify the
channel matrix H.

2. The MIMO point of view suggests using as an alternative to MLSE the zero-
forcing (decorrelating) receiver to detect x[0] based on completely inverting the
channel. How much diversity gain can this equalizer achieve? How does it com-
pare to the performance of MLSE?

Exercise 3.28. Consider a multipath channel with L i.i.d. Rayleigh faded taps. Let
h̃n be the complex gain of the nth carrier in the OFDM modulation at a particular
time. Compute the joint statistics of the gains and lend evidence to the statement
that the gains of the carriers separated by larger than the coherence bandwidths are
approximately independent.

Exercise 3.29. Argue that for typical wireless channels, the delay spread is much
less than the coherence time. What are the implications of this observation on: 1) an
OFDM system; 2) a direct sequence spread-spectrum system with Rake combining?
(There may be multiple implications in each case.)

Exercise 3.30. Communication takes place at passband over a bandwidth W around
a carrier frequency of fc. Suppose the baseband equivalent discrete-time model has
a finite number of taps. We use OFDM modulation. Let h̃n[i] be the complex gain
for the nth carrier and the ith OFDM symbol. We typically assume there are a large
number of reflectors so that the tap gains of the discrete-time model can be modeled as
Gaussian distributed, but suppose we do not make this assumption here. Only relying
on natural assumptions on fc and W , argue the following. State your assumptions on
fc and W and make your argument as clear as possible.

1. At a fixed symbol time i, the h̃n[i]’s are identically distributed across the carriers.

2. More generally, the processes {h̃n[i]}n have the same statistics for different n’s.
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Exercise 3.31. Show that the square-law combiner (given by (3.147)) is the optimal
non-coherent ML detector for a channel with i.i.d. Rayleigh faded branches, and analyze
the non-coherent error probability performance (i.e., verify (3.148)).

Exercise 3.32. Consider the problem of Rake combining under channel measurement
uncertainty, discussed in Section 3.4.3. Assume a channel with L i.i.d. Rayleigh faded
branches. Suppose the channel estimation is as given in Equations (3.152) and (3.153).
We communicate using binary orthogonal signaling. The receive is coherent with the
channel estimates used in place of the true channel gains h`. It is not easy to compute
explicitly the error probability of this detector, but through either an approximate
analysis, numerical computation or simulation, get an idea of its performance as a
function of L. In particular, give evidence supporting the intuitive statement that,
when L À KE/N0, the performance of this detector is very poor.

Exercise 3.33. We have studied coherent performance of antipodal signaling of the
Rake receiver in Section 3.4.3. Now consider binary orthogonal modulation used in
analyzing the noncoherent performance of DS spread spectrum: we either transmit xA

or xB which are both orthogonal and their shifts are also orthogonal with each other.
Calculate the error probability with the coherent Rake (i.e., verify (3.149)).



www.manaraa.com

Chapter 4

Cellular Systems: Multiple Access
and Interference Management

4.1 Introduction

In Chapter 3, our focus was on point-to-point communication, i.e., the scenario of a
single transmitter and a single receiver. In this chapter, we turn to a network of many
mobile users (also referred to as mobiles) interested in communicating with a common
wireline network infrastructure.1 This form of wireless communication is different
from radio or TV in two important respects: first, users are interested in messages
specific to them as opposed to the common message that is broadcast in radio and
TV. Second, there is two-way communication between the users and the network. In
particular, this allows feedback from the receiver to the transmitter, which is missing
in radio and TV. This form of communication is also different from the all-wireless
walkie-talkie communication since an access to a wireline network infrastructure is
demanded. Cellular systems address such a multiuser communication scenario and
form the focus of this chapter.

Broadly speaking, two types of spectra are available for commercial cellular systems.
The first is licensed, typically nationwide and over a period of a few years, from the
spectrum regulatory agency (FCC, in the United States). The second is unlicensed
spectrum made available for experimental systems and to aid development of new
wireless technologies. While licensing spectrum provides immunity from any kind of
interference outside of the system itself, bandwidth is very expensive. This skews the
engineering design of the wireless system to be as spectrally efficient as possible. There
are no hard constraints on the power transmitted within the licensed spectrum but the
power is expected to decay rapidly outside. On the other hand, unlicensed spectrum
is very cheap to transmit on (and correspondingly larger than licensed spectrum) but

1A common example of such a network (wireline, albeit) is the public switched telephone network.
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there is a maximum power constraint over the entire spectrum as well as interference to
deal with. The emphasis thus is less on spectral efficiency. The engineering design can
thus be very different depending on whether the spectrum is licensed or not. In this
chapter, we focus on cellular systems that are designed to work on licensed spectrum.
Such cellular systems have been deployed nationwide and one of the driving factors for
the use of licensed spectrum for such networks is the risk of huge capital investment if
one has to deal with malicious interference, as would be the case in unlicensed bands.

A cellular network consists of a number of fixed base stations, one for each cell.
The total coverage area is divided into cells and a mobile communicates with the base
station(s) close to it. (See Figure 1.2.) At the physical and medium access layers,
there are two main issues in cellular communication: multiple access and interference
management. The first issue addresses how the overall resource (time, frequency and
space) of the system is shared by the users in the same cell (intra-cell) and the sec-
ond issue addresses the interference caused by simultaneous signal transmissions in
different cells (inter-cell). At the network layer, an important issue is that of seamless
connectivity to the mobile as it moves from one cell to the other (and thus switching
communication from one base station to the other, an operation known as handoff).
In this chapter we will focus primarily on the physical layer issues of multiple access
and interference management, although we will see that in some instances these issues
are also coupled with how handoff is done.

In addition to resource sharing between different users, there is also an issue of how
the resource is allocated between the uplink (the communication from the mobile users
to the base station, also called the reverse link) and the downlink (the communication
from the base station to the mobile users, also called the forward link). There are
two natural strategies for separating resources between the uplink and the downlink:
time division duplex (TDD) separates the transmissions in time and frequency division
duplex (FDD) achieves the separation in frequency. Most commercial cellular systems
are based on FDD. Since the powers of the transmitted and received signals typically
differ by more than 100 dB at the transmitter, the signals in each direction occupy
bands that are separated far apart (tens of MHz), and a device called a duplexer is
required to filter out any interference between the two bands. Our focus in this chapter
is on FDD systems with a clear separation in frequency of the uplink and downlink
transmissions, although many of the ideas discussed here are applicable to both types
of systems.

A cellular network provides coverage of the entire area by dividing it into cells. We
can carry this idea further by dividing each cell spatially. This is called sectorization
and involves dividing the cell into, say 3, sectors. Fig 4.1 shows such a division of
a hexagonal cell. One way to think about sectors is to consider them as separate
cells, except that the base station corresponding to the sectors is at the same location.
Sectorization is achieved by having a directional antenna at the base station that
focuses transmissions into the sector of interest. and is designed to have a null in
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Sector 3 Sector 1

Sector 2

Figure 4.1: A hexagonal cell with 3 sectors.

the other sectors. The ideal end result is an effective creation of new cells without
the added burden of new base stations and network infrastructure. Sectorization is
most effective when the base station is quite tall with few obstacles surrounding it.
Even in this ideal situation, there is inter-sector interference. On the other hand, if
there is substantial local scattering around the base station, as is the case when the
base stations are low-lying (such as on the top of lamp posts), sectorization is far less
effective because the scattering and reflection would transfer energy to sectors other
than the one intended. We will discuss the impact of sectorization on the choice of the
system design.

In this chapter, we study three cellular system designs as case studies to illustrate
several different approaches to multiple access and interference management. Both
the uplink and the downlink designs will be studied. In the first system, which can be
termed a narrowband system, user transmissions within a cell are restricted to separate
narrowband channels. Further, neighboring cells use different narrowband channels for
user transmissions. This requires that the total bandwidth be split and reduces the
frequency reuse in the network. However, the network can now be simplified and
approximated by a collection of point-to-point non-interfering links, and the physical
layer issues are essentially point-to-point ones. The IS-136 and GSM standards are
prime examples of this system. Since the level of interference is kept minimal, the point-
to-point links typically occur at high signal-to-interference-plus-noise ratios (SINRs).2

The second and third system designs propose a contrasting strategy: all transmis-
sions are spread to the entire bandwidth and are hence wideband. The key feature of

2Since interference plays an important role in multiuser systems, SINR takes the place of the
parameter SNR we used in Chapter 3 when we only talked about point-to-point communication.
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these systems is universal frequency reuse: the same spectrum is used in every cell.
However simultaneous transmissions can now interfere with each other and links typ-
ically operate at low SINRs. The two system designs differ in how the users’ signals
are spread. The Code-Division Multiple Access (CDMA) system is based on direct-
sequence spread spectrum. Here, users’ information bits are coded at a very low rate
and modulated by pseudonoise sequences. In this system, the simultaneous trans-
missions, intra-cell and inter-cell, cause interference. The IS-95 standard is the main
example to highlight the design features of this system. In the Orthogonal Frequency
Division Multiplexing (OFDM) system, on the other hand, users’ information is spread
by hopping in the time-frequency grid. Here, the transmissions within a cell can be kept
orthogonal but adjacent cells share the same bandwidth and inter-cell interference still
exists. This system has the benefit of the full frequency reuse of CDMA while retaining
the benefits of the narrowband system where there is no intra-cell interference.

We also study the power profiles of the signals transmitted in these systems. We will
conduct this study for both the downlink and the uplink and arrive at an understanding
of the peak and average power profile of the transmissions. We conclude by detailing
the impact on power amplifier settings and overall power consumption in the three
systems.

Towards implementing the multiple access design, there is an overhead in terms of
communicating certain parameters from the base station to the mobiles and vice versa.
They include: authentication of the mobile by the network, allocation of traffic chan-
nels, training data for channel measurement, transmit power level and acknowledgment
of correct reception of data. Some of these parameters are one-time communications
for a mobile; others continue in time. The amount of overhead this constitutes depends
to some extent on the design of the system itself. Our discussions include this topic
only when a significant overhead is caused by a specific design choice.

The table at the end of the chapter summarizes the key properties of the three
systems.

4.2 Narrowband Cellular Systems

In this section, we discuss a cellular system design that uses naturally the ideas of re-
liable point-to-point wireless communication towards constructing a wireless network.
The basic idea is to schedule all transmissions so that no two simultaneous transmis-
sions interfere with each other (for the most part). We describe an identical uplink and
downlink design of multiple access and interference management that can be termed
narrowband to signify that the user transmissions are restricted to a narrow frequency
band and the main design goal is to minimize all interference.

Our description of the narrowband system is the same for the uplink and the down-
link. The uplink and downlink transmissions are separated, either in time or frequency.



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 144

For concreteness, let us consider the separation to be in frequency, implemented by
adopting an FDD scheme which uses widely separated frequency bands for the two
types of transmissions. A bandwidth of W Hz is allocated for the uplink as well as
for the downlink. Transmissions of different users are scheduled to be non-overlapping
in time and frequency thus eliminating intra-cell interference. Depending on how the
overall resource (time and bandwidth) is split among transmissions to the users, the
system performance and design implications of the receivers are affected.

We first divide the bandwidth into N narrowband chunks (also denoted as chan-
nels). Each narrowband channel has width W/N Hz. Each cell is allotted some n of
these N channels. These n channels are not necessarily contiguous. The idea behind
this allocation is that all transmissions within this cell (in both the uplink and the
downlink) are restricted to those n channels. To prevent interference between simul-
taneous transmissions in neighboring cells, a channel is allocated to a cell only if it is
not used by a few concentric rings of neighboring cells. Assuming a regular hexagonal
cellular arrangement, Figure 4.2 depicts cells that can use the same channel simultane-
ously (such cells are denoted by the same number) if we want to avoid any neighboring
cell from using the same channel.

The maximum number n of channels that a cell can be allocated depends on the
geometry of the cellular arrangement and on the interference avoidance pattern that
dictates which cells can share the same channel. The ratio n/N denotes how often
a channel can be reused and is termed the frequency reuse factor. In the regular
hexagonal model of Figure 4.2, for example, the frequency reuse factor is at least
1/7. In other words, W/7 is the effective bandwidth used by any base station. This
reduced spectral efficiency is the price paid up front towards satisfying the design goal
of reducing all interference from neighboring base stations. The specific reuse pattern
in Figure 4.2 is ad hoc. A more careful analysis of the channel allocation to suit
traffic conditions and the effect of reuse patterns among the cells is carried out in
Exercises 4.1, 4.2 and 4.3.

Within a cell, different users are allocated transmissions that are non-overlapping,
in both time and channels. The nature of this allocation affects various aspects of
system design. To get a concrete feel for the issues involved, we treat one specific way
of allocation that is used in the GSM system.

4.2.1 Narrowband allocations: GSM system

The GSM system has already been introduced in Example 3. Each narrowband channel
has bandwidth 200 kHz (i.e. W/N = 200 kHz). Time is divided into slots of length
T = 577µs. The time slots in the different channels are the finest divisible resources
allocated to the users. Over each slot, n simultaneous user transmissions are scheduled
within a cell, one in each of the narrowband channels. To minimize the co-channel
interference, these n channels have to be chosen as far apart in frequency as possible.
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Figure 4.2: A hexagonal arrangement of cells and a possible reuse pattern of channels
1 through 7 with the condition that a channel cannot be used in one concentric ring
of cells around the cell using it. The frequency reuse factor is 1/7.
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Furthermore, each narrowband channel is shared among 8 users in a time-division
manner. Since voice is a fixed rate application with predictable traffic, each user is
periodically allocated a slot out of every 8. Due to the nature of resource allocation
(time and frequency), transmissions suffer no interference from within the cell and
further see minimal interference from neighboring cells. Hence the network is stitched
out of several point-to-point non-interfering wireless links with transmissions over a
narrow frequency band, justifying our term “narrowband system” to denote this design
paradigm.

Since the allocations are static, the issues of frequency and timing synchronization
are the same as those faced by point-to-point wireless communication. The symmetric
nature of voice traffic also enables a symmetric design of the uplink and the downlink.
Due to the lack of interference, the operating received SINRs can be fairly large (up
to 30 dB), and the communication scheme in both the uplink and the downlink is
coherent. This involves learning the narrowband channel through the use of training
symbols (or pilots), which are time-division multiplexed with the data in each slot.

Performance

What is the reliability with which information is received? Since the slot length T is
fairly small, it is typically within the coherence time of the channel and there is not
much time diversity. Further, the transmission is restricted to a contiguous bandwidth
200 kHz that is fairly narrow. In a typical outdoor scenario the delay spread is of the
order of 1µs and this translates to a coherence bandwidth of 500 kHz, significantly
larger than the bandwidth of the channel. Thus there is not much frequency diversity
either. The tough message of Chapter 3 that the error probability decays very slowly
with SNR is looming large in this scenario. As discussed in Example 3 of Chapter 3,
GSM solves this problem by coding over 8 consecutive time slots to extract a combi-
nation of time and frequency diversity (the latter via slow frequency hopping of the
frames, each made up of the 8 time slots of the users sharing a narrowband channel).
Moreover, voice quality not only depends on the average frame error rate but also on
how clustered the errors are. A cluster of errors leads to a far more noticeable quality
degradation than independent frame errors even though the average frame error rate
is the same in both the scenarios. Thus, the frequency hopping serves to break up the
cluster of errors as well.

Signal Characteristics and Receiver Design

The mobile user receives signals with energy concentrated in a contiguous, narrow
bandwidth (of width (W/N), 200 kHz in the GSM standard). Hence the sample rate
can be small and the sampling period is of the order of N/W (5 µs in the GSM
standard). All the signal processing operations are driven off this low rate simplifying
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the implementation demands on the receiver design. While the sample rate is small,
it might still be enough to resolve multipaths.

Let us consider the signals transmitted by a mobile and by the base station. The
average transmit power in the signal determines the performance of the communication
scheme. On the other hand, certain devices in the RF chain that carry the transmit
signal have to be designed for the peak power of the signal. In particular, the current
bias setting of the power amplifier is directly proportional to the peak signal power.
Typically class AB power amplifiers are used due to the linearity required by the
spectrally efficient modulation schemes. Further, class AB amplifiers are very power
inefficient and their cost (both capital cost and operating cost) is proportional to the
bias setting (the range over which linearity is to be maintained). Thus an engineering
constraint is to design transmit signals with reduced peak power for a given average
power level. One way to capture this constraint is by studying the peak to average
power ratio (PAPR) of the transmit signal. This constraint is particularly important
in the mobile where power is a very scarce resource, as compared to the base station.

Let us first turn to the signal transmitted by the mobile user (in the uplink). The
signal over a slot is confined to a contiguous narrow frequency band (of width 200
kHz). In GSM, data is modulated on to this single carrier using constant amplitude
modulation schemes. In this context, the PAPR of the transmitted signal is fairly
small (see Exercise 4.4), and is not much of a design issue. On the other hand, the
signal transmitted from the base station is a superposition of n such signals, one for
each of the 200 kHz channels. The aggregate signal (when viewed in the time domain)
has a larger PAPR, but the base station is usually provided with an AC supply and
power consumption is not as much of an issue as in the uplink. Further, the PAPR of
the signal at the base station is of the same order in most system designs.

4.2.2 Impact on Network and System Design

The specific division of resources here in conjunction with a static allocation among
the users simplified the design complexities of multiple access and interference manage-
ment in the network. There is however no free lunch. Two main types of price have to
be paid in this design choice. The first is a physical layer price of the inefficient use of
the total bandwidth (measured through the frequency reuse factor). The second is the
complexity of network planning. The orthogonal design entails a frequency division
that has to be done up front in a global manner. This includes a careful study of the
topology of the base stations and shadowing conditions to arrive at acceptable interfer-
ence from a base station reusing one of the N channels. While Fig. 4.2 demonstrated
a rather simple setting with a suggestively simple design of reuse pattern, this study
is quite involved in a real world system. Further, the introduction of base stations is
done in an incremental way in real systems. Initially, enough base stations to provide
coverage are installed and new ones are added when the existing ones are overloaded.
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Any new base station introduced in an area will require reconfiguring the assignment
of channels to the base stations in the neighborhood.

The nature of orthogonal allocations allows a high SINR link to most users, re-
gardless of their location in the cell. Thus, the design is geared to allow the system
to operate at about the same SINR levels for mobiles that are close to the base sta-
tions as well as those that are at the edge of the cell. How does sectorization affect
this design? Though sectored antennas are designed to isolate the transmissions of
neighboring sectors, in practice, inter-sector interference is seen by the mobile users,
particularly those at the edge of the sector. One implication of reusing the channels
among the sectors of the same cell is that the dynamic range of SINR is reduced due
to the intra-sector interference. This means that neighboring sectors cannot reuse the
same channels while at the same time following the design principles of this system.
To conclude, the gains of sectorization come not so much from frequency reuse as from
an antenna gain and the improved capacity of the cell.

4.2.3 Impact on Frequency Reuse

How robust is this design towards allowing neighboring base stations to reuse the same
set of channels? To answer this question, let us focus on a specific scenario. We consider
the uplink of a base station one of whose neighboring base stations uses the same set
of channels. To study the performance of the uplink with this added interference, let
us assume that there are enough users so that all channels are in use. Over one slot, a
user transmission interferes directly with another transmission in the neighboring cell
which uses the same channel. A simple model for the SINR at the base station over a
slot for one particular user uplink transmission is the following:

SINR =
P | h |2
N0 + I

.

The numerator is the received power at the base station due to the user transmission
of interest with P denoting the average received power and | h |2 the fading channel
gain (with unit mean). The denominator consists of the background noise (N0) and an
extra term due to the interference from the user in the neighboring cell. I denotes the
interference and is modeled as a random variable with a mean typically smaller than P
(say equal to 0.2 P). The interference from the neighboring cell is random due to two
reasons. One of them is small-scale fading and the other is the physical location of the
user in the other cell which is reusing the same channel. The mean of I represents the
average interference caused, averaged over all locations from which it could originate
and the channel variations. But due to the fact that the interfering user can be at a
wide range of locations, the variance of I is quite high.

We see that the SINR is a random parameter leading to an undesirably poor per-
formance. There is an appreciably high probability of unreliable transmission of even
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a small and fixed data rate in the frame. In Chapter 3, we focused on techniques
that impart channel diversity to the system; for example, antenna diversity techniques
make the channel less variable improving performance. However, there is an important
distinction in the variability of the SINR here that cannot be improved by the diversity
techniques of Chapter 3. The randomness in the interference I due to the interferer’s
location is inherent in this system and continues to remain. Due to this, we can con-
clude that narrowband systems are unsuitable for universal frequency reuse. To reduce
the randomness in the SINR, we would really like the interference to be averaged over
all the simultaneous transmissions from the neighboring cell instead of coming from
one user only. This is one of the important underlying themes in the design of the next
two systems that have universal frequency reuse.

Summary 4.1 Narrowband Systems

Orthogonal narrowband channels are assigned to users within a cell.

Users in adjacent cells cannot be assigned the same channel due to the lack of
interference averaging across users. This reduces the frequency reuse factor and
leads to inefficient use of the total bandwidth.

The network is decomposed into a set of high SINR point-to-point links,
simplifying the physical layer design.

Frequency planning is complex, particularly when new cells have to be added.

4.3 Wideband Systems: CDMA

In narrowband systems, users are assigned disjoint time-frequency slots within the
cell, and users in adjacent cells are assigned different frequency bands. The network
is decomposed into a set of point-to-point non-interfering links. In a Code Division
Multiple Access (CDMA) system design, the multiple access and interference manage-
ment strategies are completely different. Using the direct-sequence spread spectrum
technique briefly mentioned in Section 3.4.3, each user spreads its signal over the en-
tire bandwidth, such that when demodulating any particular user’s data, other users
signals appear as pseudo white noise. Thus, not only all users in the same cell share
all the time-frequency degrees of freedom, so do the users in different cells. Universal
frequency reuse is a key property of CDMA systems.

Roughly, the design philosophy of CDMA systems can be broken down into two
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design goals:

• First, the interference seen by any user is made as similar to white Gaussian
noise as possible, and the power of that interference is kept to a minimum level
and as consistent as possible. This is achieved by:

• making the received signal of every user as random looking as possible, via
modulating the coded bits onto a long pseudo-noise sequence;

• tight power control among users within the same cell to ensure that the re-
ceived power of each user is no more than the minimum level needed for
demodulation. This is so that the interference from users closer to the base
station would not overwhelm users farther away (the so-called near-far prob-
lem).

• averaging the interference of many geographically distributed users in nearby
cells. This averaging not only makes the aggregate interference look Gaus-
sian, but more importantly reduces the randomness of the interference level
due to varying locations of the interferers, thus increasing link reliability.
This is the key reason why universal frequency reuse is possible in a wide-
band system but impossible in a narrowband system.

• Assuming the first design goal is met, each user sees a point-to-point wideband
fading channel with additive Gaussian noise. Diversity techniques introduced
in Chapter 3, such as coding, time interleaving and Rake combining, can be
employed to improve the reliability of these point-to-point links.

Thus, CDMA is different from narrowband system design in the sense that all
users share all degrees of freedom and therefore interfere with each other: the system
is interference-limited rather than degree-of-freedom-limited. On the other hand, it
is similar in the sense that the design philosophy is still to decompose the network
problem into a set of independent point-to-point links, only now each link sees both
interference as well as the background thermal noise. We do not question this design
philosophy here, but we will see that there are other alternative approaches in later
chapters. In this section, we confine ourselves to discussing the various components of
a CDMA system in the quest to meet the two design goals. We use the IS-95 standard
to discuss concretely the translation of the design goals into a real system.

Compared to the narrowband systems described in the previous section, CDMA
has several potential benefits:
• Universal frequency reuse means that users in all cells get the full bandwidth or

degrees of freedom of the system. In narrowband systems, the number of degrees
of freedom per user is reduced by both the number of users sharing the resources
within a cell as well as by the frequency-reuse factor. This increase in degrees
of freedom per user of a CDMA system however comes at the expense of a lower
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signal-to-interference-plus-noise ratio (SINR) per degree of freedom of the individ-
ual links.

• Because the performance of a user depends only on the aggregate interference level,
the CDMA approach automatically takes advantage of the source variability of
users; if a user stops transmitting data, the total interference level automatically
goes down and benefits all the other users. Assuming that users’ activities are
independent of each other, this provides a statistical multiplexing effect to enable
the system to accommodate more users than would be possible if every user were
transmitting continuously. Unlike narrowband systems, no explicit re-assignment
of time or frequency slots is required.

• In a narrowband system, new users cannot be admitted into a network once the
time/frequency slots run out. This imposes a hard capacity limit on the system.
In contrast, increasing the number of users in a CDMA system increases the total
level of interference. This allows a more graceful degradation on the performance
of a system and provides a soft capacity limit on the system.

• Since all cells share a common spectrum, a user on the edge of a cell can receive
or transmit signals to two or more base stations to improve reception. This is
called soft handoff, and is yet another diversity technique, but at the network level
(sometimes called macrodiversity). It is an important mechanism to increase the
capacity of CDMA systems.

In addition to these network benefits, there is a further link-level advantage over
narrowband systems: every user in a CDMA experiences a wideband fading channel
and can therefore exploit the inherent frequency diversity in the system. This is par-
ticularly important in a slow fading environment where there is a lack of time diversity.
It significantly reduces the fade margin of the system (the increased SINR required to
achieve the same error probability as in an AWGN channel).

On the cons side, it should be noted that the performance of CDMA systems
depends crucially on accurate power control, as the channel attenuation of nearby and
cell-edge users can differ by many 10’s of dBs. This requires frequent feedback of power
control information and incurs a significant overhead per active user. In contrast, tight
power control is not necessary in narrowband systems, and power control is exercised
mainly for reducing battery consumption rather than managing interference. Also,
it is important in a CDMA system that there be sufficient averaging of out-of-cell
interference. While this assumption is rather reasonable in the uplink because the
interference comes from many weak users; it is more questionable in the downlink,
where the interference comes from a few strong adjacent base stations3.

A comprehensive capacity comparison between CDMA and narrowband systems
depends on the specific coding schemes and power control strategies, the channel prop-

3In fact, the downlink of IS-95 is the capacity limiting link.
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Figure 4.3: Schematic of the CDMA uplink.

agation models, the traffic characteristics and arrival patterns of the users, etc. and is
beyond the scope of this book. Moreover, many of the advantages of CDMA outlined
above are qualitative and can probably be achieved in the narrowband system, albeit
with a more complex engineering design. We focus here on a qualitative discussion
on the key features of a CDMA system, backed up by some simple analysis to gain
some insights into these features. In Chapter 5, we look at a simplified cellular setting
and apply some basic information theory to analyze the tradeoff between the increase
in degrees of freedom and the increase in the level of interference due to universal
frequency reuse.

In a CDMA system, users interact through the interference they cause each other.
We discuss ways to manage that interference and analyze its effect on performance.
For concreteness, we first focus on the uplink and then move on to the downlink. Even
though there are many similarities in their design, there are several differences worth
pointing out.

4.3.1 CDMA Uplink

The general schematic of the uplink of a CDMA system with K users in the system
is shown in Figure 4.3. A fraction of the K users is in the cell and the rest is outside
the cell. The data of the kth user is encoded into two BPSK sequences4 {aI

k[m]}
4Since CDMA systems operate at very low SINR per degree of freedom, a binary modulation

alphabet is always used.
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and {aQ
k [m]}, which we assume to have equal amplitude for all m. Each sequence is

modulated by a pseudonoise sequence, so that the transmitted complex sequence is:

xk[m] = aI
k[m]sI

k[m] + jaQ
k [m]sQ

k [m], m = 1, 2 . . . , (4.1)

where {sI
k[m]} and {sQ

k [m]} are pseudonoise sequences taking values ±1. Recall that
m is called a chip time. Typically, the chip rate is much larger than the data rate5.
Consequently, information bits are heavily coded and the coded sequences {aI

k[m]} and
{aQ

k [M ]} have a lot of redundancy. The transmitted sequence of user k goes through a
discrete-time baseband equivalent multipath channel h(k) and is superimposed at the
receiver:

y[m] =
K∑

k=1

(∑

`

h
(k)
` [m]xk[m− `]

)
+ w[m]. (4.2)

The fading channels {h(k)} are assumed to be independent across users, in addition
to the assumption of independence across taps made in Section 3.4.3. The receiver
for user k multiplies the I and Q components of the output sequence {y[m]} by the
pseudonoise sequences {sI

k[m]} and {sQ
k [m]} respectively to extract the coded streams

of user k, which are then fed into a demodulator to recover the information bits.
Note that in practice, the users’ signals arrive asynchronously at the transmitter but
we are making the idealistic assumption that users are chip-synchronous, so that the
discrete-time model in Chapter 2 can be extended to the multiuser scenario here.
Also, we are making the assumption that the receiver is already synchronized with
each of the transmitters. In practice, there is a timing acquisition process by which
such synchronization is achieved and maintained. Basically, it is a hypothesis testing
problem, in which each hypothesis corresponds to a possible relative delay between
the transmitter and the receiver. The challenge here is that because timing has to be
accurate to the level of a chip, there are many hypotheses to consider and efficient
search procedures are needed. Some of these procedures are detailed in Chapter 3 of
[116].

Generation of Pseudonoise Sequences

The pseudonoise sequences are typically generated by maximum length shift registers.
For a shift register of memory length r, the value of the sequence at time m is a linear
function (in the binary field of {0, 1}) of the values at time m − 1,m − 2 . . . ,m − r
(its state). Thus, these binary 0− 1 sequences are periodic, and the maximum period
length is p = 2r − 1, the number of non-zero states of the register6. This occurs when,
starting from any non-zero state, the shift register goes through all possible 2r − 1

5In IS-95, the chip rate is 1.2288 MHz and the data rate is 9.6 kbits/s or less.
6Starting from the zero state, the register will remain at the zero state, so the zero state cannot

be part of such a period.
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distinct non-zero states before returning to that state. Maximum length shift register
(MLSR) sequences have this maximum periodic length, and they exist even for r very
large. For CDMA applications, typically, r is somewhere between 20 and 50, thus the
period is very long. Note that the generation of the sequence is a deterministic process,
and the only randomness is in the initial state. An equivalent way to say this is that
realizations of MLSR sequences are random shifts of each other.

The desired pseudonoise sequence {s[m]} can be obtained from an MLSR sequence
simply by mapping each value from 0 to +1 and from 1 to −1. This pseudonoise
sequence has the following characteristics which make it look like a typical realization
of a Bernoulli coin-flipped sequence ([41, 116]):
•

1

p

p∑
m=1

s[m] = −1

p
, (4.3)

i.e., the fraction of 0’s and 1’s is almost half-half over the period p.

• For all ` 6= 0:

1

p

p∑
m=1

s[m]s[m + `] = −1

p
, (4.4)

i.e., the shifted versions of the pseudonoise sequence are nearly orthogonal to each
other.

For memory r = 2, the period is 3 and the MLSR sequence is 110110110 . . .. The
states 11, 10, 01 appear in succession within each period. 00 does not appear, and this
is the reason why the sum in 4.3 is not zero. However, this imbalance is very small
when the period p is large.

If we randomize the shift of the pseudonoise sequence (i.e., uniformly chosen initial
state of the shift register), then it becomes a random process. The above properties
suggest that the resulting process is approximately like an i.i.d. Bernoulli sequence
over a long time-scale (since p is very large). We will make this assumption below in
our analysis of the statistics of the interference.

Statistics of the Interference

In a CDMA system, the signal of one user is typically demodulated treating other users’
signals as interference. The link level performance then depends on the statistics of
the interference. Focusing on the demodulation of user 1, the aggregate interference it
sees is:

I[m] :=
∑

k>1

(∑

`

h
(k)
` [m]xk[m− `]

)
. (4.5)

{I[m]} has zero mean. Since the fading processes are circular symmetric, the process
{I[m]} is circular symmetric as well. The second-order statistics are then characterized
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by E[I[m]I[m + `]∗] for ` = 0, 1 . . .. They can be computed as:

E[|I[m]|2] =
∑

k>1

Ec
k, E[I[m]I[m + `]∗] = 0 for ` 6= 0, (4.6)

where
Ec

k := E[|xk[m]|2]
∑

`

E[|h(k)
` [m]|2] (4.7)

is the total average energy received per chip from the kth user due to the multipath. In
the above variance calculation, we make use of the fact that E[xk[m]xk[m+`]∗] = 0 (for
` 6= 0), due to the random nature of the spreading sequences. Note that in computing
these statistics, we are averaging over both the data and the fading gains of the other
users.

When there is a large number of users in the network, and none of them contributes
to a significant part of the interference, the Central Limit Theorem can be invoked to
justify a Gaussian approximation of the interference process. From the second-order
statistics, we see that this process is white. Hence, a reasonable approximation from
the point of view of designing the point-to-point link for user 1 is to consider it as a
multipath fading channel with white Gaussian noise7 of power

∑
k>1 Ec

k + N0.
We have made the assumption that none of the users contributes a large part of

the interference. This is a reasonable assumption due to two important mechanisms
in a CDMA system:
• power control: The transmit powers of the users within the cell are controlled

to solve the near-far problem, and this makes sure that there is no significant
intra-cell interferer.

• soft handoff: Each base station that receives a mobile’s signal will attempt to
decode its data and send them to the MSC (mobile switching center) together with
some measure of the quality of the reception. The MSC will select the one with
the highest quality of reception. Typically the user’s power will be controlled by
the base station which has the best reception. This reduces the chance that some
significant out-of-cell interferer is not power controlled.

We will discuss these two mechanisms in more detail later on.

Point-to-Point Link Design

We have already discussed to some extent the design issues of the point-to-point link
in a DS spread spectrum system in Section 3.4.3. In the context of the CDMA system,

7This approach is by no means optimal, however. We will see in Chapter 6 that better performance
can be achieved by recognizing that the interference consists of the data of the other users that can
in fact be decoded.
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the only difference here is that we are now facing the aggregation of both interference
and noise.

The link level performance of user 1 depends on the SINR:

SINRc :=
Ec

1∑
k>1 Ec

k + N0

. (4.8)

Note that this is the SINR per chip. The first observation is that typically the SINR
per chip is very small. For example, if we consider a system with K perfectly power
controlled users in the cell, even ignoring the out-of-cell interference and background
noise, SINRc is 1/(K − 1). In a cell with 31 users, this is −15dB. In IS-95, a typical
level of out-of-cell interference is 0.6 of the interference from within the cell. (The
background noise, on the other hand, is often negligible in CDMA systems which are
primarily interference-limited.) This reduces the SINRc further to −17dB.

How can we demodulate the transmitted signal at such low SINR? To see this
in the simplest setting, let us consider an unfaded channel for user 1 and consider
the simple example of BPSK modulation with coherent detection discussed in Section
3.4.3, where each information bit is modulated onto a pseudonoise sequence of length G
chips. In the system discussed here which uses a long8 pseudonoise sequence {s[m]} (c.f.
Figure 4.3), this corresponds to repeating every BPSK symbol G times, aI

1[Gi + m] =
aI

1[Gi],m = 1, . . . , G− 1. The detection of the 0th information symbol is accomplished
by projecting the in-phase component of the received signal onto the sequence u =
[sI

1[0], sI
1[1], . . . , sI

1[G− 1]]t, and the error probability is:

pe = Q

(√
2‖u‖2Ec

1∑
k>1 Ec

k + N0

)
= Q

(√
2GEc

1∑
k>1 Ec

k + N0

)
= Q

(√
2Eb∑

k>1 Ec
k + N0

)

(4.9)
where Eb := GEc

1 is the received energy per bit for user 1. Thus, we see that while
the SINR per chip is low, the SINR per bit is increased by a factor of G, due to the
averaging over the G chips over which we repeat the information bits. In terms of
system parameters, G = W/R, where W Hz is the bandwidth and R bits/s is the data
rate. Recall that this parameter is called the processing gain of the system, and we see
its role here as increasing the effective SINR against a large amount of interference that
the user faces. As we scale up the size of a CDMA system by increasing the bandwidth
W and the number of users in the system proportionally, but keeping the data rate of
each user R fixed, we see that the total interference

∑
k>1 Ec

k and the processing gain
G increase proportionally as well. This means that CDMA is an inherently scalable
multiple access scheme9.

8As mentioned, a pseudonoise sequence typically has a period ranging from 220 to 250 chips, much
larger than the processing gain G. In contrast, short pseudonoise sequences are used in the IS-95
downlink to uniquely identify the individual sector or cell.

9But note that as the bandwidth gets wider and wider, channel uncertainty may eventually become
the bottleneck, as we have seen in Section 3.5.
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IS-95 Link Design
The above scheme is based on repetition coding. By using more sophisticated low-

rate codes, even better performance can be achieved. Moreover, in practice the actual
channel is a multipath fading channel, and so techniques such as time-interleaving and
the Rake receiver are important to obtain time and frequency diversity respectively.
IS-95, for example, uses a combination of convolutional coding, interleaving and non-
coherent demodulation of M -ary orthogonal symbols via a Rake receiver. (See Figure
4.4.) Compressed voice at rate 9.6 kbits/s is encoded using a rate 1/3, constraint
length 9, convolutional code. The coded bits are time-interleaved at the level of 6-bit
blocks, and each of these blocks is mapped into one of 26 = 64 orthogonal Hadamard
sequences,10 each of length 64. Finally, each symbol of the Hadamard sequence is
repeated 4 times to form the coded sequence {aI [m]} (aQ[m] = aI [m] here). The
processing gain is seen to be 3 · 64/6 · 4 = 128, with a resulting chip rate of 128 · 9.6 =
1.2288 Mchips/s.

Each of the 6-bit blocks is demodulated noncoherently using a Rake receiver. In the
binary orthogonal modulation example in Section 3.5.1, for each orthogonal sequence
the noncoherent detector computes the correlation along each diversity branch (finger)
and then forms the sum of the squares. It then decides in favor of the sequence with the
largest sum (the square-law detector). (Recall the discussion around (3.147).) Here,
each 6-bit block should be thought of as a coded symbol of an outer convolutional
code, and we are not interested in hard decision of the block. Instead, we would like
to calculate the branch metric for each of the possible values of the 6-bit block, for
use by a Viterbi decoder for the outer convolutional code. It happens that the sum
of the squares above can be used as a metric, so that the Rake receiver structure can
be used for this purpose as well. It should be noted that it is important that the
time interleaving be done at the level of the 6-bit blocks so that the channel remains
coherent within the chips associated with each such block. Otherwise noncoherent
demodulation cannot be performed.

The IS-95 uplink design employs non-coherent demodulation. Another design op-
tion is to estimate the channel using a pilot signal and perform coherent demodulation.
This option is adopted for CDMA 2000.

Power Control

The link-level performance of a user is a function of its SINR. To achieve reliable com-
munication, the SINR, or equivalently the ratio of the energy per bit to the interference

10The Hadamard sequences of length M = 2J are the orthogonal columns of the M by M matrix
HM , defined recursively as H1 = [1] and for M ≥ 2:

HM =
[

HM/2 HM/2

HM/2 −HM/2

]
.
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Figure 4.4: The IS-95 uplink.
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and noise per chip (commonly called Eb/I0 in the CDMA literature), should be above
a certain threshold. This threshold depends on the specific code used, as well as the
multipath channel statistics. For example, a typical Eb/I0 threshold in the IS-95 sys-
tem is 6 to 7 dB. In a mobile communication system, the attenuation of both the user
of interest and the interferers varies as the users move, due to varying path loss and
shadowing effects. To maintain a target SINR, transmit power control is needed.

The power control problem can be formulated in the network setting as follows.
There are K users in total in the system and a number of cells (base stations). Suppose
user k is assigned to base station ck. Let Pk be the transmit power of user k, and gkm

be the attenuation of user k’s signal to base station m.
The received energy per chip for user k at base station m is simply given by

Pkgkm/W . Using the expression (4.8), we see that if each user’s target Eb/I0 is β,
then the transmit powers of the users should be controlled such that

GPkgk,ck∑
n 6=k Pngn,ck

+ N0W
≥ β, k = 1, . . . , K. (4.10)

where G = W/R is the processing gain of the system. Moreover, due to constraints on
the dynamic range of the transmitting mobiles, there is a limit of the transmit powers
as well:

Pk ≤ P̂ , k = 1, . . . , K. (4.11)

These inequalities define the set of all feasible power vectors P := (P1, . . . , PK)t, and
this set is a function of the attenuation of the users. If this set is empty, then the SINR
requirements of the users cannot be simultaneously met. The system is said to be in
outage. On the other hand, whenever this set of feasible powers is non-empty, one is
interested in finding a solution which requires as little power as possible to conserve
energy. In fact, it can be shown (see Exercise 4.8) that whenever the feasible set is
non-empty (this characterization is carried out carefully in Exercise 4.5), there exists a
component-wise minimal solution P∗ in the feasible set, i.e., P ∗

k ≤ Pk for every user k in
any other feasible power vector P. This fact follows from a basic monotonicity property
of the power control problem: when a user lowers its transmit power, it creates less
interference and benefits all other users in the system. At the optimal solution P∗,
every user is at the minimal possible power so that their SINR requirements are met
with equality and no more. Note that at the optimal point, all the users in the same
cell have the same received power at the base station. It can also be shown that a
simple distributed power control algorithm will converge to the optimal solution: at
each step, each user updates its transmit power so that its own SINR requirement
is just met with the current level of the interference. Even if the updates are done
asynchronously among the users, convergence is still guaranteed. These results give
theoretical justification to the robustness and stability of the power control algorithms
implemented in practice. (Exercise 4.12 studies the robustness of the power update
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algorithm to inaccuracies in controlling the received powers of all the mobiles to be
exactly equal.)

Power Control in IS-95
The actual power control in IS-95 has an open-loop and a closed-loop component.

The open-loop sets the transmit power of the mobile user at roughly the right level by
inference from the measurements of the downlink channel strength via a pilot signal. (In
IS-95, there is a common pilot transmitted in the downlink to all the mobiles.) However,
since IS-95 is implemented in the FDD mode, the uplink and downlink channel typically
differ in carrier frequency of 10’s of MHz and are not identical. Thus, open-loop control
is typically accurate only up to a few dB’s. Closed-loop control is needed to adjust the
power more precisely.

The closed-loop power control operates at 800 Hz and involves 1 bit feedback from
the base station to the mobile, based on measured SINR values; the command is to
increase (decrease) power by 1 dB if the measured SINR is below (above) a threshold.
Since there is no pilot in the uplink in IS-95, the SINR is estimated in a decision-
directed mode, based on the output of the Rake receiver. In addition to measurement
errors, the accuracy of power control is also limited by the 1-bit quantization. Since
the SINR threshold β for reliable communication depends on the multipath channel
statistics and is therefore not known perfectly in advance, there is also an outer loop
which adjusts the SINR threshold as a function of frame error rates (Figure 4.5). An
important point, however, is that even though feedback occurs at a high rate (800 Hz),
but because of the limited resolution of 1 bit per feedback, power control does not
track the fast multipath fading of the users when they are at vehicular speeds. It only
tracks the slower shadow fading and varying path loss. The multipath fading is dealt
with primarily by the diversity techniques discussed earlier.

Soft Handoff

Handoff from one cell to the other is an important mechanism in cellular systems.
Traditionally, handoffs are hard: users are either assigned to one cell or the other
but not both. In CDMA systems, since all the cells share the same spectrum, soft
handoffs are possible: multiple base stations can simultaneously decode the mobile’s
data, with the switching center choosing the best reception among them (Figure 4.6).
Soft handoffs provide another level of diversity to the users.

The soft handoff process is mobile-initiated and works like this. While a user
is tracking the pilot of the cell it is currently in, it can be searching for pilots of
adjacent cells (these pilots are known pseudonoise sequences shifted by known offsets).
In general, this involves timing acquisition of the adjacent cell as well. However, we
have observed that timing acquisition is a computationally very expensive step. Thus,
a practical alternative is for the base station clocks to be synchronized so that the
mobile only has to acquire timing once. Once a pilot is detected and found to have



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 161

Channel
Power

±1 dB

- +

+

Transmitted

error prob

Measured

> or < target rate?
SINR > or < β?

Measured

Update SINR

Threshold

1-bit

feedback

Received

Power

Estimate
Uplink Power

Required
Measurement

Downlink
Power

Initial

Figure 4.5: Inner and outer loops of power control.

Switching

Base Station 1 Base Station 2

Mobile

± 1 dB ± 1 dBPower control bits

Centre

Figure 4.6: Soft handoff.



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 162

sufficient signal strength relative to the first pilot, the mobile will signal the event to its
original base station. The original base station will in turn notify the switching center,
which enables the second cell’s base station to both send and receive the same traffic
to and from the mobile. In the uplink, each base station demodulates and decodes
the frame or packet independently, and it is up to the switching center to arbitrate.
Normally, the better cell’s decision will be used.

If we view the base stations as multiple receive antennas, soft handoff is providing
a form of receive diversity. We know from Section 3.3.1 that the optimal processing of
signals from the multiple antennas is maximal-ratio combining; this is however difficult
to do in the handoff scenario as the antennas are geographically apart. Instead, what
soft handoff achieves is selection combining (c.f. Exercise 3.13). In IS-95, there is
another form of handoff, called softer handoff, which takes place between sectors of
the same cell. In this case, since the signal from the mobile is received at the sectored
antennas which are co-located at the same base station, maximal-ratio combining can
be performed.

How does power control work in conjunction with soft handoff? Soft handoff essen-
tially allows users to choose among several cell sites. In the power control formulation
discussed in the previous section, each user is assumed to be assigned to a particular
cell, but cell site selection can be easily incorporated in the framework. Suppose user
k has an active set Sk of cells among which it is performing soft handoff. Then the
transmit powers Pk’s and the cell site assignments ck ∈ Sk should be chosen such that
the SINR requirements (4.10) are simultaneously met. Again, if there is a feasible solu-
tion, it can be shown that there is a component-wise minimal solution for the transmit
powers (see Exercise 4.5). Moreover, there is an analogous distributed asynchronous
algorithm that will converge to the optimal solution: at each step, each user is assigned
the cell site which will minimize the transmit power required to meet its SINR require-
ment, given the current interference levels at the base stations. Its transmit power is
set accordingly (see Exercise 4.8). Put it another way, the transmit power is set in such
a way that the SINR requirement is just met at the cell with the best reception. This
is implemented in the IS-95 system as follows: all the base stations in the soft handoff
set will feedback power control bits to the mobile; the mobile will always decrease its
transmit power by 1 dB if at least one of the soft handoff cell sites instructs it to do
so. In other words, the minimum transmit power is always used. The advantages of
soft handoff are studied in some more detail in Exercise 4.10.

Interference Averaging and System Capacity

Power control and soft handoff minimize the transmit powers required to meet SINR
requirements, if there is a feasible solution for the powers at all. If not, then the
system is in outage. The system capacity is the maximum number of users that can
be accommodated in the system for a desired outage probability and a link level Eb/I0
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requirement.
The system can be in outage due to various random events. For example, users

can be in certain configurations which create a lot of interference on neighboring cells.
Also, voice or data users have periods of activity, and too many users can be active in
the system at a given point in time. Another source of randomness is due to imperfect
power control. While it is impossible to have a zero probability of outage, one wants
to maintain that probability small, below a target threshold. Fortunately, the link
level performance of a user in the uplink depends on the aggregate interference at the
base station due to many users, and the effect of these sources of randomness tend to
average out according to the law of large numbers. This means that one does not have
to be too conservative in admitting users into the network and still guarantee a small
probability of outage. This translates into a larger system capacity. More specifically,
• out-of-cell interference averaging: Users tend to be in random independent

locations in the network, and the fluctuations of the aggregate interference created
in the adjacent cell is reduced when there are many users in the system.

• users’ burstiness averaging: Independent users are unlikely to be active all the
time, thus allowing the system to admit more users than if it is assumed that every
user sends at peak rate all the time.

• imperfect power control averaging: Imperfect power control is due to tracking
inaccuracy and errors in the feedback loop11. However, these errors tend to occur
independently across the different users in the system and average out.

These phenomena can be generally termed interference averaging, an important
property of CDMA systems. Note that the concept of interference averaging is remi-
niscent of the idea of diversity we discussed in Chapter 3: while diversity techniques
make a point-to-point link more reliable by averaging over the channel fading, inter-
ference averaging makes the link more reliable by averaging over the effects of different
interferers. Thus, interference averaging can also be termed interference diversity.

To give a concrete sense of the benefit of interference averaging on system capacity,
let us consider the specific example of averaging of users’ burstiness. For simplicity,
consider a single cell situation with K users power controlled to a common base station
and no out-of-cell interference. Specializing (4.10) to this case, it can be seen that the
Eb/I0 requirement β of all users is satisfied if:

GQk∑
n6=k Qn + N0W

≥ β, k = 1, . . . , K. (4.12)

where Qk := Pkgk is the received power of user k at the base station. Equivalently:

GQk ≥ β(
∑

n 6=k

Qn + N0W ) k = 1, . . . , K. (4.13)

11Since power control bits have to be fed back with a very tight delay constraint, they are usually
uncoded which implies quite a high error rate.
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Summing up all the inequalities, we get the following necessary condition for the Qk’s:

[G− β(K − 1)]
K∑

k=1

Qk ≥ KN0Wβ. (4.14)

Thus a necessary condition for the existence of feasible powers is G − β(K − 1) > 0,
or equivalently,

K <
G

β
+ 1. (4.15)

On the other hand, if this condition is satisfied, the powers

Qk =
N0Wβ

G− β(K − 1)
, k = 1, . . . , K (4.16)

will meet the Eb/I0 requirements of all the users. Hence, condition (4.15) is a necessary
and sufficient condition for the existence of feasible powers to support a given Eb/I0

requirement.
Eqn. (4.15) yields the interference-limited system capacity of the single cell. It says

that because of the interference between users, there is a limit on the number of users
admissible in the cell. If we substitute G = W/R into (4.15), we get:

KR

W
<

1

β
+

1

G
. (4.17)

The quantity KR/W is the overall spectral efficiency of the system (in bits/s/Hz).
Since the processing gain G of a CDMA system is typically very large, (4.17) says
that the maximal spectral efficiency is approximately 1/β. In IS-95, a typical Eb/N0

requirement β is 6 dB, which translates into a maximum spectral efficiency of 0.25
bits/s/Hz.

Let us now illustrate the effect of user burstiness on the system capacity and the
spectral efficiency in the single cell setting. We have assumed that all K users are
active all the time, but suppose now that each user is active and has data to send only
with probability p, and users’ activities are independent of each other. Voice users,
for example, are typically talking 3/8 of the time, and if the voice coder can detect
silence, there is no need to send data during the quiet periods. If we let νk be the
indicator random variable for user k’s activity, i.e., νk = 1 when user k is transmitting,
and νk = 0 otherwise, then using (4.15), the Eb/I0 requirements of the users can be
met if and only if

K∑

k=1

νk <
G

β
+ 1. (4.18)
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Whenever this constraint is not satisfied, the system is in outage. If the system wants
to guarantee that no outage can occur, then the maximum number of users admissible
in the network is G/β+1, same as the case when users are active all the time. However,
more users can be accommodated if a small outage probability pout can be tolerated:
this number K∗(pout) is the largest K such that

Pr

[
K∑

k=1

νk >
G

β
+ 1

]
≤ pout. (4.19)

The random variable
∑K

k=1 νk is binomially distributed. It has mean Kp and standard

deviation
√

Kp(1− p), where p(1− p) is the variance of νk. When pout = 0, K∗(pout)
is G/β + 1. If pout > 0, then K∗(pout) can be chosen larger. It is straightforward
to calculate K∗(pout) numerically for a given pout. It is also interesting to see what
happens to the spectral efficiency when the bandwidth of the system W scales with
the rate R of each user fixed. In this regime, there are many users in the system and
it is reasonable to apply a Gaussian approximation to

∑K
k=1 νk. Hence,

Pr

[
K∑

k=1

νk >
G

β
+ 1

]
≈ Q

[
G/β + 1−Kp√

Kp(1− p)

]
. (4.20)

The overall spectral efficiency of the system is given by

ρ :=
KpR

W
, (4.21)

since the mean rate of each user is pR bits/s. Using the approximation (4.20) in (4.19),
we can solve for the constraint on the spectral efficiency ρ:

ρ ≤ 1

β

[
1 + Q−1(pout)

√
1− p

pK
− 1

Kp

]−1

. (4.22)

This bound on the spectral efficiency is plotted in Figure 4.7 as a function of the
number of users. As seen in Eqn. (4.17), the number 1/β is the maximum spectral
efficiency if each user were non-bursty and transmitting at a constant rate equaling to
the mean rate pR of the bursty user. However, the actual spectral efficiency in the
system with burstiness is different from that, by a factor of

(
1 + Q−1(pout)

√
1− p

pK
− 1

Kp

)−1

.

This loss in spectral efficiency is due to a need to admit fewer users to cater for the
burstiness of the traffic. This “safety margin” is larger when the outage probability
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Figure 4.7: Plot of the spectral efficiency as a function of the number of users in a
system with burstiness (the right hand side of (4.22)). Here, p = 3/8, pout = 0.01 and
β = 6 dB.

requirement pout is more stringent. More importantly, for a given outage probability,
the spectral efficiency approaches 1/β as the bandwidth W (and hence the number
of users K) scales. When there are many users in the system, interference averaging
occurs: the fluctuation of the aggregate interference is smaller relative to the mean
interference level. Since the link level performance of the system depends on the
aggregate interference, less excess resource needs to be set aside to accommodate the
fluctuations. This is a manifestation of the familiar principle of statistical multiplexing.

In the above example, we have only considered a single cell, where each active
user is assumed to be perfectly power controlled and the only source of interference
fluctuation is due to the random number of active users. In a multi-cell setting, the
level of interference from outside of the cell depends on the locations of the interfering
users and this contributes to another source of fluctuation of the aggregate interference
level. Further randomness arises due to imperfect power control. The same principle
of interference averaging applies to these settings as well, allowing CDMA systems to
benefit from an increase in the system size. These settings are analyzed in Exercises
(4.11) and (4.12).

To conclude our discussion, we note that we have made an implicit assumption
of separation of time scales in our analysis of the effect of interference in CDMA
systems. At a faster time-scale, we average over the pseudorandom characteristics of
the signal and the fast multipath fading to compute the statistics of the interference,
which determine the bit error rates of the point-to-point demodulators. At a slower
time-scale, we consider the burstiness of user traffic and the large-scale motion of
the users to determine the outage probability, i.e., the probability that the target
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bit error rate performance of users cannot be met. Since these error events occur at
completely different time-scales and have very different ramifications from a system-
level perspective, this way of measuring the performance of the system makes more
sense than computing an overall average performance.

4.3.2 CDMA Downlink

The design of the one-to-many downlink uses the same basic principles of pseudo-
random spreading, diversity techniques, power control and soft handoff we already
discussed for the uplink. However, there are several important differences:
• The near-far problem does not exist for the downlink, since all the signals trans-

mitted from a base station go through the same channel to reach any given user.
Thus, power control is less crucial in the downlink than in the uplink. Rather,
the problem becomes that of allocating different powers to different users as a
function of primarily the amount of out-of-cell interference they see. However, the
theoretical formulation of this power allocation problem has the same structure as
the uplink power control problem. (See Exercise 4.13.)

• Since signals for the different users in the cell are all transmitted at the base sta-
tion, it is possible to make the users orthogonal to each other, something that is
more difficult to do in the uplink, as it requires chip-level synchronization between
distributed users. This reduces but does not remove intra-cell interference, since
the transmitted signal goes through multipath channels and signals with differ-
ent delays from different users still interfere with each other. Still, if there is a
strong line-of sight component, this technique can significantly reduce the intra-cell
interference, since then most of the energy is in the first tap of the channel.

• On the other hand, inter-cell interference is more poorly behaved in the downlink
than in the uplink. In the uplink, there are many distributed users transmitting
with small power, and significant interference averaging occurs. In the downlink,
in contrast, there are only a few neighboring base stations but each transmits at
high power. There is much less interference averaging and the downlink capacity
takes a significant hit compared to the uplink.

• In the uplink, soft handoff is accomplished by multiple base stations listening to
the transmitted signal from the mobile. No extra system resource needs to be
allocated for this task. In the downlink, however, multiple base stations have to
simultaneously transmit to a mobile in soft handoff. Since each cell has a fixed
number of orthogonal codes for the users, this means that a user in soft handoff
is consuming twice or more system resources. (See Exercise 4.13 for a precise
formulation of the downlink soft handoff problem.)

• It is common to use a strong pilot and perform coherent demodulation in the down-
link, since the common pilot can be shared by all the users. With the knowledge
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of the channels from each base station, a user in soft handoff can also coherently
combine the signals from the different base stations. Synchronization tasks are
also made easier in the presence of a strong pilot.

As an example, the IS-95 downlink is shown in Figure 4.8. Note the different roles
of the Hadamard sequences in the uplink and in the downlink. In the uplink, the
Hadamard sequences serve as an orthogonal modulation for each individual user so
that non-coherent demodulation can be performed. In the downlink, in contrast, each
user in the cell is assigned a different Hadamard sequence to keep them orthogonal (at
the transmitter).

4.3.3 System Issues

Signal Characteristics

Consider the baseband uplink signal of a user given in (4.1). Due to the abrupt tran-
sitions (from +1 to -1 and vice versa) of the pseudonoise sequences sn, the bandwidth
occupied by this signal is very large. On the other hand, the signal has to occupy an
allotted bandwidth. As an example, we see that the IS-95 system uses a bandwidth
of 1.2288 MHz and a steep fall off after 1.67 MHz. To fit this allotted bandwidth,
the signal in (4.1) is passed through a pulse shaping filter and then modulated on to
the carrier. Thus though the signal in (4.1) has a perfect PAPR (equal to 1), the
resulting transmit signal has a larger PAPR. The overall signal transmitted from the
base station is the superposition of all the user signals and this aggregate signal has
PAPR performance similar to that of the narrowband system described in the previous
section.

Sectorization

In the narrowband system we saw that all users can maintain high SINRs due to the
nature of the allocations. In fact, this was the benefit gained by paying the price of
poor (re)use of the spectrum. In this system, however, due to the intra and inter-cell
interferences, the values of SINRs possible are very small. Now consider sectorization
with universal frequency reuse among the sectors. Ideally (with full isolation among
the sectors), this allows us to increase the system capacity by a factor equal to the
number of sectors. However, in practice each sector now has to contend with inter-
sector interference as well. Since intra-sector and inter-cell interference dominate the
noise faced by the user signals, the additional interference caused due to sectorization
does not cause a further degradation in SINR. Thus sectors of the same cell reuse the
frequency without much of an impact on the performance.
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Figure 4.8: The IS-95 downlink.
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Network Issues

We have observed that timing acquisition (at a chip level accuracy) by a mobile is
a computationally intensive step. Thus we would like to have this step repeated as
infrequently as possible. On the other hand, to achieve soft handoff this acquisition has
to be done (synchronously) for all base stations with which the mobile communicates
to. To facilitate this step and the eventual handoff, implementations of the IS-95 system
use high precision clocks (about 1 ppm (parts per million)) and further, synchronize
the clocks at the base stations through a proprietary wireline network that connects
the base stations. This networking cost is the price paid in the design to ease the
handoff process.

Summary 4.2 CDMA

Universal frequency reuse: all users, both within a cell and across different cells,
transmit and receive on the entire bandwidth.

The signal of each user is modulated onto a pseudonoise sequence so that it
appears as white noise to others.

Interference management is crucial for allowing universal frequency reuse:

• Intra-cell interference is managed via power control. Accurate closed-loop power
control is particularly important for combating the near-far problem in the up-
link.

• Inter-cell interference is managed via averaging of the effects of multiple interfer-
ers. It is more effective in the uplink than in the downlink.

Interference averaging also allows statistical multiplexing of bursty users, thus
increasing system capacity.

Diversity of the point-to-point links is achieved by a combination of low-rate
coding, time interleaving and Rake combining.

Soft handoff provides a further level of macrodiversity, allowing users to
communicate with multiple base stations simultaneously.
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4.4 Wideband Systems: OFDM

The narrowband system design of making transmissions interference-free simplified
several aspects of network design. One such aspect was that the performance of a
user is insensitive to the received powers of other users. In contrast to the CDMA
approach, the requirement for accurate power control is much less stringent in systems
where user transmissions in the same cell are kept orthogonal. This is particularly
important in systems designed to accommodate many users each with very low aver-
age data rate: the fixed overhead needed to perform tight power control for each user
may be too expensive for such systems. On the other hand there is a penalty of poor
spectral reuse in narrowband systems compared to the CDMA system. Basically, nar-
rowband systems are ill suited for universal frequency reuse since they do not average
interference. In this section, we describe a system that combines the desirable features
of both these systems: maintaining orthogonality of transmissions within the cell and
have universal frequency reuse across cells. Again, the latter feature is made possible
through interference averaging.

4.4.1 Allocation Design Principles

The first step in the design is to decide on the user signals that ensure orthogonality
after passing through the wireless channel. Recall from the discussion of the down-
link signaling in the CDMA system that though the transmit signals of the users were
orthogonal, they interfere with each other at the receiver after passing through the
multipath channel. Thus any orthogonal set of signals will not suffice. If we model
the wireless channel as a linear time invariant multipath channel, then the only eigen-
functions are the sinusoids. Thus sinusoid inputs remain orthogonal at the receiver
too. However, due to the channel variations in time, we want to restrict the notion of
orthogonality to no more than a coherence time interval. In this context, sinusoids are
no longer orthogonal, but the sub-carriers of the OFDM scheme of Section 3.4.4 with
the cyclic prefix for the multipath channel provide a set of orthogonal signals over an
OFDM block length.

We describe an allocation of sets of OFDM sub-carriers as the user signals; this
description is identical for both the downlink and the uplink. As in Section 3.4.4, the
bandwidth W is divided into Nc sub-carriers. The number of sub-carriers Nc is chosen
to be as large as possible. As we discussed earlier, Nc is limited by the coherence time,
i.e., the OFDM symbol period Nc/W < Tc. In each cell, we would like to distribute
these Nc sub-carriers to the users in it (with say n sub-carriers per user). The n sub-
carriers should be spread out in frequency to take advantage of frequency diversity.
There is no interference among user transmissions within a cell by this allocation.

With universal frequency reuse, there is however inter-cell interference. To be
specific, let us focus on the uplink. Two users in neighboring cells sharing the same
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sub-carrier in any OFDM symbol time interfere with each other directly. If the two
users are close to each other, the interference can be very severe and we would like to
minimize such overlaps. However due to full spectral reuse, there is such an overlap
at every OFDM symbol time in a fully loaded system. Thus, the best one can do is
to ensure that the interference does not come solely from one user (or a particular set
of users) and the interference seen over a coded sequence of OFDM symbols (forming
a frame) can be attributed to most of the user transmissions in the neighboring cell.
Then the overall interference seen over a frame is a function of the average received
power of all the users in the neighboring cells. This is yet another example of the
interference diversity concept we already saw in Section 4.3.

How are the designs of the previous two systems geared towards harvesting inter-
ference diversity? The CDMA design fully exploits interferer diversity by interference
averaging. This is achieved by every user spreading its signals over the entire spec-
trum. On the other hand, the orthogonal allocation of channels in the GSM system is
poorly suited from the point of view of interferer diversity. As we saw in Section 4.2,
users in neighboring cells that are close to each other and transmitting on the same
channel over the same slot cause severe interference to each other. This leads to a very
degraded performance and the reason for it is clear: interference seen by a user comes
solely from one interferer and there is no scope to see an average interference from all
the users over a slot. If there were no hopping and coding across the sub-carriers, the
OFDM system would behave exactly like a narrowband system and suffer the same
fate.

Turning to the downlink we see that now all the transmissions in a cell occur from
the same place: at the base station. However, the power in different sub-carriers
transmitted from the base station can be vastly different. For example, the pilots
(training symbols) are typically at a much higher power than the signal to a user
which is very close to the base station. Thus even in the downlink, we would like to
hop the sub-carriers allocated to a user every OFDM symbol time so that over a frame
the interference seen by a mobile is a function of the average transmit power of the
neighboring base stations.

4.4.2 Hopping Pattern

We have arrived at two design rules for the sub-carrier allocations to the users. Allocate
the n sub-carriers for the user as spread out as possible and further, hop the n sub-
carriers every OFDM symbol time. We would like the hop patterns to be as “apart”
as possible for neighboring base stations. We now delve into the design of periodic
hopping patterns that meet these broad design rules that repeat, say, every Nc OFDM
symbol intervals. As we will see, the choice of the period to be equal to Nc along with
the assumption that Nc be prime (which we now make) simplifies the construction of
the hopping pattern.
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The periodic hopping pattern of the Nc sub-carriers can be represented by a
square matrix (of dimension Nc) with entries from the set of virtual channels, namely
0, 1, . . . , Nc−1. Each virtual channel hops over different sub-carriers at different OFDM
symbol times. Each row of the hopping matrix corresponds to a sub-carrier and each
column represents an OFDM symbol time, and the entries represent the virtual chan-
nels that use that sub-carrier in different OFDM symbol times. In particular, the (i, j)
entry of the matrix corresponds to the virtual channel number the ith sub-carrier is
taken on by, at OFDM symbol time j. We require that every virtual channel hop
over all the sub-carriers in each period for maximal frequency diversity. Further, in
any OFDM symbol time the virtual channels occupy different sub-carriers. These two
requirements correspond to the constraint that each row and column of the hopping
matrix contains every virtual channel number (0, . . . , Nc − 1), exactly once. Such a
matrix is called a Latin square. Fig. 4.9 shows hopping patterns of the 5 virtual chan-
nels over the 5 OFDM symbol times (i.e., Nc = 5). The horizontal axis corresponds
to OFDM symbol times and the vertical axis denotes the 5 physical sub-carriers (as
in Fig. 3.25), and the sub-carriers the virtual channels adopt are denoted by darkened
squares. The corresponding hopping pattern matrix is




0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2




.

For example, we see that the virtual channel 0 happens at the OFDM symbol time
and sub-carrier pairs (0, 0), (1, 2), (2, 4), (3, 1), (4, 3). The number 0 appears at exactly
these locations in the hopping matrix as well. Now users could be allocated n virtual
channels accommodating bNc/nc users.

Each base station has its own hopping matrix (Latin square) that determines the
physical structure of the virtual channels. Our design rule to maximize interferer
diversity requires us to have minimal overlap between virtual channels of neighboring
base stations. In particular, we would like there to be exactly one time/sub-carrier
collision for every pair of virtual channels of two base stations that employ these
hopping patterns. Two Latin squares that have this property are said to be orthogonal.

When Nc is prime, there is a simple construction for a family of Nc − 1 mutually
orthogonal Latin squares. For a = 1, . . . , Nc − 1 we define an Nc ×Nc matrix Ra with
(i, j)th entry

Ra
ij = ai + j modulo Nc. (4.23)

Here we index rows and columns from 0 through Nc−1. In Exercise 4.14, you are asked
to verify that Ra is a Latin square and further for every a 6= b the Latin squares Ra

and Rb are orthogonal. Observe that Fig. 4.9 depicts a Latin square hopping pattern
of this type with a = 2 and Nc = 5.
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Figure 4.9: Virtual channel hopping patterns for Nc = 5.

With these Latin squares as the hopping patterns, we can assess the performance of
data transmission over a single virtual channel. First, due to the hopping over the entire
band, the frequency diversity in the channel is harnessed. Second, the interference
seen due to inter-cell transmissions comes from different virtual channels (and repeats
after Nc symbol times). Coding over several OFDM symbols allows the full interferer
diversity to be harnessed: coding ensures that no one single strong interference from
a virtual channel can cause degradation in performance. If sufficient interleaving is
permitted, then the time diversity in the system can also be obtained.

To implement these design goals in a cellular system successfully, the users within
the cell must be synchronized to their corresponding base station. This way, the
simultaneous uplink transmissions are still orthogonal at the base station. Further,
the transmissions of neighboring base stations also have to be synchronized. This way
the design of the hopping patterns to average the interference is fully utilized.

4.4.3 Signal Characteristics and Receiver Design

Let us consider the signal transmission corresponding to a particular user (either in
the uplink or the downlink). The signal consists of n virtual channels which over a
slot constitute a set of n OFDM sub-carriers that are hopped over OFDM symbol
times. Thus, though the signal information content could be “narrow” (for small
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ratios n/Nc), the signal bandwidth itself is wide. Further since the bandwidth range
occupied varies from symbol to symbol, each (mobile) receiver has to be wideband.
That is, the sampling rate is proportional to 1/W . Thus this signal constitutes a
(frequency hopped) spread spectrum signal just as the CDMA signal is: the ratio of
data rate to bandwidth occupied by the signal is small. However, unlike the CDMA
signal which spreads the energy over the entire bandwidth, here the energy of the
signal is only in certain sub-carriers (n of a total Nc). As discussed in Chapter 3, fewer
channel parameters have to be measured and channel estimation with this signal is
superior to that of the CDMA signal.

The major advantages of the third system design are the frequency and interferer
diversity features. There are a few engineering drawbacks to this choice. The first is
that the mobile sampling rate is quite high (same as that of the CDMA system design
but much higher than that of the first system). All signal processing operations (such
as the FFT and IFFT) are driven off this basic rate and this dictates the processing
power required at the mobile receiver. The second drawback is with respect to the
transmit signal on the uplink. In Exercise 4.15, we calculate the PAPR of a canonical
transmit signal in this design and observe that it is significantly high, as compared
to the signal in the GSM and CDMA systems. As we discussed in the first system
earlier, this higher PAPR translates into a larger bias in the power amplifier settings
and a correspondingly lower average efficiency. Several engineering solutions have
been proposed to this essentially engineering problem (as opposed to the more central
communication problem which deals with the uncertainties in the channel) and we
review some of these in Exercise 4.16.

4.4.4 Sectorization

What range of SINRs are possible for the users in this system? We observed that while
the first (narrowband) system provided high SINRs to all the mobiles, almost no user
was in a high SINR scenario in the CDMA system due to the intra-cell interference.
The range of SINRs possible in this system are mid way between these two extremes.
First, we observe that the only source of interference is inter-cell. So, users close to the
base station will be able to have high SINRs since they are impacted less from inter-cell
interference. On the other hand, users at the edge of the cell are interference limited
and cannot support high SINRs. If there is a feedback of the received SINRs then users
closer by the base station can take advantage of the higher SINR by transmitting and
receiving at higher data rates.

What is the impact of sectorization? If we universally reuse the frequency among
the sectors, then there is inter-sector interference. We can now observe an important
difference between inter-sector and inter-cell interference. While inter-cell interference
affects mostly the users at the edge of the cell, inter-sector interference affects users
regardless of whether they are at the edge of the cell or close to the base station



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 176

(the impact is pronounced on those at the edge of the sectors). This interference now
reduces the dynamic range of SINRs this system is capable of providing.

Example 4.4: Flash-OFDM

A technology that partially implements the design features of the wideband
OFDM system is Flash-OFDM [29]. Over 1.25 MHz, there are 113 sub-carriers,
i.e., Nc = 113. The 113 virtual channels are created from these sub-carriers using
the Latin square hopping patterns (in the downlink the hops are done every
OFDM symbol but once in every 7 OFDM symbols in the uplink). The sampling
rate (or equivalently, chip rate) is 1.25 MHz and a cyclic prefix of 16 samples (or
chips) covers for a delay spread of approximately 11 µs. This means that the
OFDM symbol is 128 samples, or approximately 100 µs long.

There are four traffic channels of different granularity: there are five in the
uplink (comprising of 7, 14, 14, 14 and 28 virtual channels) and four in the
downlink (comprising of 48, 24, 12, 12 virtual channels). Users are scheduled on
different traffic channels depending on their traffic requirements and channel
conditions (we study the desired properties of the scheduling algorithm in greater
detail in Chapter 6). The scheduling algorithm operates once every slot: a slot is
about 1.4 ms long, i.e., it consists of 14 OFDM symbols. So, if a user is scheduled
(say, in the downlink) the traffic channel consisting of 48 virtual channels, it can
transmit 672 OFDM symbols over the slot when it is scheduled. An appropriate
rate LDPC (low density parity check) code combined with a simple modulation
scheme (such as QPSK or 16-QAM) is used to convert the raw information bits
into the 672 OFDM symbols.

The different levels of granularity of the traffic channels are ideally suited to
carry bursty traffic. Indeed, Flash-OFDM is designed to act in a data network
where it harnessing the statistical multiplexing gains of the user’s bursty data
traffic by its packet-switching operation.

The mobiles are in three different states in the network. When they are
inactive, they go to a “sleep” mode monitoring the base station signal every once
in a while: this mode saves power by turning off most of the mobile device
functionalities. On the other hand, when the mobile is actively receiving and/or
sending data it is in the “ON” mode: this mode requires the network to assign
resources to the mobile to perform periodic power control updates and timing and
frequency synchronization. Apart from these two states, there is an in between
“HOLD” mode: here mobiles that had been recently active are placed without
power control updates but still maintaining timing and frequency synchronization
with the base station. Since the intra-cell users are orthogonal and the accuracy of
power control can be coarse, users in HOLD state can be quickly moved to an ON
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state when there is a need to send or receive data. Flash-OFDM has the ability to
hold approximately 30, 130 and 1000 mobiles in the ON, HOLD and sleep modes.

For many data applications, it is important to be able to keep a large number
of users in the HOLD states, since each user may send traffic only once in a while
and in short bursts (requests for http transfers, acknowledgements, etc.) but when
they do want to send, they require short latency and quick access to the wireless
resource. It is difficult to support this HOLD state in a CDMA system. Since
accurate power control is crucial because of the near-far problem, a user who is
not currently power-controlled is required to slowly ramp up its power before it
can send traffic. This incurs a very significant delay.12 On the other hand, it is
very expensive to power control a large number of users who only transmit
infrequently. In an orthogonal system like OFDM, this overhead can be largely
avoided. The issue does not arise in a voice system since each user sends
constantly and the power control overhead is only a small percentage of the
payload (about 10% in IS-95).



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 178

Chapter 4: The Main Plot

The focus of this chapter is on multiple access, interference management and the
system issues in the design of cellular networks. To highlight the issues, we looked
at three different system designs. Their key characteristics are compared and
contrasted in the table below.

Narrowband System Wideband CDMA Wideband OFDM
Signal Narrowband Wideband Wideband
Intra-cell BW Allocation Orthogonal Pseudorandom Orthogonal
Intra-cell Interference None Significant None
Inter-cell BW Allocation Partial reuse Universal reuse Universal reuse
Inter-cell Uplink Interference Bursty Averaged Averaged
Accuracy of Power Control Low High Low
Operating SINR high low range: low to high
PAPR of uplink signal low medium high
Example System GSM IS-95 Flash-OFDM
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4.5 Bibliographical Notes

The two important aspects that have to be addressed by a wireless system designer
are how resource is allocated within a cell among the users and how interference (both
intra and inter cell) is handled. Three topical wireless technologies have been used
as case studies to bring forth the tradeoffs the designer has to make. The standards
IS-136 [47] and GSM [80] have been the substrate on which the discussion of the
narrowband system design is built. The wideband CDMA design is based on the widely
implemented second generational technology IS-95 [48]. A succinct description of the
the technical underpinnings of the IS-95 design has been done by Viterbi [116] and
our discussion here has been widely influenced by it. The frequency hopping OFDM
system based on latin squares was first suggested by Wyner [121] and Calderbank
and Pottie [77]. This basic physical layer construct has been built into a technology
(Flash-OFDM [29]).
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4.6 Exercises

Exercise 4.1. In Figure 4.2, we set a specific reuse pattern. A channel used in a
cell precludes its use in all the neighboring cells. With this allocation policy the reuse
factor is at least 1/7. This is a rather ad hoc allocation of channels to the cells and
the reuse ratio can be improved; for example, the 4-color theorem [83] asserts that
a planar graph can be colored with 4 colors with no two vertices joined by an edge
sharing the same channel. Further, we may have to allocate more channels to cells
which are crowded. In this question, we consider modeling this problem.

Let us represent the cells by a finite set (of vertices) V := {v1, . . . , vC}; one vertex
for each cell, so there are C cells. We want to be able to say that only certain collection
of vertices can share the same channel. We do this by defining an allowable set S ⊆ V
such that all the vertices in S can share the same channel. We are only interested
in maximal allowable sets: these are allowable sets with no strict superset also an
allowable set. Suppose the maximal allowable sets are M in number, denoted as
S1, . . . , SM . Each of these maximal allowable sets can be thought of as a hyper-edge
(the traditional definition of edge means a pair of vertices) and the collection of V and
the hyper-edges forms a hyper-graph. You can learn more about hyper-graphs from [6].

1. Consider the hexagonal cellular system in Figure 4.10. Suppose we do not allow
any two neighboring cells to share the same channel and further not allow the
same channel to be allocated to cells 1,3 and 5. Similarly, cells 2,4 and 6 cannot
share the same channel. For this example, what are C and M? Enumerate the
maximal allowable sets S1, . . . , SM .

2. The hyper-edges can also be represented as an adjacency matrix of size C ×M :
the (i, j)th entry is

aij :=

{
1 if vi ∈ Sj

0 if vi 6∈ Sj
. (4.24)

For the example in Figure 4.10, explicitly construct the adjacency matrix.

Exercise 4.2. [69] In Exercise 4.1, we considered a graphical model of the cellular
system and constraints on channel allocation. In this exercise, we consider modeling
the dynamic traffic and channel allocation algorithms.

Suppose there are N channels to be allocated. Further, the allocation has to satisfy
the reuse conditions: in the graphical model this means that each channel is mapped
to one of the maximal allowable sets. The traffic constitutes of calls originating and
terminating in the cells. Consider the following statistical model. The average number
of overall calls in all the cells is B. This number accounts for new call arrivals, calls via
handoff from neighboring cells and calls leaving the cell due to termination. The traffic
intensity is the number of call arrivals per available channel, r := B/N (in Erlangs
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Figure 4.10: A narrowband system with 7 cells. Adjacent cells cannot share the same
channel and cells {1, 3, 5} and {2, 4, 6} cannot share the same channel as well.

per channel). A fraction pi of these calls occur in cell i (so that
∑C

i=1 pi = 1). So, the
long term average number of calls per channel to be handled in cell i is pir. We need
a channel to service a call, so to meet this traffic we need on an average at least pir
channels allocated to cell i. We fix the traffic profile p1, . . . , pC over the time scale the
number of call averaging is done. If a cell has used up all its allocated channels, then
a new call cannot be serviced and is dropped.

A dynamic channel allocation algorithm allocates the N channels to the C cells to
meet the instantaneous traffic requirements and further satisfies the reuse pattern. Let
us focus on the average performance of a dynamic channel allocation algorithm: this
is the sum of the average traffic per channel supported by each cell, denoted by T (r).

1. Show that

T (r) ≤ max
j=1...M

C∑
i=1

aij. (4.25)

Hint: The quantity on the right hand side is the cardinality of the largest maximal
allowable set. This is an upper bound on T (r) because the best use of a channel
happens when the largest number of cells can use it simultaneously and this
number is equal to the cardinality of the largest maximal allowable set.

2. Show that

T (r) ≤
C∑

i=1

pir = r, (4.26)

i.e., the total arrival rate is also an upper bound.
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3. Let us combine the two simple upper bounds in (4.25) and (4.26). For every fixed
list of of C numbers yi ∈ [0, 1] , i = 1 . . . C, show that

T (r) ≤
C∑

i=1

yipir + max
j=1...M

C∑
i=1

(1− yi) aij. (4.27)

Exercise 4.3. This exercise is a sequel to Exercises 4.1 and 4.2. Consider the cellular
system example in Figure 4.10, with the arrival rates pi = 1/8 for i = 1, . . . , 6 (all the
cells at the edge) and p7 = 1/4 (the center cell).

1. Derive a good upper bound on T (r), the traffic carried per channel for any
dynamic channel allocation algorithm for this system. In particular, use the
upper bound derived in (4.27), but optimized over all choices of y1, . . . , yC . Hint:
The upper bound on T (r) in (4.27) is linear in the variables y1, . . . , yC . So, you
can use software such as MATLAB (with the function linprog) to arrive at your
answer. The optimal answer is very simple: piece-wise linear with just two linear
segments joining the points (0,0), (8/5,8/5), (8/3,2) and stays at 2 after that.

2. In general, a channel allocation policy is dynamic: i.e., the number of channels
allocated to a cell varies with time as a function of the traffic. Since we are
interested in the average behavior of a policy over a large amount of time, it
is possible that static channel allocation policies also do well. (Static policies
allocate channels to the cells in the beginning and do not alter this allocation
to suit the varying traffic levels.) Consider the following static allocation policy
defined by the probability vector x := (x1, . . . , xM), i.e.,

∑M
j=1 xj = 1. Each

maximal allowable set Sj is allocated bNxjc channels, in the sense that each cell
in Sj is allocated these bNxjc channels. Observe that cell i is allocated

M∑
j=1

bNxjcaij

channels. Denote Tx(r) as the carried traffic by using this static channel alloca-
tion algorithm.

If the incoming traffic is smooth enough that the carried traffic in each cell is the
minimum of arrival traffic in that cell and the number of channels allocated to
that cell,

lim
N→∞

Tx(r) =
C∑

i=1

min

(
rpi,

M∑
j=1

xjaij

)
, ∀r > 0. (4.28)

What are good static allocation policies? For the cellular system model in Fig-
ure 4.10, try out simple static channel allocation algorithms that you can think
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of. You can evaluate the performance of your algorithm numerically by simu-
lating a smooth traffic arrival process (common models are uniform arrivals and
independent and exponential inter-arrival times). How does your answer compare
to the upper bound derived in part 1?

In [69], the authors show that there exists a static allocation policy that can
actually achieve (for large N , because the integer truncation effects have to be
smoothed out) the upper bound in part 1 for every graphical model and traffic
arrival rates.

Exercise 4.4. In this exercise we study the PAPR of the uplink transmit signal in
narrowband systems. The uplink transmit signal is confined to a small bandwidth (200
kHz in the GSM standard). Consider the folowing simple model of the transmit signal
using the idealized pulse shaping filter:

s(t) = <
[ ∞∑

n=0

dn sinc(t− nT ) exp(j2πfct)

]
, t ≥ 0. (4.29)

Here T is approximately the inverse of the bandwidth (5 µs in the GSM standard) and
{dn} is the sequence of (complex) data symbols. The carrier frequency is denoted by
fc; for simplicity let us assume that fcT is an integer.

1. The raw information bits are coded and modulated resulting in the data symbols
dn. Modeling the data symbols as i.i.d. uniformly distributed on the complex
unit circle, calculate the average power in the transmit signal s(t), averaged over
the data symbols. Let us denote the average power by Pav.

2. The statistical behavior of the transmit signal s(t) is periodic with period T .
Thus we can focus on the peak power within the time interval [0, T ], denoted as:

PP (d) = max
0≤t≤T

|s(t)|2. (4.30)

The peak power is a random variable since the data symbols are random. Arrive
at an approximate estimate for the average peak power. How does your estimate
depend on T? What does this imply about the PAPR (ratio of PP to Pav) of
the narrowband signal s(t)?

Exercise 4.5. [44] In this problem we study the uplink power control problem in the
CDMA system in some detail. Consider the uplink of a CDMA system with a total of
K mobiles trying to communicate with L base stations. Each mobile k communicates
with just one among a subset Sk of the L base stations; this base station assignment
is denoted by ck (i.e., we do not model diversity combining via soft handoff in this
problem). Observe that by restricting Sk to have just one element, we are ruling out
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soft handoff as well. As in Section 4.3.1, we denote the transmit power of mobile k by
Pk and the channel attenuation from mobile k to base station m by gkm. For successful
communication we require the Eb/I0 to be at least a target level β, i.e., successful
uplink communication of the mobiles entails the constraints (c.f. (4.10)):

Eb

I0

=
GPkgk,ck∑

n 6=k Pngn,ck
+ N0W

≥ βk, k = 1, 2 . . . , K. (4.31)

Here we have let the target level be potentially different for each mobile and denoted
G = W/R as the processing gain of the CDMA system. Writing the transmit powers
as the vector p = (p1, . . . , pK)t, show that (4.31) can be written as

(IK − F)p ≥ b, (4.32)

where F is the K ×K matrix with strictly positive off-diagonal entries

fij =

{
0 if i = j
gjci

βi

gici
if i 6= j

, (4.33)

and

b := N0W

(
β1

g1,c1

, . . . ,
βK

gK,cK

)t

. (4.34)

It can be shown (see Exercise 4.6) that there exist positive powers to make Eb/I0 meet
the target levels, exactly when all the eigenvalues of F have absolute value strictly less
than 1. In this case, there is in fact a component-wise minimal vector of powers that
allows successful communication and is simply given by:

p∗ = (IK − F)−1 b. (4.35)

Exercise 4.6. Consider the set of linear inequalities in (4.32) that correspond to the
Eb/I0 requirements in the uplink of a CDMA system. In this exercise we investigate
the mathematical constraints on the physical parameters of the CDMA system (i.e.,
the channel gains and desired target levels) which allow reliable communication.

We begin with observing that F is a nonnegative matrix (i.e., it has nonnegative
entries). A nonnegative matrix F is said to be irreducible if there exists a positive
integer m such that Fm has all entries strictly positive.

1. Show that F in (4.33) is irreducible. (The number of mobiles K is at least 2.)

2. Nonnegative matrices also show up as the probability transition matrices of finite
state Markov chains. An important property of irreducible nonnegative matri-
ces is the Perron-Frobenius theorem: There exists a strictly positive eigenvalue
(called the Perron-Frobenius eigenvalue) which is strictly bigger than the absolute
value of any of the other eigenvalues. Further, there is a unique right eigenvector
corresponding to the Perron-Frobenius eigenvalue, and this has strictly positive
entries. Recall this result from a book on nonnegative matrices such as [84].
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3. Consider the vector form of the Eb/I0 constraints of the mobiles in (4.32) with
F a nonnegative irreducible matrix and b having strictly positive entries. Show
that the following statements are equivalent.

(a) There exists p satisfying (4.32) and having strictly positive entries.

(b) The Perron-Frobenius eigenvalue of F is strictly smaller than 1.

(c) (IK − F)−1 exists and has strictly positive entries.

The upshot is that the existence or nonexistence of a power vector that permits suc-
cessful uplink communication from all the mobiles to their corresponding base stations
(with the assignment k 7→ ck) can be characterized in terms of the Perron-Frobenius
eigenvalue of an irreducible nonnegative matrix F.

Exercise 4.7. In this problem, a sequel to Exercise 4.5, we allow the assignment of
mobiles to base stations to be in our control. Let t := (β1, . . . , βK) denote the vector
of the desired target thresholds on the Eb/I0 of the mobiles. Given an assignment of
mobiles to base stations k 7→ ck (with ck ∈ Sk), we say that the pair (c, t) is feasible if
there is a power vector that permits successful communication from all the mobiles to
their corresponding base stations (i.e., user k’s Eb/I0 meets the target level βk).

1. Show that if
(
c, t(1)

)
is feasible and t(2) is another vector of desired target levels

such that β
(1)
k ≥ β

(2)
k for each mobile 1 ≤ k ≤ K, then

(
c, t(2)

)
is also feasible.

2. Suppose
(
c(1), t

)
and

(
c(2), t

)
are feasible. Let p(1)∗ and p(2)∗ denote the cor-

responding minimal vectors of powers allowing successful communication, and
define

p
(3)
k := min

(
p

(1)∗
k , p

(2)∗
k

)
.

Define the new assignment

c
(3)
k :=

{
c
(1)
k if p

(1)∗
k ≤ p

(2)∗
k

c
(2)
k if p

(1)∗
k > p

(2)∗
k

.

Define the new target levels

β
(3)
k :=

g
kc

(3)
k

p
(3)∗
k

N0W +
∑

n 6=k g
nc

(3)
n

p
(3)∗
n

, k = 1, . . . , K,

and the vector t(3) =
(
β

(3)
1 , . . . , β

(3)
K

)
. Show that

(
c(3), t(3)

)
is feasible and further

that β
(3)
k ≥ βk for all mobiles 1 ≤ k ≤ K (i.e., t(3) ≥ t component-wise).
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3. Using the results of the previous two parts, show that if uplink communication is
feasible, then there is a unique component-wise minimum vector of powers that
allows for successful uplink communication of all the mobiles, by appropriate as-
signment of mobiles to base stations allowing successful communication. Further
show that for any other assignment of mobiles to base stations allowing success-
ful communication the corresponding minimal power vector is component-wise
at least as large as this power vector.

Exercise 4.8. [44, 122] In this problem, a sequel to Exercise 4.7, we will see an
adaptive algorithm that updates the transmit powers of the mobiles in the uplink and
the assignment of base stations to the mobiles. The key property of this adaptive
algorithm is that it converges to the component-wise minimal power among all assign-
ments of base stations to the mobiles (if there exists some assignment that is feasible,
as discussed in Exercise 4.7(3)).

Users begin with an arbitrary power vector p(1) and base station assignment c(1)

at the starting time 1. At time m, let the transmit powers of the mobiles be denoted
by (the vector) p(m) and the base station assignment function be denoted by c(m). Let
us first calculate the interference seen by mobile n at each of the base stations l ∈ Sn;
here Sn is the set of base stations that can be assigned to mobile n.

I
(m)
nl :=

∑

k 6=n

gklp
(m)
k + N0W. (4.36)

Now, we choose greedily to assign mobile n to that base station which requires the least
transmit power on the part of mobile n to meet its target level βn. That is,

p(m+1)
n := min

l∈Sn

βnI
(m)
nl

Ggnl

, (4.37)

c(m+1)
n := arg min

l∈Sn

βnI
(m)
nl

gnl

. (4.38)

Consider this greedy update to each mobile being done synchronously: i.e., the updates
of transmit power and base station assignment for every mobile at time m + 1 is made
based on the transmit powers of all other the mobiles at time m. Let us denote this
greedy update algorithm by the map I : p(m) 7→ p(m+1).

1. Show the following properties of I. Vector inequalities are defined to be component-
wise inequalities.

(a) I (p) > 0 for every p ≥ 0.

(b) I (p) ≥ I (p̃), whenever p ≥ p̃.

(c) I (αp) ≤ αI (p) whenever α > 1.
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2. Using the previous part, or otherwise, show that if I has a fixed point (denoted
by p∗) then it is unique.

3. Using the previous two parts, show that if I has a fixed point then p(m) → p∗

component-wise as m → ∞ where p(m) := I
(
p(m−1)

)
and p(1) and c(1) are an

arbitrary initial allocation of transmit powers and assignments of base stations.

4. If I has a fixed point, then show that the uplink communication problem must be
feasible and further, the fixed point p∗ must be the same as the component-wise
minimal power vector derived in Exercise 4.7(3).

Exercise 4.9. Consider the following asynchronous version of the update algorithm
in Exercise 4.8. Each mobile’s update (of power and base station assignment) occurs
asynchronously based on some previous knowledge of all the other user’s transmit
powers. Say, the update of mobile n at time m is based on mobile k’s transmit power
at time τnk(m). Clearly, τnk(m) ≤ m and we require that each user has eventually an
update of the other users’ powers, i.e., for every time m0 there exists time m1 ≥ m0

such that τnk(m) ≥ m0 for every time m ≥ m1. We further require that each user’s
power and base station assignment is allocated infinitely often. Then starting from
any initial condition of powers of the users, show that the asynchronous power update
algorithm converges to the optimal power vector p∗ (assuming the problem is feasible,
so that p∗ exists in the first place).

Exercise 4.10. Consider the uplink of a CDMA system. Suppose there is only a
single cell with just two users communicating to the base station in the cell.

1. Express mathematically the set of all feasible power vectors to support given
Eb/I0 requirements (assumed to be both equal to β).

2. Sketch examples of sets of feasible power vectors. Give one example where the
feasible set is non-empty and give one example where the feasible set is empty.
For the case where the feasible set is non-empty, identify the component-wise
minimum power vector.

3. For the example in part (2) where the feasible set is non-empty, start from an
arbitrary initial point and run the power control algorithm described in Sec-
tion 4.3.1 (and studied in detail in Exercise 4.8). Exhibit the trajectory of power
updates and how it converges to the componentwise minimum solution. (You
can either do this by hand or use MATLAB.)

4. Now suppose there are two cells with two base stations and each of the two users
can be connected to either one of them, i.e., the users are in soft handoff. Extend
parts (1) and (2) to this scenario.
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5. Extend the iterative power control algorithm in part (3) to the soft handoff
scenario and redo part (3).

6. For general number of users, do you think that it is always true that in the
optimal solution, each user is always connected to the base station to which it
has the strongest channel gain? Explain.

Exercise 4.11. (Out-of-Cell Interference Averaging) Consider a cellular system with
two adjacent single-dimensional cells along a highway, each of length d. The base
stations are at the midpoint of their respective cell. Suppose there are K users in each
cell, and the location of each user is uniformly and independently located in its cell.
Users in cell i are power controlled to the base station in cell i, and create interference
at the base station in the adjacent cell. The power attenuation is proportional to r−α

where r is the distance. The system bandwidth is W Hz and the Eb/I0 requirement of
each user is β. You can assume that the background noise is small compared to the
interference and that users are maintained orthogonal within a cell with the out-of-cell
interference from each of the interferer spread across the entire bandwidth. (This is
an approximate model for the OFDM system in the text.)

1. Outage occurs when the users are located such that the out-of-cell interference
is too large. For a given outage probability pout, give an approximate expression
for the spectral efficiency of the system as a function of K, α and β.

2. What is the limiting spectral efficiency as K and W grow? How does this depend
on α?

3. Plot the spectral efficiency as a function of K for α = 2 and β = 7 dB. Is
the spectral efficiency an increasing or decreasing function of K? What is the
limiting value?

4. We have assumed orthogonal users within a cell. But in a CDMA system, there is
intra-cell interference as well. Assuming that all users within a cell are perfectly
power controlled at their base station, repeat the analysis in the first three parts
of the question. From your plots, what qualitative differences between the CDMA
and orthogonal systems can you observe? Intuitively explain your observations.
Hint: Consider first what happens when the number of users increases from
K = 1 to K = 2.

Exercise 4.12. Consider the uplink of a single-cell CDMA system with N users active
all the time. In the text we have assumed the received powers are controlled such that
they are exactly equal to the target level needed to deliver the desired SINR require-
ment for each user. In practice, the received powers are controlled imperfectly due to
various factors such as tracking errors and errors in the feedback links. Suppose that
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when the target received power level is P , the actual received power of user i is εiP ,
where εi’s are i.i.d. random variables whose statistics do not depend on P . Experi-
mental data and theoretical analysis suggest that a good model for εi is a log normal
distribution, i.e., log(εi) follows a Gaussian distribution with mean µ and variance σ2.

1. Assuming there is no power constraint on the users, give an approximate expres-
sion for the achievable spectral efficiency (bits/s/Hz) to support N users for a
given outage probability pout and Eb/I0 requirement β for each user.

2. Plot this expression as a function of N for reasonable values of the parameters
and compare this to the perfect power control case. Do you see any interference
averaging effect?

3. How does this scenario differ from the users’ activity averaging and out-of-cell
interference averaging examples considered in the text?

Exercise 4.13. In the downlink of a CDMA system, each users’ signal is spread
onto a pseudonoise sequence.13 Uncoded BPSK modulation is used, with a processing
gain of G. Soft handoff is performed by sending the same symbol to the mobile from
multiple base stations, the symbol being spread onto independently chosen pseudonoise
sequences. The mobile receiver has knowledge of all the sequences used to spread the
data intended for it as well as the channel gains and detect the transmitted symbol in
the optimal way. We ignore fading and assume an AWGN channel between the mobile
and each of the base stations.

1. Give an expression for the detection error probability for a mobile in soft handoff
between two base stations. You may need to make several simplifying assump-
tions here. Feel free to make them but state them explicitly.

2. Now consider a whole network where each mobile is already assigned to a set
of base stations among which it is in soft handoff. Formulate the power con-
trol problem to meet the error probability requirement for each mobile in the
downlink.

Exercise 4.14. In this problem we consider the design of hopping patterns of neigh-
boring cells in the OFDM system. Based on the design principles arrived at in Sec-
tion 4.4.2, we want the hopping patterns to be latin squares and further require these
latin squares to be orthogonal. Another way to say the orthogonality of a pair of
latin squares is the following. For the two latin squares, the N2

c ordered pairs (n1, n2),
where n1 and n2 are the entries (sub-carrier or virtual channel indices) from the same
position in the respective latin squares, exhaust the N2

c possibilities, i.e., every ordered
pair occurs exactly once.

13Note that this is different from the downlink of IS-95, where each user is assigned an orthogonal
sequence.
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1. Show that the Nc − 1 latin squares constructed in Section 4.4.2 (denoted by Ra

in (4.23)) are mutually orthogonal.

2. Show that there cannot be any more than Nc − 1 mutually orthogonal latin
squares. You can learn more about latin squares from a book on combinatorial
theory such as [14].

Exercise 4.15. In this exercise we derive some insight into the PAPR of the uplink
transmit signal in the OFDM system. The uplink signal is restricted to n of the Nc sub-
carriers and the specific choice of n depends on the allocation and further hops from
one OFDM symbol to the other. So, for concreteness, we assume that n divides Nc and
assume that sub-carriers are uniformly separated. Let us take the carrier frequency to
be fc and the inter-sub-carrier spacing to be 1/T Hz. This means that the passband
transmit signal over one OFDM symbol (of length T ) is:

s(t) = <
[

1√
Nc

n−1∑
i=0

d̃i exp

(
j2π

(
fc +

iNc

nT

)
t

)]
, t ∈ [0, T ] .

Here we have denoted d̃0, . . . , d̃n−1 to be the data (constellation) symbols chosen ac-
cording to the (coded) data bits. We also denote the product fcT by ζ which is typically
a very large number. For example, with carrier frequency fc = 2 GHz and bandwidth
W = 1 MHz with Nc = 512 tones, the length of the OFDM symbol is approximately
T = Nc/W . Then ζ is of the order of 106.

1. What is the (average) power of s(t) as a function of the data symbols d̃i, i =
0, . . . , n − 1? In the uplink, the constellation is usually small in size (due to
low SINR values and transmit power constraints). A typical example is equal
energy constellation such as (Q)PSK. For this problem, we assume that the data
symbols are uniform over the circle in the complex plane with unit radius. With
this assumption, compute the average of the power of s(t), averaged over the
data symbols. We denote this average by Pav.

2. We define the peak power of the signal s(t) as a function of the data symbols as
the square of the largest absolute value s(t) can take in the time interval [0, T ].
We denote this by PP (d̃), the peak power as a function of the data symbols d̃.
Observe that the peak power can be written in our notation as:

PP (d̃) = max
0≤t≤1

(
<

[
1√
Nc

n−1∑
i=0

d̃i exp

(
j2π

(
ζ +

iNc

n

)
t

)])2

.

The peak to average power ratio (PAPR) is the ratio of PP (d̃) to Pav.

We would like to understand how PP (d̃) behaves with the data symbols d̃. Since
ζ is a large number, s(t) is wildly fluctuating with time and is rather hard to
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analyze in a clean way. To get some insight, let us take a look at the values of
s(t) at the sample times: t = l/W, l = 0, . . . Nc − 1:

s(l/W ) = < [d[l] exp (j2πζl)] ,

where (d[0], . . . , d[Nc − 1]) is the Nc point IDFT (see Figure 3.20) of the vector
with ith component equal to

{
d̃l when i = lNc

n
for integer l

0 otherwise.

The worst amplitude of s(l/W ) is equal to the amplitude of d[l], so let us focus on
d[0], . . . , d[Nc − 1]. With the assumption that the data symbols d̃0, . . . , d̃n−1 are
uniformly distributed on the circle in the complex plane of radius 1/

√
Nc, what

can you say about the marginal distributions of d[0], . . . , d[Nc−1]? In particular,
what happens to these marginal distributions as n,Nc →∞ with n/Nc equal to
a nonzero constant? The random variable | d[0] |2 /Pav can be viewed as a lower
bound to the PAPR.

3. Thus even though the constellation symbols were all equal energy, the PAPR
of the resultant time domain signal is quite large. In practice, we can tolerate
some codewords to have large PAPRs as long as the majority of the codewords
(say a fraction equal to 1− η) have well behaved PAPRs. Using the distribution
| d[0] |2 /Pav for large n,Nc as a lower bound substitute for the PAPR, calculate
θ(η) defined as:

P
{ | d[0] |2

Pav

< θ(η)

}
= 1− η.

Calculate θ(η) for η = 0.05. When the power amplifier bias is set to the average
power times θ, then on the average 95% of the codewords do not get clipped.
This large value of θ(η) is one of the main implementational obstacles to using
OFDM in the uplink.

Exercise 4.16. Several techniques have been proposed to reduce the PAPR in OFDM
transmissions. In this exercise, we take a look at a few of these.

1. A standard approach to reduce the large PAPR of OFDM signals is to restrict
signals transmitted to those that have guaranteed small PAPRs. One approach
is based on Golay’s complementary sequences [37, 38, 39]. These sequences pos-
sess an extremely low PAPR of 2 but their rate rapidly approaches zero with
the number of sub-carriers (in the binary case, there are roughly n log n Golay
sequences of length n). A reading exercise is to go through [12, 76] which first
suggested the applicability of Golay sequences in multitone communications.
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2. However, in many communication systems codes are designed to have maximal
rate. For example, LDPC and Turbo codes operate very close to the Shannon
limits on many channels (including the AWGN channel). Thus it is useful to have
strategies that improve the PAPR behavior of existing code sets. In this con-
text, [50] proposes the following interesting idea: Introduce fixed phase rotations,
say θ0, . . . , θn−1, to each of the data symbols d̃0, . . . , d̃n−1. The choice of these
fixed rotations is made such that the overall PAPR behavior of the signal set
(corresponding to the code set) is improved. Focusing on the worst case PAPR
(the largest signal power at any time for any signal among the code set), [93]
introduces a geometric view point and a computationally efficient algorithm to
find the good choice of phase rotations. This reading exercise takes you through
[50, 93] and introduces these developments.

3. The worst case PAPR may be too conservative in predicting the bias setting.
As an alternative, one can allow large peaks to occur but they should do so
with small probability. When a large peak does occur, the signal will not be
faithfully reproduced by the power amplifier thereby introducing noise into the
signal. Since communication systems are designed to tolerate a certain amount
of noise, one can attempt to control the probability that peak values are exceeded
and then ameliorate the effects of the additional noise through the error control
codes. A probabilistic approach to reduce PAPR of existing codesets is proposed
in [55]. The idea is to remove the worst (say half) of the codewords based on
the PAPR performance. This reduces the code rate by a negligible amount but
the probability (η) that a certain threshold is exceeded by the transmit signal
can be reduced by much (as small as η2). Since the peak threshold requirement
of the amplifiers is typically chosen so as to set this probability to a sufficiently
small level, such a scheme will permit the threshold to be set lower. A reading
exercise takes you through the unpublished manuscript [55] where a scheme that
is specialized to OFDM systems is detailed.
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Chapter 5

Capacity of Wireless Channels

In the previous two chapters, we studied specific techniques for communication over
wireless channels. In particular, Chapter 3 is centered on the point-to-point commu-
nication scenario and there the focus is on diversity as a way to mitigate the adverse
effect of fading. Chapter 4 looks at cellular wireless networks as a whole and introduced
several multiple access and interference management techniques.

The present chapter takes a more fundamental look at the problem of communica-
tion over wireless fading channels. We ask: what is the optimal performance achievable
on a given channel and what are the techniques to achieve such optimal performance?
We focus on the point-to-point scenario in this chapter and defer the multiuser case
until Chapter 6. The material covered in this chapter lays down the theoretical basis
of the modern development in wireless communication to be covered in the rest of the
book.

The framework for studying performance limits in communication is information
theory. The basic measure of performance is the capacity of a channel: the maximum
rate of communication for which arbitrarily small error probability can be achieved.
Section 5.1 starts with the important example of the AWGN (additive white Gaussian
noise) channel and introduces the notion of capacity through a heuristic argument.
The AWGN channel is then used as a building block to study the capacity of wireless
fading channels. Unlike the AWGN channel, there is no single definition of capacity
for fading channels that is applicable in all scenarios. Several notions of capacity are
developed, and together they form a systematic study of performance limits of fading
channels. The various capacity measures allow us to see clearly the different types of
resources available in fading channels: power, diversity and degrees of freedom. We
will see how the diversity techniques studied in Chapter 3 fit into this big picture.
More importantly, the capacity results suggest an alternative technique, opportunistic
communication, which will be explored further in the later chapters.

193
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5.1 AWGN Channel Capacity

Information theory was invented by Claude Shannon in 1948 to characterize the limits
of reliable communication. Before Shannon, it was widely believed that the only way to
achieve reliable communication over a noisy channel, i.e., to make the error probability
as small as desired, is to reduce the data rate (by, say, repetition coding). Shannon
showed the surprising result that this belief is incorrect: by more intelligent coding
of the information, one can in fact communicate at a strictly positive rate but at the
same time with as small an error probability as desired. However, there is a maximal
rate, called the capacity of the channel, for which this can be done: if one attempts
to communicate at rates above the channel capacity, then it is impossible to drive the
error probability to zero.

In this section, the focus is on the familiar (real) AWGN channel:

y[m] = x[m] + w[m], (5.1)

where x[m] and y[m] are real input and output at time m respectively and w[m] is
N (0, σ2) noise, independent over time. The importance of this channel is two-fold:
• It is a building block of all of the wireless channels studied in this book.

• It serves as a motivating example of what capacity means operationally and gives
some sense as to why arbitrarily reliable communication is possible at a strictly
positive data rate.

5.1.1 Repetition Coding

Using uncoded BPSK symbols x[m] = ±√P , the error probability is Q
(√

P/σ2
)
.

To reduce the error probability, one can repeat the same symbol N times to transmit
the one bit of information. This is a repetition code of block length N , with code-
words xA =

√
P [1, . . . , 1]t and xB =

√
P [−1, . . . ,−1]t. The codewords meet a power

constraint of P Joules/symbol. If xA is transmitted, the received vector is

y = xA + w, (5.2)

where w = (w[1], . . . , w[N ])t. Error occurs when y is closer to xB than to xA, and the
error probability is given by

Q

(‖xA − xB‖
2σ

)
= Q

(√
NP

σ2

)
, (5.3)

which decays exponentially with the block length N . The good news is that communi-
cation can now be done with arbitrary reliability by choosing a large enough N . The
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bad news is that the data rate is only 1/N bits per symbol time and with increasing
N the data rate goes to zero.

The reliably communicated data rate with repetition coding can be marginally
improved by using multi-level PAM (generalizing the two-level BPSK scheme from
earlier). By repeating an M -level PAM symbol, the levels equally spaced between
±√P , the rate is log M/N bits per symbol time1 and the error probability for the
inner levels is equal to

Q

( √
NP

(M − 1) σ

)
. (5.4)

As long as the number of levels M grows at a rate less than
√

N , reliable communication
is guaranteed at large block lengths. But the data rate is bounded by (log

√
N)/N and

this still goes to zero as the block length increases. Is that the price one must pay to
achieve reliable communication?

5.1.2 Packing Spheres

Geometrically, repetition coding puts all the codewords (the M levels) in just one
dimension (Figure 5.1 provides an illustration; here, all the codewords are on the same
line). On the other hand, the signal space has a large number of dimensions N . We have
already seen in Chapter 3 that this is a very inefficient way of packing codewords. To
communicate more efficiently, the codewords should be spread in all the N dimensions.

We can get an estimate on the maximum number of codewords which can be packed
in for the given power constraint P , by appealing to the classic sphere-packing picture
(Figure 5.2). By the law of large numbers, the N -dimensional received vector y = x+w
will, with high probability, lie within a y-sphere of radius

√
N(P + σ2); so without loss

of generality we need only focus on what happens inside this y-sphere. On the other
hand

1

N

N∑
m=1

w2[m] → σ2 (5.5)

as N → ∞, by the law of large numbers again. So, for N large, the received vector
y lies, with high probability, near the surface of a noise sphere of radius

√
Nσ around

the transmitted codeword (this is sometimes called the sphere hardening effect). Reli-
able communication occurs as long as the noise spheres around the codewords do not
overlap. The maximum number of codewords that can be packed with non-overlapping

1In this chapter, all logarithms are taken to be to the base 2 unless specified otherwise.
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N(P + σ2)

Figure 5.1: Repetition coding packs points inefficiently in the high dimensional signal
space.

√
N(P + σ2)

√
Nσ2 √

NP

Figure 5.2: The number of noise spheres that can be packed into the y-sphere yields
the maximum number of codewords that can be reliably distinguished.
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noise spheres is the ratio of the volume of the y-sphere to the volume of a noise sphere:2

(√
N(P + σ2)

)N

(√
Nσ2

)N
. (5.6)

This implies that the maximum number of bits per symbol that can be reliably com-
municated is

1

N
log




(√
N(P + σ2)

)N

(√
Nσ2

)N


 =

1

2
log

(
1 +

P

σ2

)
. (5.7)

This is indeed the capacity of the AWGN channel. (The argument might sound very
heuristic. Appendix B.5 takes a more careful look.)

The sphere-packing argument only yields the maximum number of codewords that
can be packed while ensuring reliable communication. How to construct codes to
achieve the promised rate is another story. In fact, in Shannon’s argument, he never
explicitly constructed codes. What he showed is that if one picks the codewords ran-
domly and independently, with the components of each codeword i.i.d. N (0, P ), then
with very high probability the randomly chosen code will do the job at any rate R < C.
This is the so-called i.i.d. Gaussian code. A sketch of this random coding argument
can be found in Appendix B.5.

From an engineering stand point, the essential problem is to identify easily encod-
able and decodable codes that have performance close to the capacity. The study of
this problem is a separate field in itself and Discussion 5 briefly chronicles the success
story: codes that operate very close to capacity have been found and can be imple-
mented in a relative straightforward way using current technology. In the rest of the
book, these codes are referred to as “capacity-achieving AWGN codes”.

Discussion 5.5: Capacity-Achieving AWGN Channel Codes

Consider a code for communication over the real AWGN channel in (5.1). The
ML decoder chooses the nearest codeword to the received vector as the most likely
transmitted codeword. The closer two codewords are to each other, the higher the
probability of confusing one for the other: this yields a geometric design criterion
for the set of codewords, i.e., place the codewords as far apart from each other as
possible. While such a set of maximally spaced codewords are likely to perform
very well, this in itself, however, does not constitute an engineering solution to the

2The volume of an N -dimensional sphere of radius r is proportional to rN and an exact expression
is evaluated in Exercise B.10.
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problem of code construction: what is required is an arrangement that is “easy”
to describe and “simple” to decode. In other words, the computational complexity
of encoding and decoding should be practical.

Many of the early solutions centered around the theme of ensuring efficient
ML decoding. The search of codes which have this property leads to a rich class of
codes with nice algebraic properties, but their performance is quite far from
capacity. A significant breakthrough occurred when the stringent ML decoding
was relaxed to an approximate one. An iterative decoding algorithm with near
ML performance has led to Turbo and Low Density Parity Check codes.

A large ensemble of linear parity check codes can be considered in conjunction
with the iterative decoding algorithm. Codes with good performance can be found
offline and they have been verified to perform very close to capacity. To get a feel
for their performance, we consider some sample performance numbers. The
capacity of the AWGN channel at 0 dB SNR is 0.5 bits per symbol. The error
probability of a carefully designed LDPC code in these operating conditions (rate
0.5 bits per symbol, and the signal to noise ratio is equal to 0.1 dB) with a block
length of 8000 bits is approximately 10−4. With a larger block length, much
smaller error probabilities have been achieved. These modern developments are
well surveyed in [81].

Summary 5.1 Reliable Rate of Communication and Capacity

• Reliable communication at rate R bits/symbol means that one can design codes
at that rate with arbitrarily small error probability.

• To get reliable communication, one must code over a long block; this is to exploit
the law of large numbers to average out the randomness of the noise.

• Repetition coding over a long block can achieve reliable communication, but the
corresponding data rate goes to zero with increasing block length.

• Repetition coding does not pack the codewords in the available degrees of freedom
in an efficient manner. One can pack a number of codewords which is exponential
in the block length and can still communicate reliably. This means the data rate
can be strictly positive even as reliability is increased arbitrarily by increasing the
block length.

• The maximum data rate at which reliable communication is possible is called the
capacity C of the channel.

• The capacity of the (real) AWGN channel with power constraint P and noise
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(a) (b) (c)

Figure 5.3: The three communication schemes when viewed in N -dimensional space:
(a) uncoded signaling: error probability is poor since large noise in any dimension is
enough to confuse the receiver; (b) repetition code: codewords are now separated in
all dimensions, but there are only a few codewords packed in a single dimension; (c)
capacity-achieving code: codewords are separated in all dimensions and there are many
of them spread out in the space.

variance σ2 is:

Cawgn =
1

2
log

(
1 +

P

σ2

)
, (5.8)

and the engineering problem of constructing codes close to this performance has
been successfully addressed.

Figure 5.3 summarizes the three communication schemes discussed.

The capacity of the AWGN channel is probably the most well-known result of
information theory, but it is in fact only a special case of Shannon’s general theory
applied to a specific channel. This general theory is outlined in Appendix B. All the
capacity results used in the book can be derived from this general framework. To focus
more on the implications of the results in the main text, the derivation of these results
are relegated to Appendix B. In the main text, the capacities of the channels looked
at are justified by either transforming the channels back to the AWGN channel, or by
using the type of heuristic sphere-packing arguments we have just seen.

5.2 Resources of the AWGN Channel

The AWGN capacity formula (5.8) can be used to identify the roles of the key resources
of power and bandwidth.
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5.2.1 Continuous-Time AWGN Channel

Consider a continuous-time AWGN channel with bandwidth W Hz, power constraint P̄
Watts, and additive white Gaussian noise with power spectral density N0/2. Following
the passband-baseband conversion and sampling at rate 1/W (as described in Chapter
2), this can be represented by a discrete-time complex baseband channel:

y[m] = x[m] + w[m], (5.9)

where w[m] is CN (0, N0) and is i.i.d. over time. Note that since the noise is independent
in the I and Q components, each use of the complex channel can be thought of as two
independent uses of a real AWGN channel. The noise variance and the power constraint
per real symbol is N0/2 and P̄ /(2W ) respectively. Hence, the capacity of the channel
is

1

2
log

(
1 +

P̄

N0W

)
bits per real dimension, (5.10)

or

log

(
1 +

P̄

N0W

)
bits per complex dimension. (5.11)

This is the capacity in bits per complex dimension or degree of freedom. Since
there are W complex samples per second, the capacity of the continuous-time AWGN
channel is:

Cawgn(P̄ , W ) = W log

(
1 +

P̄

N0W

)
bits/s. (5.12)

Note that SNR := P̄ /(N0W ) is the SNR per (complex) degree of freedom. Hence,
AWGN capacity can be rewritten as:

Cawgn = log (1 + SNR) bits/s/Hz. (5.13)

This formula measures the maximum achievable spectral efficiency through the
AWGN channel as a function of the SNR.

5.2.2 Power and Bandwidth

Let us ponder the significance of the capacity formula (5.12) to a communication engi-
neer. One way of using this formula is as a benchmark for evaluating the performance
of channel codes. For a system engineer, however, the main significance of this formula
is that it provides a high-level way of thinking about how the performance of a com-
munication system depends on the basic resources available in the channel, without
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going into the details of specific modulation and coding schemes used. It will also help
identify the bottleneck that limits performance.

The basic resources of the AWGN channel are the received power P̄ and the band-
width W . Let us first see how the capacity depends on the received power. To this
end, a key observation is that the function

f(SNR) := log(1 + SNR) (5.14)

is concave, i.e., f ′′(x) ≤ 0 (Figure 5.4). This means that increasing the power P̄ suffers
from a law of diminishing marginal returns: the higher the SNR, the smaller the effect
on capacity. In particular, let us look at the low and the high SNR regimes. Observe
that

log2(1 + x) ≈ x log2 e when x ≈ 0, (5.15)

log2(1 + x) ≈ log2 x when x À 1. (5.16)

Thus, when the SNR is low, the capacity increases linearly with the received power
P̄ : every 3 dB increase in (or, doubling) the power doubles the capacity. When the
SNR is high, the capacity increases logarithmically with P̄ : every 3 dB increase in the
power only yields only one additional bit per dimension. This phenomenon should not
come as a surprise. We have already seen in Chapter 3 that packing many bits per
dimension is very power-inefficient. The capacity result says that this phenomenon
not only holds for specific schemes but is in fact fundamental to all communication
schemes. In fact, for a fixed error probability, the data rate of uncoded QAM also
increases logarithmically with the SNR (Exercise 5.7).

The dependency of the capacity on the bandwidth W is somewhat more compli-
cated. From the formula, the capacity depends on the bandwidth in two ways. First,
it increases the degrees of freedom available for communication. This can be seen in
the linear dependency on W for a fixed SNR = P̄ /(N0W ). On the other hand, for a
given received power P̄ , the SNR per dimension decreases with the bandwidth as the
energy is spread more thinly across the degrees of freedom. In fact, it can be directly
calculated that the capacity is an increasing, concave function of the bandwidth W .
When the bandwidth is small, the SNR per degree of freedom is high, and then the
capacity is insensitive to small changes in SNR. Increasing W yields a rapid increase
in capacity because the increase in degrees of freedom more than compensates for the
decrease in SNR. The system is in the bandwidth-limited regime. When the bandwidth
is large such that the SNR per degree of freedom is small,

W log

(
1 +

P̄

N0W

)
≈ W (

P̄

N0W
) log2 e =

P̄

N0

log2 e. (5.17)

In this regime, the capacity is proportional to the total received power across the entire
band. It is insensitive to the bandwidth, and increasing the bandwidth has a small
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Figure 5.4: Spectral efficiency log(1 + SNR) of the AWGN channel.

impact on capacity. On the other hand, the capacity is now linear in the received
power and increasing power has a significant effect. This is the power-limited regime.
See Figure 5.5.

As W increases, the capacity increases monotonically (why must it?) and reaches
the asymptotic limit

C∞ =
P̄

N0

log2 e bits/s (5.18)

This is the infinite bandwidth limit, i.e., the capacity of the AWGN channel with
only a power constraint but no limitation on bandwidth. It is seen that even if there
is no bandwidth constraint, the capacity is finite.

In some communication applications, the main objective is to minimize the required
energy per bit Eb rather than to maximize the spectral efficiency. At a given power
level P̄ , the minimum required energy per bit Eb is P̄ /Cawgn(P̄ , W ). To minimize this,
we should be operating in the most power-efficient regime, i.e. P̄ → 0. Hence, the
minimum Eb/N0 is given by:

( Eb

N0

)

min

= lim
P̄→0

P̄

Cawgn(P̄ , W )N0

=
1

log2 e
= −1.59dB. (5.19)

To achieve this, the SNR per degree of freedom goes to zero. The price to pay for
the energy efficiency is delay: if the bandwidth W is fixed, the communication rate
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Figure 5.5: Capacity as a function of the bandwidth W . Here P̄ /N0 = 106.

(in bits/s) goes to zero. This is essentially mimics the infinite bandwidth regime by
spreading the total energy over a long time interval, instead of spreading the total
power over a large bandwidth.

It was already mentioned that the success story of designing capacity-achieving
AWGN codes is a relatively recent one. In the infinite bandwidth regime, however,
it has long been known that orthogonal codes3 achieve the capacity (or, equivalently,
achieve the minimum Eb/N0 of −1.59 dB). This is explored in Exercises 5.8 and 5.9.

Example 5.6: Bandwidth Reuse in Cellular Systems

The capacity formula for the AWGN channel can be used to conduct a simple
comparison of the two orthogonal cellular systems discussed in Chapter 4: the
narrowband system with frequency reuse versus the wideband with universal
reuse. In both systems, users within a cell are orthogonal and do not interfere
with each other. The main parameter of interest is the reuse ratio ρ (ρ ≤ 1). If W
denotes the total bandwidth allotted to the cellular system scaled down by the

3One example of orthogonal coding is in the Hadamard sequences used in the IS-95 system (Section
4.3.1). Pulse position modulation (PPM), where the position of the on-off pulse (with large duty cycle)
conveys the information, is another example.
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number of orthogonal users sharing the bandwidth within a cell, then each user
transmission occurs over a bandwidth of ρW . The parameter ρ = 1 yields the full
reuse of the wideband OFDM system and ρ < 1 yields the narrowband system.

Here we consider the uplink of this cellular system; the study of the downlink
in orthogonal systems is similar. A user at a distance of r is heard at the base
station with an attenuation of a factor 1/rα in power; in free space the decay rate
α is equal to 2 and the decay rate is 4 in the model of a single reflected path off
the ground plane, c.f. Section 2.1.5.

The uplink user transmissions in a neighboring cell that reuses the same
frequency band are averaged and this constitutes the interference (this averaging is
an important feature of the wideband OFDM system4). Let us denote the amount
of total out-of-cell interference at a base station as a fraction of the received signal
power of a user at the edge of the cell by fρ. Since the amount of interference
depends on the number of neighboring cells that reuse the same frequency band,
fρ depends on the reuse ratio and also on the topology of the cellular system.

For example, in a 1-D linear array of base stations (Figure 5.6) a reuse ratio of
ρ corresponds to one in every 1/ρ cells using the same frequency band. Thus the
fraction fρ decays roughly as ρα. On the other hand, in a 2-D hexagonal array of
base stations, a reuse ratio of ρ corresponds to the nearest reusing base station
roughly a distance of

√
1/ρ away: this means that the fraction fρ decays roughly

as ρα/2. The exact fraction fρ takes into account geographical features of the
cellular system (such as shadowing) and the geographic averaging of the
interfering uplink transmissions; it is usually arrived at using numerical
simulations.5 In a simple model where the interference is considered to come from
the center of the cell reusing the same frequency band, fρ can be taken to be

2 (ρ/2)α for the linear cellular system and 6 (ρ/4)α/2 for the hexagonal planar
cellular system (see Exercises 5.2 and 5.3).

The received SINR at the base station for a cell-edge user is

SINR =
SNR

ρ + fρSNR
, (5.20)

where the SNR for the cell-edge user is

SNR :=
P

N0Wdα
, (5.21)

with d the distance of the user to the base station and P is the uplink transmit
power. The operating value of the parameter SNR is decided by the coverage of a
cell: a user at the edge of a cell has to have a minimum SNR to be able to
communicate reliably (at aleast a fixed minimum rate) with the nearest base
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station. Each base station comes with a capital installation cost and recurring
operation costs and to minimize the number of base stations, the cell size d is
usually made as large as possible; depending on the uplink transmit power
capability, coverage decides the cell size d.

Using the AWGN capacity formula (c.f. (5.14)), the rate of reliable
communication for a user at the edge of the cell, as a function of the reuse ratio ρ,
is

Rρ = ρW log2 (1 + SINR) = ρW log2

(
1 +

SNR

ρ + fρSNR

)
bits/s. (5.22)

The rate depends on the reuse ratio through the available degrees of freedom and
the amount of out-of-cell interference. A large ρ increases the available bandwidth
per cell but also increases the amount of out-of-cell interference. The formula
(5.22) allows us to study the optimal reuse factor. At low SNRs, the system is not
degree of freedom limited and the interference is small relative to the noise; thus
the rate is insensitive to the reuse factor and can be verified directly from (5.22).
On the other hand, at large SNRs the interference grows as well and the SINR
peaks at 1/fρ. (A general rule of thumb in practice is to set SNR such that the
interference is of the same order as the background noise; this will guarantee that
the operating SINR is close to the largest value.) The largest rate is

ρW log2

(
1 +

1

fρ

)
. (5.23)

This rate goes to zero for small values of ρ; thus sparse reuse is not favored. It can
be verified that universal reuse yields the largest rate in (5.23) for the hexagonal
cellular system (see Exercise 5.3). For the linear cellular model, the corresponding
optimal reuse is ρ = 1/2, i.e., reusing the frequency every other cell (see
Exercise 5.5). The reduction in interference due to less reuse is more dramatic in
the linear cellular system when compared to the hexagonal cellular system. This
difference is highlighted in the optimal reuse ratios for the two systems at high
SNRs: universal reuse is preferred for the hexagonal cellular system while a reuse
ratio of 1/2 is preferred for the linear cellular system.

This comparison also holds for a range of SNRs in between the small and the
large values: Figures 5.7 and 5.8 plot the rates in (5.22) for different reuse ratios
for the linear and hexagonal cellular systems respectively. Here the power decay
rate α is fixed to 3 and the rates are plotted as a function of the SNR for a user at
the edge of the cell, c.f. (5.21). In the hexagonal cellular system, universal reuse is
clearly preferred at all ranges of SNR. On the other hand, in a linear cellular
system, universal reuse and a reuse of 1/2 have comparable performance and if
the operating SNR value is larger than a threshold (10 dB in Figure 5.7), then it
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d

Figure 5.6: A linear cellular system with base stations along a line (representing a
highway).

pays to reuse, i.e., R1/2 > R1. Otherwise, universal reuse is optimal. If this SNR
threshold is within the rule of thumb setting mentioned earlier (i.e., the gain in
rate is worth operating at this SNR), then reuse is preferred. This preference has
to be traded off with the size of the cell dictated by (5.21) due to a transmit
power constraint on the mobile device.

5.3 Linear Time-Invariant Gaussian Channels

We give three examples of channels which are closely related to the simple AWGN
channel and whose capacities can be easily computed. Moreover, optimal codes for
these channels can be constructed directly from an optimal code for the basic AWGN
channel. These channels are time-invariant, known to both the transmitter and the
receiver, and they form a bridge to the fading channels which will be studied in the
next section.

5.3.1 Single Input Multiple Output (SIMO) Channel

Consider a SIMO channel with one transmit antenna and L receive antennas:

y`[m] = h`x[m] + w`[m] ` = 1, . . . , L, (5.24)

where h` is the fixed complex channel gain from the transmit antenna to the `th re-
ceive antenna, and w`[m] is CN (0, N0) is additive Gaussian noise independent across
antennas. A sufficient statistic for detecting x[m] from y[m] := [y1[m], . . . , yL[m]]t is

ỹ[m] := h∗y[m] = ‖h‖2x[m] + h∗w[m], (5.25)
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where h := [h1, . . . , hL]t and w[m] := [w1[m], . . . , wL[m]]t. This is an AWGN channel
with received SNR P‖h‖2/N0 if P is the average energy per transmit symbol. The
capacity of this channel is therefore

C = log

(
1 +

P‖h‖2

N0

)
bits/s/Hz. (5.26)

Multiple receive antennas increase the effective SNR and provide a power gain. For
example, for L = 2 and |h1| = |h2| = 1, dual receive antennas provide a 3 dB power
gain over a single antenna system. The linear combining (5.25) maximizes the output
SNR and is sometimes called receive beamforming.

5.3.2 Multiple Input Single Output (MISO) Channel

Consider a MISO channel with L transmit antennas and a single receive antenna :

y[m] = h∗x[m] + w[m], (5.27)

where h = [h1, . . . , hL]t and h` is the (fixed) channel gain from transmit antenna `
to the receive antenna. There is a total power constraint of P across the transmit
antennas.

In the SIMO channel above, the sufficient statistic is the projection of the L-
dimensional received signal on to h: the projections in orthogonal directions contain
noise that is not helpful to the detection of the transmit signal. A natural reciprocal
transmission strategy for the MISO channel would send information only in the di-
rection of the channel vector h; information sent in any orthogonal direction will be
nulled out by the channel anyway. Therefore, by setting

x[m] =
h

‖h‖ x̃[m], (5.28)

the MISO channel is reduced to the scalar AWGN channel:

y[m] = ‖h‖x̃[m] + w[m], (5.29)

with a power constraint P on the scalar input. The capacity of this scalar channel is

log

(
1 +

P‖h‖2

N0

)
bits/s/Hz. (5.30)

Can one do better than this scheme? Any reliable code for the MISO channel
can be used as a reliable code for the scalar AWGN channel y[m] = x[m] + w[m]: if
{Xi} are the transmitted L × N (space-time) code matrices for the MISO channel,
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then the received 1 × N vectors {h∗Xi} form a code for the scalar AWGN channel.
Hence, the rate achievable by a reliable code for the MISO channel must be at most
the capacity of a scalar AWGN channel with the same received SNR. Exercise 5.11
shows that the received SNR P‖h‖2/N0 of the transmission strategy above is in fact
the largest possible SNR given the transmit power constraint of P . Any other scheme
has a lower received SNR and hence its reliable rate must be less than (5.30), the rate
achieved by the proposed transmission strategy. We conclude that the capacity of the
MISO channel is indeed

C = log

(
1 +

P‖h‖2

N0

)
bits/s/Hz. (5.31)

Intuitively, the transmission strategy maximizes the received SNR by having the
received signals from the various transmit antennas add up in-phase (coherently) and
by allocating more power to the transmit antenna with the better gain. This strategy,
“aligning the transmit signal in the direction of the transmit antenna array pattern”, is
called transmit beamforming. Through beamforming, the MISO channel is converted
into a scalar AWGN channel and thus any code which is optimal for the AWGN channel
can be used directly.

In both the SIMO and the MISO examples the benefit from having multiple an-
tennas is a power gain. To get a gain in degrees of freedom, one has to use both
multiple transmit and multiple receive antennas (MIMO). We will study this in depth
in Chapter 7.

5.3.3 Frequency-Selective Channel

Transformation to a Parallel Channel

Consider a time-invariant L-tap frequency-selective AWGN channel:

y[m] =
L−1∑

`=0

h`x[m− `] + w[m], (5.32)

with an average power constraint P on each input symbol. In Section 3.4.4, we saw that
the frequency-selective channel can be converted into Nc independent sub-carriers by
adding a cyclic prefix of length L−1 to a data vector of length Nc, c.f. (3.137). Suppose
this operation is repeated over blocks of data symbols (of length Nc each, along with
the corresponding cyclic prefix of length L− 1); see Figure 5.9. Then communication
over the ith OFDM block can be written as:

ỹn[i] = h̃nd̃n[i] + w̃n[i] n = 0, 1, . . . , Nc − 1. (5.33)
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Figure 5.9: A coded OFDM system. Information bits are coded and then sent over
the frequency-selective channel via OFDM modulation. Each channel use corresponds
to an OFDM block. Coding can be done across different OFDM blocks as well as over
different sub-carriers.

Here,

d̃[i] := [d̃0[i], . . . d̃Nc−1[i]]
t, (5.34)

w̃[i] := [w̃0[i], . . . w̃Nc−1[i]]
t, (5.35)

ỹ[i] := [ỹ0[i], . . . ỹNc−1[i]]
t (5.36)

are the DFTs of the input, the noise and the output of the ith OFDM block respectively.
h̃ is the DFT of the channel scaled by

√
Nc (c.f. (3.138)). Since the overhead in the

cyclic prefix relative to the block length Nc can be made arbitrarily small by choosing
Nc large, the capacity of the original frequency-selective channel is the same as the
capacity of this transformed channel as Nc →∞.

The transformed channel (5.33) can be viewed as a collection of sub-channels, one
for each sub-carrier n. Each of the sub-channels is an AWGN channel. The transformed
noise w̃[i] is distributed as CN (0, N0I), so the noise is CN (0, N0) in each of the sub-
channels and, moreover, the noise is independent across sub-channels. The power
constraint on the input symbols in time translates to one on the data symbols on the
sub-channels (Parseval theorem for DFTs):

‖d̃[i]‖2 ≤ NcP. (5.37)

In information theory jargon, a channel which consists of a set of non-interfering
sub-channels, each of which is corrupted by independent noise, is called a parallel
channel. Thus, the transformed channel here is a parallel AWGN channel, with a total
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Figure 5.10: Coding independently over each of the sub-carriers. This architecture,
with appropriate power and rate allocations, achieves the capacity of the frequency-
selective channel.

power constraint across the sub-channels. A natural strategy for reliable communica-
tion over the parallel AWGN channel is illustrated in Figure 5.10. We allocate power
to each sub-channel, Pn to the nth sub-channel, such that the total power constraint
is met. Then, a separate capacity-achieving AWGN code is used to communicate over
each of the sub-channels. The maximum rate of reliable communication using this
scheme is

Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2
N0

)
bits/OFDM symbol. (5.38)

Further, the power allocation can be chosen appropriately, so as to maximize the rate
in (5.38). The “optimal power allocation”, thus, is the solution to the optimization
problem:

CNc := max
P0,...,PNc−1

Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2
N0

)
, (5.39)

subject to
Nc−1∑
n=0

Pn = NcP, Pn ≥ 0, n = 0, . . . , Nc − 1. (5.40)
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Waterfilling Power Allocation

The optimal power allocation can be explicitly found. The objective function in (5.39)
is jointly concave in the powers and this optimization problem can be solved by La-
grangian methods. Consider the Lagrangian

L(λ, P0, . . . , PNc−1) :=
Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2
N0

)
− λ

Nc−1∑
n=0

Pn, (5.41)

where λ is the Lagrange multiplier. The Kuhn-Tucker condition for the optimality of
a power allocation is

∂L
∂Pn

{
= 0 if Pn > 0
≤ 0 if Pn = 0.

(5.42)

Define x+ := max(x, 0). The power allocation

P ∗
n =

(
1

λ
− N0

|h̃n|2
)+

, (5.43)

satisfies the conditions in (5.42) and is therefore optimal, with the Lagrange multiplier
λ chosen such that the power constraint is met:

1

Nc

Nc−1∑
n=0

(
1

λ
− N0

|h̃n|2
)+

= P. (5.44)

Figure 5.11 gives a pictorial view of the optimal power allocation strategy for the
OFDM system. Think of the values N0/|h̃n|2 plotted as a function of the sub-carrier
index n = 0, . . . , Nc − 1, as tracing out the bottom of a vessel. If P units of water per
sub-carrier are filled into the vessel, the depth of the water at sub-carrier n is the power
allocated to that sub-carrier, and 1/λ is the height of the water surface. Thus, this
optimal strategy is called waterfilling or waterpouring. Note that there are some sub-
carriers where the bottom of the vessel is above the water and no power is allocated
to them. In these sub-carriers, the channel is too poor for it to be worthwhile to
transmit information. In general, the transmitter allocates more power to the stronger
sub-carriers, taking advantage of the better channel conditions, and less or even no
power to the weaker ones.

Observe that

h̃n =
L−1∑

`=0

h` exp

(
−j2π`n

Nc

)
, (5.45)

is the discrete-time Fourier transform H(f) evaluated at f = nW/Nc, where (c.f.
(2.20))

H(f) :=
L−1∑

`=0

h` exp

(
−j2π`f

W

)
, f ∈ [0,W ] . (5.46)
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Figure 5.11: Waterfilling power allocation over the Nc sub-carriers.

As the number of sub-carriers Nc grows, the frequency width W/Nc of the sub-carriers
goes to zero and they represent a finer and finer sampling of the continuous spectrum.
So, the optimal power allocation converges to

P ∗(f) =

(
1

λ
− N0

|H(f)|2
)+

, (5.47)

where the constant λ satisfies (c.f. (5.44))

∫ W

0

P ∗(f) df = P. (5.48)

The power allocation can be interpreted as waterfilling over frequency (see Fig-
ure 5.12). With Nc sub-carriers, the largest reliable communication rate with indepen-
dent coding is CNc bits per OFDM symbol or CNc/Nc bits/s/Hz (CNc given in (5.39)).
So as Nc →∞, the WCNc/Nc converges to

C =

∫ W

0

log

(
1 +

P ∗(f)|H(f)|2
N0

)
df bits/s. (5.49)
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Figure 5.12: Waterfilling power allocation over the frequency spectrum of the 2-tap
channel (high pass filter): h[0] = 1 and h[1] = 0.5.

Does Coding Across Sub-carriers Help?

So far we have considered a very simple scheme: coding independently over each of the
sub-carriers. By coding jointly across the sub-carriers, presumably better performance
can be achieved. Indeed, over a finite block length, coding jointly over the sub-carriers
yields a smaller error probability than can be achieved by coding separately over the
sub-carriers at the same rate. However, somewhat surprisingly, the capacity of the
parallel channel is equal to the largest reliable rate of communication with independent
coding within each sub-carrier. In other words, if the block length is very large then
coding jointly over the sub-carriers cannot increase the rate of reliable communication
any more than what can be achieved simply by allocating power and rate over the
sub-carriers but not coding across the sub-carriers. So indeed (5.49) is the capacity of
the time-invariant frequency-selective channel.

To get some insight into why coding across the sub-carriers with large block length
does not improve capacity, we turn to a geometric view. Consider a code, with block
length NcN symbols, coding over all Nc of the sub-carriers with N symbols from each
sub-carrier. In high dimensions, i.e., N À 1, the NcN -dimensional received vector af-
ter passing through the parallel channel (5.33) lives in an ellipsoid, with different axes
stretched and shrunk by the different channel gains h̃n’s. Figure 5.13 provides an illus-
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(a) (b)

Figure 5.13: The received vectors lie in an ellipsoid. Here there are Nc = 2 sub-carriers
and each axis represents N symbols within a sub-carrier.

tration and Exercise 5.12 the justification. The volume of the ellipsoid is proportional
to

Nc−1∏
n=0

(
|h̃n|2Pn + N0

)N

, (5.50)

see Exercise 5.12. The volume of the noise sphere is, as in Section 5.1.2, proportional
to NNcN

0 . The maximum number of distinguishable codewords that can be packed in
the ellipsoid is therefore

Nc−1∏
n=0

(
1 +

Pn|h̃n|2
N0

)N

. (5.51)

The maximum reliable rate of communication is

1

N
log

Nc−1∏
n=0

(
1 +

Pn|h̃n|2
N0

)N

=
Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2
N0

)
bits/OFDM symbol.

(5.52)
This is precisely the rate (5.38) achieved by separate coding and this suggests that
coding across sub-carriers can do no better. While this sphere-packing argument is
heuristic, Appendix B.6 gives a rigorous derivation from information theoretic first
principles.

Even though coding across sub-carriers cannot improve the reliable rate of commu-
nication, it can still improve the error probability for a given data rate. Thus, coding
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across sub-carriers can still be useful in practice, particularly when the block length
for each sub-carrier is small, in which case the coding effectively increases the overall
block length.

In this section we have used parallel channels to model a frequency-selective channel,
but parallel channels will be seen to be very useful in modeling many other wireless
communication scenarios as well. Sphere-packing pictures will be used to give intuition
about the capacity of such channels.

5.4 Capacity of Fading Channels

The basic capacity results developed in the last few sections are now applied to analyze
the limits to communication over wireless fading channels.

Consider the complex baseband representation of a flat fading channel:

y[m] = h[m]x[m] + w[m], (5.53)

where {h[m]} is the fading process and {w[m]} is i.i.d. CN (0, N0}. As before, the
symbol rate is W Hz, there is a power constraint of P Joules/symbol, and E[|h[m]|2] = 1
is assumed for normalization. Hence SNR := P/N0 is the average received SNR.

In Section 3.1.2, we analyzed the performance of uncoded transmission for this
channel. What is the ultimate performance limit when information can be coded over
a sequence of symbols? To answer this question, we make the simplifying assumption
that the receiver can perfectly track the fading process, i.e., coherent reception. As we
discussed in Chapter 2, the coherence time of typical wireless channels is of the order
of 100s of symbols and so the channel varies slowly relative to the symbol rate and can
be estimated by say a pilot signal. For now, the transmitter is not assumed to have any
knowledge of the channel realization other than the statistical characterization. The
situation when the transmitter has access to the channel realizations will be studied
in Section 5.4.6.

5.4.1 Slow Fading Channel

Let us first look at the situation when the channel gain is random but remains constant
for all time, i.e., h[m] = h for all m. This models the slow fading situation where the
delay requirement is short compared to the channel coherence time (c.f. Table 2.2).
This is also called the quasi-static scenario.

Conditional on a realization of the channel h, this is an AWGN channel with re-
ceived signal-to-noise ratio |h|2SNR. The maximum rate of reliable communication
supported by this channel is log (1 + |h|2SNR) bits/s/Hz. This quantity is a function
of the random channel gain h and is therefore random (see Figure 5.14). Now suppose
the transmitter encodes data at a rate R bits/s/Hz. If the channel realization h is such
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Figure 5.14: Density of log(1 + |h|2SNR), for Rayleigh fading and SNR = 0 dB. For
any target rate R, there is a non-zero outage probability.

that log (1 + |h|2SNR) < R, then whatever code that was used by the transmitter, the
decoding error probability cannot be made arbitrarily small. The system is said to be
in outage, and the outage probability is

pout(R) := P
{
log

(
1 + |h|2SNR

)
< R

}
. (5.54)

Thus, the best the transmitter can do is to encode the data assuming that the channel
gain is strong enough to support the desired rate R. Reliable communication can be
achieved whenever that happens, and outage occurs otherwise.

A more suggestive interpretation is to think of the channel as allowing log(1 +
|h|2SNR) bits/s/Hz of information through when the fading gain is h. Reliable decoding
is possible as long as this amount of information exceeds the target rate.

For Rayleigh fading (i.e., h is CN (0, 1)), the outage probability is

pout(R) = 1− exp

(−(2R − 1)

SNR

)
. (5.55)
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At high SNR,

pout(R) ≈ (2R − 1)

SNR
, (5.56)

and the outage probability decays as 1/SNR. Recall that when we discussed uncoded
transmission in Section 3.1.2, the detection error probability also decays like 1/SNR.
Thus, we see that coding cannot significantly improve the error probability in a slow
fading scenario. The reason is that while coding can average out the Gaussian white
noise, it cannot average out the channel fade, which affects all the coded symbols.
Thus, deep fade, which is the typical error event in the uncoded case, is also the
typical error event in the coded case.

There is a conceptual difference between the AWGN channel and the slow fading
channel. In the former, one can send data at a positive rate (in fact, any rate less
than C) while making the error probability as small as desired. This cannot be done
for the slow fading channel as long as the probability the channel is in deep fade is
nonzero. Thus, the capacity of the slow fading channel in the strict sense is zero.
An alternative performance measure is the ε-outage capacity Cε. This is the largest
rate of transmission R such that the outage probability pout(R) is less than ε. Solving
pout(R) = ε in (5.54) yields

Cε = log
(
1 + F−1(1− ε) SNR

)
bits/s/Hz, (5.57)

where F is the complementary cumulative distribution function of |h|2, i.e., F (x) :=
P {|h|2 > x}.

In Section 3.1.2, we looked at uncoded transmission and there it was natural to
focus only on the high SNR regime; at low SNR, the error probability of uncoded
transmission is very poor. On the other hand, for coded systems, it makes sense to
consider both the high and the low SNR regimes. For example, the CDMA system
in Chapter 4 operates at very low SINR and uses very low-rate orthogonal coding.
A natural question is: in which regime does fading have a more significant impact
on outage performance? To get a sense, Figure 5.15 plots the ε-outage capacity as a
function of SNR for the Rayleigh fading channel. To assess the impact of fading, the
ε-outage capacity is plotted as a fraction of the AWGN capacity at the same SNR. It
is clear that the impact is much more significant in the low SNR regime. Indeed, at
high SNR,

Cε ≈ log SNR + log
(
F−1(1− ε)

)
(5.58)

≈ Cawgn − log

(
1

F−1(1− ε)

)
, (5.59)

a constant difference irrespective of the SNR. Thus, the relative loss gets smaller at
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Figure 5.15: ε-outage capacity as a fraction of AWGN capacity under Rayleigh fading,
for ε = 0.1 and ε = 0.01.

high SNR. At low SNR, on the other hand,

Cε ≈ F−1(1− ε) SNR log2 e (5.60)

≈ F−1(1− ε) Cawgn. (5.61)

For reasonably small outage probabilities, the outage capacity is only a small fraction
of the AWGN capacity at low SNR. For Rayleigh fading, F−1(1 − ε) ≈ ε for small
ε and the impact of fading is very significant. At an outage probability of 0.01, the
outage capacity is only 1% of the AWGN capacity! Diversity has a significant effect
at high SNR (as already seen in Chapter 3), but is even more important at low SNR.
Intuitively, the impact of the randomness of the channel is in the received SNR, and the
reliable rate supported by the AWGN channel is much more sensitive to the received
SNR at low SNR than at high SNR. Exercise 5.10 elaborates this point.

5.4.2 Receive Diversity

Let us increase the diversity of the channel by having L receive antennas instead of
one. For given channel gains h := [h1, . . . , hL]t, the capacity was calculated in Section
5.3.1 to be log(1+ ‖h‖2SNR). Outage occurs whenever this is below the target rate R:

prx
out(R) := P

{
log

(
1 + ‖h‖2SNR

)
< R

}
. (5.62)
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This can be rewritten as:

pout(R) = P
{
‖h‖2 <

2R − 1

SNR

}
. (5.63)

Under independent Rayleigh fading, ‖h‖2 is a sum of the squares of 2L independent
Gaussian random variables and is distributed as Chi-square with 2L degrees of freedom.
Its density is

f(x) =
1

(L− 1)!
xL−1e−x, x ≥ 0. (5.64)

Approximating e−x by 1 for x small, we have (c.f. (3.44)),

P
{‖h‖2 < δ

} ≈ 1

L!
δL, (5.65)

for δ small. Hence at high SNR the outage probability is given by:

pout(R) ≈ (2R − 1)L

L!SNRL
. (5.66)

Comparing with (5.55), we see a diversity gain of L: the outage probability now
decays like 1/SNRL. This parallels the performance of uncoded transmission discussed
in Section 3.3.1: thus, coding cannot increase the diversity gain.

The impact of receive diversity on the ε-outage capacity is plotted in Figure 5.16.
The ε-outage capacity is given by (5.57) with F now the cumulative distribution func-
tion of ‖h‖2. Receive antennas yield a diversity gain and an L-fold power gain. To
emphasize the impact of the diversity gain, let us normalize the outage capacity Cε by
Cawgn = log(1 + LSNR). The dramatic salutary effect of diversity on outage capacity
can now be seen. At low SNR and small ε, (5.61) and (5.65) yield:

Cε ≈ F−1(1− ε) SNR log2 e (5.67)

≈ (L!)
1
L (ε)

1
L SNR log2 e bits/s/Hz (5.68)

and the loss with respect to the AWGN capacity is by a factor of ε1/L rather than by
ε when there is no diversity. At ε = 0.01 and L = 2, the outage capacity is increased
to 14% of the AWGN capacity (as opposed to 1% for L = 1).

5.4.3 Transmit Diversity

Now suppose there are L transmit antennas but only one receive antenna, with a total
power constraint of P . From Section 5.3.2, the capacity of the channel conditioned on
the channel gains h = [h1, . . . , hL]t is log(1+ ‖h‖2SNR). Following the approach taken
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Figure 5.16: ε-outage capacity with L-fold receive diversity, as a fraction of the AWGN
capacity log(1 + LSNR), for ε = 0.01 and different L.

in the SISO and the SIMO cases, one is tempted to say that the outage probability for
a fixed rate R is

pfull−csi
out (R) = P

{
log

(
1 + ‖h‖2SNR

)
< R

}
, (5.69)

which would have been exactly the same as the corresponding SIMO system with
1 transmit and L receive antennas. However, this outage performance is achievable
only if the transmitter knew the phases and magnitudes of the gains h so that it can
perform transmit beamforming, i.e., allocate more power to the stronger antennas and
arrange the signals from the different antennas to align in phase at the receiver. When
the transmitter does not know the channel gains h, it has to use a fixed transmission
strategy that does not depend on h. (This subtlety does not arise in either the SISO
or the SIMO case because the transmitter need not know the channel realization to
achieve the capacity for those channels.) How much performance loss does not knowing
the channel entail?

Alamouti Scheme Revisited

For concreteness, let us focus on L = 2 (dual transmit antennas). In this situation, we
can use the Alamouti scheme which extracts transmit diversity without transmitter
channel knowledge (introduced in Section 3.3.2). Recall from (3.76) that under this
scheme, both the transmitted symbols u1, u2 over a block of 2 symbol times see an
equivalent scalar fading channel with gain ‖h‖ and additive noise CN (0, N0) (Figure
5.17(b)). The energy in the symbols u1 and u2 is P/2. Conditioned on h1, h2, the
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capacity of the equivalent scalar channel is

log

(
1 + ‖h‖2 SNR

2

)
bits/s/Hz. (5.70)

Thus, if we now consider successive blocks and use an AWGN capacity-achieving code
of rate R over each of the streams {u1[m]}, and {u2[m]} separately, then the outage
probability of each stream is

pAla
out(R) = P

{
log

(
1 + ‖h‖2 SNR

2

)
< R

}
. (5.71)

Compared to (5.69) when the transmitter knows the channel, Alamouti scheme
performs strictly worse: the loss is 3 dB in the received SNR. This can be explained in
terms of the efficiency with which energy is transferred to the receiver. In the Alamouti
scheme, the symbols sent at the two transmit antennas in each time are independent
since they come from two separately coded streams. Each of them has power P/2.
Hence, the total SNR at the receive antenna at any given time is

(|h1|2 + |h2|2
) SNR

2
. (5.72)

In contrast, when the transmitter knows the channel, the symbols transmitted at
the two antennas are completely correlated in such a way that the signals add up in
phase at the receive antenna and the SNR is now

(|h1|2 + |h2|2
)

SNR,

a 3 dB power gain over the independent case.6 Intuitively, there is a power loss because,
without channel knowledge, the transmitter is sending signals which have energy in all
directions instead of focusing the energy in a specific direction. In fact, the Alamouti
scheme radiates energy in a perfectly isotropic manner: the signal transmitted from
the two antennas has the same energy when projected in any direction (Exercise 5.14).

A scheme radiates energy isotropically whenever the signals transmitted from the
antennas are uncorrelated and have equal power (Exercise 5.14). Although the Alam-
outi scheme does not perform as well as transmit beamforming, it is optimal in one
important sense: it has the best outage probability among all schemes which radiates
energy isotropically. Indeed, any such scheme must have a received SNR equal to
(5.72) and hence its outage performance must be no better than that of a scalar slow
fading AWGN channel with that received SNR. But this is precisely the performance
achieved by the Alamouti scheme.

6The addition of two in-phase signals of equal power yields a sum signal that has double the
amplitude and 4 times the power of each of the signals. In contrast, the addition of two independent
signals of equal power only doubles the power.
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Can one do even better by radiating energy in a non-isotropic manner (but in a way
that does not depend on the random channel gains)? In other words, can one improve
the outage probability by correlating the signals from the transmit antennas and/or
allocating unequal powers on the antennas? The answer depends of course on the
distribution of the gains h1, h2. If h1, h2 are i.i.d. Rayleigh, Exercise 5.15 shows, using
symmetry considerations, that correlation never improves the outage performance, but
it is not necessarily optimal to use all the transmit antennas. Exercise 5.16 shows that
uniform power allocation across the antennas is always optimal, but the number of
antennas used depends on the operating SNR. For reasonable values of target outage
probabilities, it is optimal to use all the antennas. This implies that in most cases of
interest, the Alamouti scheme has the optimal outage performance for the i.i.d. Rayleigh
fading channel.

What about for L > 2 transmit antennas? An information theoretic argument in
Appendix B.8 shows (in a more general framework) that

pout(R) = P
{

log

(
1 + ‖h‖2 SNR

L

)
< R

}
(5.73)

is achievable. This is the natural generalization of (5.71) and corresponds again to
isotropic transmission of energy from the antennas. Again, Exercises 5.15 and 5.16
show that this strategy is optimal for the i.i.d. Rayleigh fading channel and for most
target outage probabilities of interest. However, there is no natural generalization of
the Alamouti scheme for larger number of transmit antennas (c.f. Exercise 3.17). We
will return to the problem of outage-optimal code design for L > 2 in Chapter 9.

The outage performance of the SIMO and the MISO channels with i.i.d. Rayleigh
gains are plotted in Figure 5.18 for different number of transmit antennas. The dif-
ference in outage performance clearly outlines the asymmetry between receive and
transmit antennas caused by the transmitter lacking knowledge of the channel.

Sub-optimal Schemes: Repetition Coding

In the above, the Alamouti scheme is viewed as an inner code which converts the MISO
channel into a scalar channel. The outage performance (5.71) is achieved when the
Alamouti scheme is used in conjunction with an outer code which is capacity-achieving
for the scalar AWGN channel. Other space-time schemes can be similarly used as
inner codes and their outage probability analyzed and compared to the channel outage
performance.

Here we consider the simplest example, the repetition scheme: the same symbol is
transmitted over the L different antennas over L symbol periods, using only one an-
tenna at a time to transmit. The receiver does maximal ratio combining to demodulate
each symbol. As a result, each symbol sees an equivalent scalar fading channel with
gain ‖h‖ and noise variance N0 (Figure 5.17(a)). Since only one symbol is transmitted
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The outage probability of the scheme is the outage probability of the equivalent chan-
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every L symbol periods, a rate of LR bits/symbol is required on this scalar channel to
achieve a target rate of R bits/symbol on the original channel. The outage probability
of this scheme, when combined with an outer capacity-achieving code, is therefore:

prep
out(R) = P

{
1

L
log

(
1 + ‖h‖2SNR

)
< R

}
. (5.74)

Compared to the outage probability (5.73) of the channel, this scheme is suboptimal:
the SNR has to be increased by a factor of

L(2R − 1)

2LR − 1
, (5.75)

to achieve the same outage probability for the same target rate R. Equivalently, the
reciprocal of this ratio can be interpreted as the maximum achievable coding gain over
the simple repetition scheme. For a fixed R, the performance loss increases with L:
the repetition scheme becomes increasingly inefficient in using the degrees of freedom
of the channel. For a fixed L, the performance loss increases with the target rate R.
On the other hand, for R small, 2R − 1 ≈ R ln 2 and 2RL − 1 ≈ RL ln 2, so

L(2R − 1)

2LR − 1
≈ LR ln 2

LR ln 2
= 1, (5.76)

and there is hardly any loss in performance. Thus, while the repetition scheme is very
sub-optimal in the high SNR regime where the target rate can be high, it is nearly
optimal in the low SNR regime. This is not surprising: the system is degree-of-freedom
limited in the high SNR regime and the inefficiency of the repetition scheme is felt more
there.

Summary 5.2 Transmit and Receive Diversity

With receive diversity, the outage probability is:

prx
out(R) := P

{
log

(
1 + ‖h‖2SNR

)
< R

}
. (5.77)

With transmit diversity but no channel knowledge at the transmitter, the outage
probability is:

ptx
out(R) := P

{
log

(
1 + ‖h‖2 SNR

L

)
< R

}
, (5.78)

a loss of a factor of L in the received SNR because the transmitter has no
knowledge of the channel direction and is unable to beamform in the specific
channel direction.
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With two transmit antennas, capacity-achieving AWGN codes in conjunction with
the Alamouti scheme achieve the outage probability.

5.4.4 Time and Frequency Diversity

Outage Performance of Parallel Channels

Another way to increase channel diversity is to exploit the time-variation of the chan-
nel: in addition to coding over symbols within one coherence period, one can code over
symbols from L such periods. Note that this is a generalization of the schemes consid-
ered in Section 3.2, which take one symbol from each coherence period. When coding
can be performed over many symbols from each period, as well as between symbols
from different periods, what is the performance limit?

One can model this situation using the idea of parallel channels introduced in
Section 5.3.3: each of the sub-channels, ` = 1, . . . , L, represents a coherence period of
duration Tc symbols:

y`[m] = h`x`[m] + w`[m], m = 1, . . . , Tc. (5.79)

Here h` is the (non-varying) channel gain during the `th coherence period. It is assumed
that the coherence time Tc is large such that one can code over many symbols in each
of the sub-channels. An average transmit power constraint of P on the original channel
translates into a total power constraint of LP on the parallel channel.

For a given realization of the channel, we have already seen in Section 5.3.3 that
the optimal power allocation across the sub-channels is waterfilling. However, since
the transmitter does not know what the channel gains are, a reasonable strategy is to
allocate equal power P to each of the sub-channels. In Section 5.3.3, it was mentioned
that the maximum rate of reliable communication given the fading gains h`’s is

L∑

`=1

log
(
1 + |h`|2SNR

)
bits/s/Hz, (5.80)

where SNR = P/N0. Hence, if the target rate is R bits/s/Hz per sub-channel, then
outage occurs when

L∑

`=1

log
(
1 + |h`|2SNR

)
< LR. (5.81)

Can one design a code to communicate reliably whenever

L∑

`=1

log
(
1 + |h`|2SNR

)
> LR ? (5.82)
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If so, an L-fold diversity is achieved for i.i.d. Rayleigh fading: outage occurs only if
each of the terms in the sum

∑L
`=1 log(1 + |h`|2SNR) is small.

The term log (1 + |h`|2SNR) is the capacity of an AWGN channel with received SNR
equal to |h`|2SNR. Hence, a seemingly straightforward strategy, which was already used
in Section 5.3.3, would be to use a capacity-achieving AWGN code with rate

log(1 + |h`|2SNR)

for the `th coherence period, yielding an average rate of

1

L

L∑

`=1

log(1 + |h`|2SNR) bits/s/Hz

and meeting the target rate whenever condition (5.82) holds. The caveat is that this
strategy requires the transmitter to know in advance the channel state during each of
the coherence periods so that it can adapt the rate it allocates to each period. This
knowledge is not available. However, it turns out that such transmitter adaptation
is unnecessary: information theory guarantees that one can design a fixed code that
communicates reliably at rate R whenever the condition (5.82) is met. Hence, the
outage probability of the time-diversity channel is precisely

pout(R) = P

{
1

L

L∑

`=1

log
(
1 + |h`|2SNR

)
< R

}
. (5.83)

Even though this outage performance can be achieved with or without transmitter
knowledge of the channel, the coding strategy is vastly different. With transmitter
knowledge of the channel, dynamic rate allocation and separate coding for each sub-
channel suffices. Without transmitter knowledge, separate coding would mean using a
fixed-rate code for each sub-channel and poor diversity results: errors occur whenever
one of the sub-channels is bad. Indeed, coding across the different coherence periods
is now necessary: if the channel is in deep fade during one of the coherence periods,
the information bits can still be protected if the channel is strong in other periods.

A Geometric View

Figure 5.19 gives a geometric view of our discussion so far. Consider a code with rate
R, coding over all the sub-channels and over one coherence time-interval; the block
length is LTc symbols. The codewords lie in an LTc-dimensional sphere. The received
LTc-dimensional signal lives in an ellipsoid, with (L groups of) different axes stretched
and shrunk by the different sub-channel gains (c.f. Section 5.3.3). The ellipsoid is
a function of the sub-channel gains, and hence random. The no-outage condition
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Figure 5.19: Effect of the fading gains on codes for the parallel channel. Here there are
L = 2 sub-channels and each axis represents Tc dimensions within a sub-channel. (a)
Coding across the sub-channels. The code works as long as the volume of the ellipsoid
is big enough. This requires good codeword separation in both the sub-channels. (b)
Separate, non-adaptive code for each sub-channel. Shrinking of one of the axis is
enough to cause confusion between the codewords.
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(5.82) has a geometric interpretation: it says that the volume of the ellipsoid is large
enough to contain 2LTcR noise spheres, one for each codeword. (This was already
seen in the sphere-packing argument in Section 5.3.3.) An outage-optimal code is
one that communicates reliably whenever the random ellipsoid is at least this large.
The subtlety here is that the same code must work for all such ellipsoids. Since the
shrinking can occur in any of the L groups of dimensions, a robust code needs to
have the property that the codewords are simultaneously well-separated in each of the
sub-channels (Figure 5.19(a)). A set of independent codes for each sub-channel is not
robust: errors will be made when even only one of the sub-channels fades (Figure
5.19(b)).

We have already seen, in the simple context of Section 3.2, codes for the parallel
channel which are designed to be well-separated in all the sub-channels. For example,
the repetition code and the rotation code in Figure 3.8 have the property that the
codewords are separated in both the sub-channels (here Tc = 1 symbol and L = 2
sub-channels). More generally, the code design criterion of maximizing the product
distance for all the pairs of codewords naturally favors codes that satisfy this property.
Coding over long blocks affords a larger coding gain; information theory guarantees
the existence of codes with large enough coding gain to achieve the outage probability
in (5.83).

To achieve the outage probability, one wants to design a code that communicates
reliably over every parallel channel that is not in outage (i.e., parallel channels that
satisfy (5.82)). In information theory jargon, a code that communicates reliably for a
class of channels is said to be universal for that class. In this language, we are looking
for universal codes for parallel channels that are not in outage. In the slow fading
scalar channel without diversity (L = 1), this problem is the same as the code design
problem for a specific channel. This is because all scalar channels are ordered by their
received SNR; hence a code that works for the channel that is just strong enough to
support the target rate will automatically work for all better channels. For parallel
channels, each channel is described by a vector of channel gains and there is no natural
ordering of channels; the universal code design problem is now non-trivial. In Chapter
9, a universal code design criterion will be developed to construct universal codes that
come close to achieving the outage probability.

Extensions

In the above development, a uniform power allocation across the sub-channels is as-
sumed. Instead, if we choose to allocate power P` to sub-channel `, then the outage
probability (5.83) generalizes to

pout(R) = P

{
L∑

`=1

log
(
1 + |h`|2SNR`

)
< LR

}
, (5.84)
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where SNR` = P`/N0. Exercise 5.17 shows that for the i.i.d. Rayleigh fading model,
a non-uniform power allocation which does not depend on the channel gains cannot
improve the outage performance.

The parallel channel is used to model time diversity, but it can model frequency
diversity as well. By using the usual OFDM transformation, a slow frequency-selective
fading channel can be converted into a set of parallel sub-channels, one for each sub-
carrier. This allows us to characterize the outage capacity of such channels as well (see
Exercise 5.22).

We summarize the key idea in this section using more suggestive language.

Summary 5.3 Outage for Parallel Channels

Outage probability for a parallel channel with L sub-channels and the `th channel
having random gain h`:

pout(R) = P

{
1

L

L∑

`=1

log
(
1 + |h`|2SNR

)
< R

}
, (5.85)

where R is in bits/s/Hz per sub-channel.

The `th sub-channel allows log(1 + |h`|2SNR) bits of information per symbol
through. Reliable decoding can be achieved as long as the total amount of
information allowed through exceeds the target rate.

5.4.5 Fast Fading Channel

In the slow fading scenario, the channel remains constant over the transmission dura-
tion of the codeword. If the codeword length spans over several coherence periods, then
time diversity is achieved and the outage probability improves. When the codeword
length spans many coherence periods, we are in the so-called fast fading regime. How
does one characterize the performance limit of such a fast fading channel?

Capacity Derivation

Let us first consider a very simple model of a fast fading channel:

y[m] = h[m]x[m] + w[m], (5.86)

where h[m] = h` remains constant over the `th coherence period of Tc symbols and is
i.i.d. across different coherence periods. This is the so-called block fading model; see
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Figure 5.20(a). Suppose coding is done over L such coherence periods. If Tc À 1, we
can effectively model this as L parallel sub-channels which fade independently. The
outage probability from (5.83) is

pout(R) = P

{
1

L

L∑

`=1

log
(
1 + |h`|2SNR

)
< R

}
. (5.87)

For finite L, the quantity

1

L

L∑

`=1

log
(
1 + |h`|2SNR

)

is random and there is a non-zero probability that it will drop below any target rate
R. Thus, there is no meaningful notion of capacity in the sense of maximum rate
of arbitrarily reliable communication and we have to resort to the notion of outage.
However, as L →∞, the law of large numbers says that

1

L

L∑

`=1

log
(
1 + |h`|2SNR

) → E
[
log(1 + |h|2SNR)

]
. (5.88)

Now we can average over many independent fades of the channel by coding over a
large number of coherence time intervals and a reliable rate of communication of
E [log(1 + |h|2SNR)] can indeed be achieved. In this situation, it is now meaningful
to assign a positive capacity to the fast fading channel:

C = E
[
log(1 + |h|2SNR)

]
bits/s/Hz (5.89)

Impact of Interleaving

In the above, we considered codes with block lengths LTc symbols, where L is the
number of coherence periods and Tc is the number of symbols in each coherence block.
To approach the capacity of the fast fading channel, L has to be large. Since Tc is
typically also a large number, the overall block length may becomes prohibitively large
for implementation. In practice, shorter codes are used but they are interleaved so
that the symbols of each codeword are spaced far apart in time and lie in different
coherence periods. (Such interleaving is used for example in the IS-95 CDMA system,
as illustrated in Figure 4.4.) Does interleaving impart a performance loss in terms of
capacity?

Going back to the channel model (5.86), ideal interleaving can be modeled by
assuming the h[m]’s are now i.i.d. i.e., successive interleaved symbols go through
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Figure 5.20: (a) Typical trajectory of the channel strength as a function of symbol
time under a block fading model. (b) Typical trajectory of the channel strength after
interleaving. One can equally think of these plots as rates of flow of information allowed
through the channel over time.

independent fades. (See Figure 5.20(b).) In Appendix B.7.1, it is shown that for a
large block length N and a given realization of the fading gains h[1], . . . , h[N ], the
maximum achievable rate through this interleaved channel is

1

N

N∑
m=1

log
(
1 + |h[m]|2SNR

)
bits/s/Hz. (5.90)

which, by the law of large numbers,

1

N

N∑
m=1

log
(
1 + |h[m]|2SNR

) → E
[
log(1 + |h|2SNR)

]
(5.91)

as N → ∞, for almost all realizations of the random channel gains. Thus, even
with interleaving, the capacity (5.89) of the fast fading channel can be achieved. The
important benefit of interleaving is that this capacity can now be achieved with a much
shorter block length.

A closer examination of the above argument reveals why the capacity under inter-
leaving (with {h[m]} i.i.d.) and the capacity of the original block fading model (with
{h[m]} block-wise constant) are the same: the convergence in (5.91) holds for both
fading processes, allowing the same long-term average rate through the channel. If
one thinks of log(1 + |h[m]|2SNR) as the rate of information flow allowed through the
channel at time m, the only difference is that in the block fading model, the rate of
information flow is constant over each coherence period, while in the interleaved model,
the rate varies from symbol to symbol. See Figure 5.20 again.

This observation suggests that the capacity result (5.89) holds for a much broader
class of fading processes. Only the convergence in (5.91) is needed. This says that
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the time average should converge to the same limit for almost all realizations of the
fading process, a concept called ergodicity, and it holds in many models. For example,
it holds for the Gaussian fading model mentioned in Section 2.4. What matters from
the point of view of capacity is only the long-term time average rate of flow allowed,
and not on how fast that rate fluctuates over time.

Discussion

In the earlier parts of the chapter, we have focused exclusively on deriving the capac-
ities of time-invariant channels, particularly the AWGN channel. It was just shown
that time-varying fading channels have a well-defined capacity as well. However, the
operational significance of capacity in the two cases is quite different. In the AWGN
channel, information flows at a constant rate of log(1 + SNR) through the channel,
and reliable communication can take place as long as the coding block length is large
enough to average out the white Gaussian noise. The resulting coding/decoding delay
is typically much smaller than the delay requirement of applications and this is not a
big concern. In the fading channel, on the other hand, information flows at a variable
rate of log(1 + |h[m]|2SNR) due to variations of the channel strength; the coding block
length now needs to be large enough to average out both the Gaussian noise and the
fluctuations of the channel. To average out the latter, the coded symbols must span
many coherence time periods, and this coding/decoding delay can be quite significant.
Interleaving reduces the block length but not the coding/decoding delay: one still
needs to wait many coherence periods before the bits get decoded. For applications
which have a tight delay constraint relative to the channel coherence time, this notion
of capacity is not meaningful, and one will suffer from outage.

The capacity expression (5.89) has the following interpretation. Consider a family of
codes, one for each possible fading state h, and the code for state h achieves the capacity
log(1 + |h|2SNR) bits/s/Hz of the AWGN channel at the corresponding received SNR
level. From these codes, we can build a variable-rate coding scheme which adaptively
selects a code of appropriate rate depending on what the current channel condition is.
This scheme would then have an average throughput of E[log(1+ |h|2SNR)] bits/s/Hz.
For this variable-rate scheme to work, however, the transmitter needs to know the
current channel state. The significance of the fast fading capacity result (5.89) is that
one can communicate reliably at this rate even when the transmitter is blind and
cannot track the channel.7

The nature of the information theoretic result that guarantees a code which achieves
the capacity of the fast fading channel is similar to what we have already seen in the
outage performance of the slow fading channel (c.f. (5.83)). In fact, information theory
guarantees a fixed code with the rate in (5.89) is universal for the class of ergodic fading

7Note however that if the transmitter can really track the channel, one can do even better than
this rate. We will see this next in Section 5.4.6.
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processes (i.e., (5.91) is satisfied with the same limiting value). This class of processes
includes the AWGN channel (where the channel is fixed for all time) and, at the other
extreme, the interleaved fast fading channel (where the channel varies i.i.d. over time).
This suggests that capacity-achieving AWGN channel codes (c.f. Discussion 5) could
be suitable for the fast fading channel as well. While this is still an active research
area, LDPC codes have been adapted successfully to the fast Rayleigh fading channel.

Performance Comparison

Let us explore a few implications of the capacity result (5.89) by comparing it with
that for the AWGN channel. The capacity of the fading channel is always less than
that of the AWGN channel with the same SNR. This follows directly from Jensen’s
inequality, which says that if f is a strictly concave function and u is any random
variable, then E[f(u)] ≤ f(E[u]), with equality if and only if u is deterministic (see
Exercise B.2). Intuitively, the gain from the times when the channel strength is above
the average cannot compensate for the loss from the times when the channel strength
is below the average. This again follows from the law of diminishing marginal return
on capacity from increasing the received power.

At low SNR, the capacity of the fading channel is

C = E[log(1 + |h|2SNR)] ≈ E[|h|2SNR] log2 e = SNR log2 e ≈ Cawgn, (5.92)

where Cawgn is the capacity of the AWGN channel and measured in bits per symbol.
Hence at low SNR the “Jensen’s loss” becomes negligible; this is because the capacity
is approximately linear in the received SNR in this regime. At high SNR,

C ≈ E[log(|h|2SNR)] = log SNR + E[log |h|2] ≈ Cawgn + E[log |h|2], (5.93)

i.e., a constant difference with the AWGN capacity at high SNR. This difference is
−0.83 bits/s/Hz for the Rayleigh fading channel. Equivalently, 2.5 dB more power is
needed in the fading case to achieve the same capacity as in the AWGN case. Figure
5.21 compares the capacity of the Rayleigh fading channel with the AWGN capacity
as a function of the SNR. The difference is not that large for the entire plotted range
of SNR’s.

5.4.6 Transmitter Side Information

So far we have assumed that only the receiver can track the channel. But let us now
consider the case when the transmitter can track the channel as well. There are several
ways in which such channel information can be obtained at the transmitter. In a TDD
(time-division duplex) system, the transmitter can exploit channel reciprocity and
make channel measurements based on the signal received along the opposite link. In
an FDD (frequency-division duplex) system, there is no reciprocity and the transmitter
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Figure 5.21: Plot of AWGN capacity, fading channel capacity with receiver tracking
the channel only (CSIR) and capacity with both transmitter and the receiver tracking
the channel (full CSI). (A discussion of the latter is in Section 5.4.6).

will have to rely on feedback information from the receiver. For example, power control
in the CDMA system implicitly conveys such channel state information through the
feedback in the uplink.

Slow Fading: Channel Inversion

When we discussed the slow fading channel in Section 5.4.1, it was seen that with no
channel knowledge at the transmitter, outage occurs whenever the channel cannot sup-
port the target data rate R. With transmitter knowledge, one option is now to control
the transmit power such that the rate R can be delivered no matter what the fading
state is. This is the channel inversion strategy: the received SNR is kept constant
irrespective of the channel gain. (This strategy is reminiscent of the power control
used in CDMA systems, discussed in Section 4.3.) With exact channel inversion, there
is zero outage probability. The price to pay is that huge power has to be consumed to
invert the channel when it is very bad. Moreover, many systems are also peak-power
constrained and cannot invert the channel beyond a certain point. Systems like IS-
95 use a combination of channel inversion and diversity to achieve a target rate with
reasonable power consumption (Exercise 5.24).
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Fast Fading: Waterfilling

In the slow fading scenario, we are interested in achieving a target data rate within a
coherence time period of the channel. In the fast fading case, one is now concerned
with the rate averaged over many coherence time periods. With transmitter channel
knowledge, what is the capacity of the fast fading channel? Let us again consider the
simple block fading model (c.f. (5.86)):

y[m] = h[m]x[m] + w[m], (5.94)

where h[m] = h` remains constant over the `th coherence period of Tc (Tc À 1)
symbols and is i.i.d. across different coherence periods. The channel over L such
coherence periods can be modeled as a parallel channel with L sub-channels which fade
independently. For a given realization of the channel gains h1, . . . , hL, the capacity (in
bits/symbol) of this parallel channel is (c.f. (5.39), (5.40) in Section 5.3.3)

max
P1,...,PL

1

L

L∑

`=1

log

(
1 +

P`|h`|2
N0

)
(5.95)

subject to

1

L

L∑

`=1

P` = P, (5.96)

where P is the average power constraint. It was already seen (c.f. (5.43)) that the
optimal power allocation is waterfilling:

P ∗
` =

(
1

λ
− N0

|h`|2
)+

, (5.97)

where λ satisfies
1

L

L∑

`=1

(
1

λ
− N0

|h`|2
)+

= P. (5.98)

In the context of the frequency-selective channel, waterfilling is done over the OFDM
sub-carriers; here, waterfilling is done over time. In both cases, the basic problem is
that of power allocation over a parallel channel.

The optimal power P` allocated to the `th coherence period depends on the channel
gain in that coherence period and λ, which in turn depends on all the other channel
gains through the constraint (5.98). So it seems that implementing this scheme would
require the knowledge of the future channel states. Fortunately, as N → ∞, this
non-causality requirement goes away. By the law of large numbers, (5.98) converges to

E

[(
1

λ
− N0

|h|2
)+

]
= P (5.99)
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for almost all realization of the fading process {h[m]}. Here, the expectation is taken
with respect to the stationary distribution of the channel state. The parameter λ now
converges to a constant, depending only on the channel statistics but not on the specific
realization of the fading process. Hence, the optimal power at any time depends only
on the channel gain h at that time:

P ∗(h) =

(
1

λ
− N0

|h|2
)+

. (5.100)

The capacity of the fast fading channel with transmitter channel knowledge is

C = E
[
log

(
1 +

P ∗(h)|h|2
N0

)]
bits/s/Hz. (5.101)

Equations (5.101), (5.100) and (5.99) together allow us to compute the capacity.
We have derived the capacity assuming the block fading model. The generalization

to any ergodic fading process can be done exactly as in the case with no transmitter
channel knowledge.

Discussion

Figure 5.22 gives a pictorial view of the waterfilling power allocation strategy. In gen-
eral, the transmitter allocates more power when the channel is good, taking advantage
of the better channel condition, and less or even no power when the channel is poor.
This is precisely the opposite of the channel inversion strategy. Note that only the
magnitude of the channel gain is needed to implement the waterfilling scheme. In
particular, phase information is not required (in contrast to transmit beamforming, for
example).

The derivation of the waterfilling capacity suggests a natural variable-rate coding
scheme (see Figure 5.23). This scheme consists of a set of codes of different rates,
one for each channel state h. When the channel is in state h, the code for that state
is used. This can be done since both the transmitter and the receiver can track the
channel. A transmit power of P ∗(h) is used when the channel gain is h. The rate of that
code is therefore log (1 + P ∗(h)|h|2/N0) bits/s/Hz. No coding across channel states is
necessary. This is in contrast to the case without transmitter channel knowledge, where
a single fixed-rate code with the coded symbols spanning across different coherence
time periods is needed (Figure 5.23). Thus, knowledge of the channel state at the
transmitter not only allows dynamic power allocation but simplifies the code design
problem as one can now use codes designed for the AWGN channel.
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Figure 5.22: Pictorial representation of the waterfilling strategy.

Waterfilling Performance

Figure 5.21 compares the waterfilling capacity and the capacity with channel knowledge
only at the receiver, under Rayleigh fading. Figure 5.24 focuses on the low SNR regime.
In the literature the former is also called the capacity with full channel side information
(CSI) and the latter is called the capacity with channel side information at the receiver
(CSIR). Several observations can be made:
• At low SNR, the capacity with full CSI is significantly larger than the CSIR ca-

pacity.

• At high SNR, the difference between the two goes to zero.

• Over a wide range of SNR, the gain of waterfilling over the CSIR capacity is very
small.

The first two observations are in fact generic to a wide class of fading models, and
can be explained by the fact that the benefit of dynamic power allocation is a received
power gain: by spending more power when the channel is good, the received power
gets boosted up. At high SNR, however, the capacity is insensitive to the received
power per degree of freedom and varying the amount of transmit power as a function
of the channel state yields a minimal gain (Figure 5.25(a)). At low SNR, the capacity
is quite sensitive to the received power (linear, in fact) and so the boost in received
power from optimal transmit power allocation provides significant gain. Thus, dynamic
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Fixed-Rate scheme

Variable-Rate scheme
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|h[m]|2

Time m

Figure 5.23: Comparison of the fixed-rate and variable-rate schemes. In the fixed-rate
scheme, there is only one code spanning across many coherence periods. In the variable-
rate scheme, different codes (distinguished by difference shades) are used depending
on the channel quality at that time. For example, the code in white is a low-rate code
used only when the channel is weak.
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Figure 5.24: Plot of capacities with and without CSI at the transmitter, as a fraction
of the AWGN capacity.

power allocation is more important in the power-limited (low SNR) regime than in the
bandwidth-limited (high SNR) regime .

Let us look more carefully at the low SNR regime. Consider first the case when
the channel gain |h|2 has a peak value Gmax. At low SNR, the waterfilling strategy
transmits information only when the channel is very good, near Gmax: when there is
very little amount of water, the water ends up at the bottom of the vessel (Figure
5.25(b)). Hence at low SNR

C ≈ P
{|h|2 ≈ Gmax

}
log

(
1 + Gmax · SNR

P {|h|2 ≈ Gmax}
)

≈ Gmax · SNR log2 e bits/s/Hz. (5.102)

Recall that at low SNR the CSIR capacity is SNR log2 e bits/s/Hz. Hence, transmitter
CSI increases the capacity by Gmax times, or a 10 log10 Gmax dB gain. Moreover, since
the AWGN capacity is the same as the CSIR capacity at low SNR, this leads to the
interesting conclusion that with full CSI, the capacity of the fading channel can be
much larger than when there is no fading. This is in contrast to the CSIR case where
the fading channel capacity is always less than the capacity of the AWGN channel
with the same average SNR. The gain is coming from the fact that in a fading channel,
channel fluctuations create peaks and deep nulls, but when the energy per degree of
freedom is small, the sender opportunistically transmits only when the channel is near
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Figure 5.25: (a) High SNR: Allocating equal powers at all times is almost optimal. (b)
Low SNR: Allocating all the power when the channel is strongest is almost optimal.
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its peak. In a non-fading AWGN channel, the channel stays constant at the average
level and there are no peaks to take advantage of.

For models like Rayleigh fading, the channel gain is actually unbounded. Hence,
theoretically, the gain of the fading channel waterfilling capacity over the AWGN chan-
nel capacity is also unbounded. (See Figure 5.24). However, to get very large relative
gains, one has to operate at very low SNR. In this regime, it may be difficult for the
receiver to track and feed back the channel state to the transmitter to implement the
waterfilling strategy.

Overall, the performance gain from full CSI is not that large compared to CSIR,
unless the SNR is very low. On the other hand, full CSI potentially simplifies the code
design problem, as no coding across channel states is necessary. In contrast, one has
to interleave and code across many channel states with CSIR.

Waterfilling versus Channel Inversion

Achieving the capacity of the fading channel with full CSI (by using the waterfilling
power allocation) requires coding over many coherence time intervals. This is because
the capacity is a long-term average rate of flow of information, averaged over the
fluctuations of the channel. While the waterfilling strategy increases the long-term
throughput of the system by transmitting when the channel is good, an important issue
is the delay entailed. In this regard, it is interesting to contrast the waterfilling power
allocation strategy with the channel inversion strategy. Compared to waterfilling,
channel inversion is much less power-efficient, as a huge amount of power is consumed
to invert the channel when it is bad. On the other hand, the rate of flow of information
is now the same in all fading states, and so the associated delay is independent of the
time-scale of channel variations. Thus, one can view the channel inversion strategy
as a delay-limited power allocation strategy. Given an average power constraint, the
maximum achievable rate by this strategy can be thought of as a delay-limited capacity.
For applications with very tight delay constraints, this delay-limited capacity may be
a more appropriate measure of performance than the waterfilling capacity.

Without diversity, the delay-limited capacity is typically very small. With increased
diversity, the probability of encountering a bad channel is reduced and the average
power consumption required to support a target delay-limited rate is reduced. Put it
in another way, a larger delay-limited capacity is achieved for a given average power
constraint (Exercise 5.24).

Example 5.7: Rate Adaptation in IS-856

IS-856 Downlink
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IS-856, also called CDMA 2000 1x EV-DO,8 is a cellular data standard
operating on the 1.25 MHz bandwidth. The uplink is CDMA-based, not too
different from IS-95, but the downlink is quite different (Figure 5.26):

• Multiple access is TDMA, with one user transmission at a time. The finest gran-
ularity for scheduling the user transmissions is a slot of duration 1.67 ms.

• Each user is rate-controlled rather than power-controlled. The transmit power
at the base station is fixed at all times and the rate of transmission to a user is
adapted based on the current channel condition.

In contrast, the uplink of IS-95 (c.f. Section 4.3.2) is CDMA-based, with the total
power dynamically allocated among the users to meet their individual SIR
requirements. The multiple access and scheduling aspects are discussed in
Chapter 6; here the focus is only on rate adaptation.

Rate versus Power Control

The contrast between power control in IS-95 and rate control in IS-856 is
roughly analogous to that between the channel inversion and the waterfilling
strategies discussed above. In the former, power is allocated dynamically to a user
to maintain a constant target rate at all times; this is suitable for voice which has
a stringent delay requirement and requires a consistent throughput. In the latter,
rate is adapted to transmit more information when the channel is strong; this is
suitable for data which have a laxer delay requirement and can take better
advantage of a variable transmission rate. The main difference between IS-856
and the waterfilling strategy is that there is no dynamic power adaptation in
IS-856, only rate adaption.

Rate Control in IS-856

Like IS-95, IS-856 is an FDD system. Hence, rate control has to be performed
based on channel state feedback from the mobile to the base station. The mobile
measures its own channel based on a common strong pilot broadcast by the base
station. Using the measured values, the mobile predicts the SINR for the next
time slot and uses that to predict the rate the base station can send information
to it. This requested rate is fed back to the base station on the uplink. The
transmitter then sends a packet at the requested rate to the mobile starting at the
next time slot (if the mobile is scheduled). Table 5.1 describes the possible
requested rates, the SINR thresholds for those rates, the modulation used and the
number of time slots the transmission takes.

To simplify the implementation of the encoder, the codes at the different rates
are all derived from a basic 1/5-rate turbo code. The low-rate codes are obtained
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by repeating the turbo-coded symbols over a number of time slots; as
demonstrated in Exercise 5.25, such repetition loses little spectral efficiency in the
low SNR regime. The higher-rate codes are obtained by using higher-order
constellations in the modulation.

Rate control is made possible by the presence of the strong pilot to measure
the channel and the rate request feedback from the mobile to the base station.
The pilot is shared between all users in the cell and is also used for many other
functions such as coherent reception and synchronization. The rate request
feedback is solely for the purpose of rate control. Although each request is only 4
bits long (to specify the various rate levels), this is sent by every active user at
every slot and moreover considerable power and coding is needed to make sure the
information gets fed back accurately and with little delay. Typically, sending this
feedback consumes about 10% of the uplink capacity.

Impact of Prediction Uncertainty
Proper rate adaptation relies on the accurate tracking and prediction of the

channel at the transmitter. This is possible only if the coherence time of the
channel is much longer than the lag between the time the channel is measured at
the mobile and the time when the packet is actually transmitted at the base
station. This lag is at least two slots (2× 1.67 ms) due to the delay in getting the
requested rate fed back to the base station, but can be considerably more at the
low rates since the packet is transmitted over multiple slots and the predicted
channel has to be valid during this time.

At a walking speed of 3 km/h and a carrier frequency fc = 1.9 GHz, the
coherence time is of the order of 25 ms, so the channel can be quite accurately
predicted. At a slow driving speed of 30 km/h, the coherence time is only 2.5 ms
and accurate tracking of the channel is already very difficult. (Exercise 5.26
explicitly connects the prediction error to the physical parameters of the channel.)
At an even faster speed of 120 km/h, the coherence time is less than 1 ms and
tracking of the channel is impossible; there is now no transmitter CSI. On the
other hand, the multiple slot low rate packets essentially go through a fast fading
channel with significant time diversity over the duration of the packet. Recall that
the fast fading capacity is given by (5.89):

C = E
[
log

(
1 + |h|2SNR

)] ≈ E[|h|2]SNR log2 e bits/s/Hz (5.103)

in the low SNR regime, where h follows the stationary distribution of the fading.
Thus, to determine an appropriate transmission rate across this fast fading
channel, it suffices for the mobile to predict the average SINR over the
transmission time of the packet, and this average is quite easy to predict. Thus,



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 245

Fixed Transmit
       Power

User 2

User 1

Base Station

Data

Measure Channel 
Request Rate

Figure 5.26: Downlink of IS-856 (CDMA 2000 1xEV-DO). Users measure their channels
based on the downlink pilot and feed back requested rates to the base station. The
base station schedules users in a time-division manner.

the difficult regime is actually in between the very slow and very fast fading
scenarios, where there is significant uncertainty in the channel prediction and yet
not very large amount of time diversity over the packet transmission time. This
channel uncertainty has to be taken into account by being more conservative in
predicting the SINR and in requesting a rate. This is similar to the outage
scenario considered in Section 5.4.1, except that the randomness of the channel is
conditional on the predicted value. The requested rate should be set to meet a
target outage probability (Exercise 5.27).

The various situations are summarized in Figure 5.27. Note the different roles
of coding in the three scenarios. In the first scenario, when the predicted SINR is
accurate, the main role of coding is to combat the additive Gaussian noise; in the
other two scenarios, coding combats the residual randomness in the channel by
exploiting the available time diversity.

To reduce the loss in performance due to the conservativeness of the channel
prediction, IS-856 employs an incremental ARQ (or hybrid-ARQ) mechanism for
the repetition-coded multiple slot packets. Instead of waiting until the end of the
transmission of all slots before decoding, the mobile will attempt to decode the
information incrementally as it receives the repeated copies over the time slots.
When it succeeds in decoding, it will send an acknowledgment back to the base
station so that it can stop the transmission of the remaining slots. This way, a
rate higher than the requested rate can be achieved if the actual SINR is higher
than the predicted SINR.
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Requested rate (kbits/s) SINR Threshold (dB) Modulation Number of Slots
38.4 -11.5 QPSK 16
76.8 -9.2 QPSK 8
153.6 -6.5 QPSK 4
307.2 -3.5 QPSK 2 or 4
614.4 -0.5 QPSK 1 or 2
921.6 2.2 8-PSK 2
1228.8 3.9 QPSK or 16-QAM 1 or 2
1843.2 8.0 8-PSK 1
2457.6 10.3 16-QAM 1

Table 5.1: The various requested rates, the SINR thresholds above which the corre-
sponding rates are selected, the modulation and number of slots transmission takes.

5.4.7 Frequency-Selective Fading Channels

So far, we have considered flat fading channels (c.f. (5.53)). In Section 5.3.3, the
capacity of the time-invariant frequency-selective channel (5.32) was also analyzed. It
is simple to extend the understanding to underspread time-varying frequency-selective
fading channels: these are channels with the coherence time much larger than the delay
spread. We model the channel as a time-invariant L-tap channel as in (5.32) over each
coherence time interval and view it as Nc parallel sub-channels (in frequency). For
underspread channels, Nc can be chosen large so that the cyclic prefix loss is negligible.
This model is a generalization of the flat fading channel in (5.53): here there are Nc

(frequency) sub-channels over each coherence time interval and (time) sub-channels
over the different coherence time intervals. Overall it is still a parallel channel. We
can extend the capacity results from Sections 5.4.5 and 5.4.6 to the frequency-selective
fading channel. In particular, the fast fading capacity with full CSI (c.f. Section 5.4.6)
can be generalized here to a combination of waterfilling over time and frequency: the
coherence time intervals provide sub-channels in time and each coherence time interval
provides sub-channels in frequency. This is carried out in Exercise 5.30.

5.4.8 Summary: A Shift in Point of View

Let us summarize our investigation on the performance limits of fading channels. In the
slow fading scenario without transmitter channel knowledge, the amount of information
that is allowed through the channel is random, and no positive rate of communication
can be reliably supported (in the sense of arbitrarily small error probability). The
outage probability is the main performance measure, and it behaves like 1/SNR at
high SNR. This is due to a lack of diversity and, equivalently, the outage capacity
is very small. With L branches of diversity, either over space, time or frequency, the
outage probability is improved and decays like 1/SNRL. The fast fading scenario can be
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Figure 5.27: (a) Coherence time is long compared to the prediction time lag; predicted
SINR is accurate. Near perfect CSI at transmitter.(b) Coherence time is comparable
to the prediction time lag, predicted SINR has to be conservative to meet an outage
criterion. (c) Coherence time is short compared to the prediction time lag; prediction
of average SINR suffices. No CSI at the transmitter.

viewed as the limit of infinite time-diversity and has a capacity of E[log(1 + |h|2SNR)]
bits/s/Hz. This however incurs a coding delay much longer than the coherence time
of the channel. Finally, when the transmitter and the receiver can both track the
channel, a further performance gain can be obtained by dynamically allocating power
and opportunistically transmitting when the channel is good.

The slow fading scenario emphasizes the detrimental effect of fading: a slow fading
channel is very unreliable. This unreliability is mitigated by providing more diversity
in the channel. This is the traditional way of viewing the fading phenomenon and
was the central theme of Chapter 3. In a narrowband channel with a single antenna,
the only source of diversity is through time. The capacity of the fast fading channel
(5.89) can be viewed as the performance limit of any such time-diversity scheme. Still,
the capacity is less than the AWGN channel capacity as long as there is no channel
knowledge at the transmitter. With channel knowledge at the transmitter, the picture
changes. Particularly at low SNR, the capacity of the fading channel with full CSI can
be larger than that of the AWGN channel. Fading can be exploited by transmitting
near the peak of the channel fluctuations. Channel fading is now turned from a foe to
a friend.

This new theme on fading will be developed further in the broader network context
in Chapter 6.
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Chapter 5: The Main Plot

Channel Capacity
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The maximum rate at which information can be communicated across a noisy
channel with arbitrary reliability.

Linear Time-invariant Gaussian Channels

Capacity of the AWGN channel with SNR per degree of freedom is

Cawgn = log (1 + SNR) bits/s/Hz. (5.104)

Capacity of the continuous-time AWGN channel with bandwidth W , average
received power P̄ and white noise power spectral density N0 is

Cawgn = W log

(
1 +

P̄

N0W

)
bits/s. (5.105)

Bandwidth-limited regime: SNR = P̄ /(N0W ) is high and capacity is logarithmic
in the SNR.

Power-limited regime: SNR is low and capacity is linear in the SNR.

Capacities of the SIMO and the MISO channels with time-invariant channel gains
h1, . . . , hL are the same:

C = log
(
1 + SNR‖h‖2

)
bits/s/Hz. (5.106)

Capacity of frequency-selective channel with response H(f) and power constraint
P per degree of freedom:

C =

∫ W

0

log

(
1 +

P ∗(f)|H(f)|2
N0

)
df bits/s (5.107)

where P ∗(f) is waterfilling:

P ∗(f) =

(
1

λ
− N0

|H(f)|2
)+

, (5.108)

and λ satisfies: ∫ W

0

(
1

λ
− N0

|H(f)|2
)+

df = P. (5.109)
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Slow Fading Channels with Receiver CSI Only

Setting: coherence time is much longer than constraint on coding delay.

Performance measures:

Outage probability pout(R) at a target rate R.

Outage capacity Cε at a target outage probability ε.

Basic flat fading channel:
y[m] = hx[m] + w[m]. (5.110)

Outage probability is

pout(R) = P
{
log

(
1 + |h|2SNR

)
< R

}
, (5.111)

where SNR is the average signal-to-noise ratio at each receive antenna.

Outage probability with receive diversity is

pout(R) := P
{
log

(
1 + ‖h‖2SNR

)
< R

}
. (5.112)

This provides power and diversity gains.

Outage probability with L-fold transmit diversity is

pout(R) := P
{

log

(
1 + ‖h‖2 SNR

L

)
< R

}
. (5.113)

This provides diversity gain only.

Outage probability with L-fold time diversity is

pout(R) = P

{
1

L

L∑

`=1

log
(
1 + |h`|2SNR

)
< R

}
. (5.114)

This provides diversity gain only.

Fast Fading Channels

Setting: coherence time is much shorter than coding delay.

Performance measure: capacity.

Basic model:
y[m] = h[m]x[m] + w[m]. (5.115)

{h[m]} is an ergodic fading process.

Receiver CSI only:

C = E
[
log(1 + |h|2SNR)

]
. (5.116)

Full CSI:

C = E
[
log

(
1 +

P ∗(h)|h|2
N0

)]
bits/s/Hz (5.117)

where P ∗(h) waterfills over the fading states:

P ∗(h) =

(
1

λ
− N0

|h|2
)+

, (5.118)

and λ satisfies:

E

[(
1

λ
− N0

|h|2
)+

]
= P. (5.119)

Power gain over the receiver CSI only case. Significant at low SNR.
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5.5 Bibliographical Notes

Information theory and the formulation of the notions of reliable communication and
channel capacity were introduced in a path-breaking paper by Shannon [87]. The un-
derlying philosophy of using simple models to understand the essence of an engineering
problem has pervaded the development of the communication field ever since. In that
paper, as a consequence of his general theory, Shannon also derived the capacity of the
AWGN channel. He returned to a more in-depth geometric treatment of this channel
in a subsequent paper [?].

The linear cellular model was introduced by Shamai and Wyner [86]. One of
the early studies of wireless channels using information theoretic techniques is due
to Ozarow, Shamai and Wyner [73], where they introduced the concept of outage
capacity. Telatar [95] has extended the formulation to multiple antennas. The ca-
pacity of fading channels with full CSI was analyzed by Goldsmith and Varaiya [40].
They observed the optimality of the waterfilling power allocation with full CSI and the
corollary that full CSI over CSI at the receiver alone is beneficial only at low SNRs. A
comprehensive survey of information theoretic results on fading channels was carried
out by Biglieri, Proakis and Shamai [8].

The design issues in IS-856 have been elaborately studied by Bender et. al. [5] and
by Wu and Esteves [120].
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Exercises

Exercise 5.1. What is the maximum reliable rate of communication over the (com-
plex) AWGN channel when only the I-channel is used? How does that compare to
the capacity of the complex channel at low and high SNR? Relate your conclusion to
the analogous comparison between uncoded schemes in Section 3.1.2 and Exercise 3.4,
focusing particularly on the high SNR regime.

Exercise 5.2. Consider a linear cellular model with equi-spaced base stations at dis-
tance 2d apart. With a reuse ratio of ρ, base stations at distances of integer multiples
of 2d/ρ reuse the same frequency band. Assuming that the interference emanates from
the center of the cell, calculate that the fraction fρ of the received power from a user
at the edge of the cell, the interference represents. You can assume that all uplink
transmissions are at the same transmit power P and that the dominant interference
comes from the nearest base stations reusing the same frequency.

Exercise 5.3. Consider a regular hexagonal cellular model (c.f. Figure 4.2) with a
frequency reuse ratio of ρ.

1. Identify “appropriate” reuse patterns for different values of ρ, with the design
goal of minimizing inter-cell interference. You can use the assumptions made in
Exercise 5.2 on how the interference originates.

2. For the reuse patterns identified, show that fρ = 6
(√

ρ/2
)α

is a good approx-
imation to the fraction of the received power of a user at the edge of the cell,
the interference represents. Hint: You can explicitly construct reuse patterns for
ρ = 1, 1/3, 1/4, 1/7, 1/9 with exactly these fractions.

3. What reuse ratio yields the symmetric uplink rate at high SNR (an expression
for the largest symmetric rate is in (5.23))?

Exercise 5.4. In Exercise 5.3 we computed the interference as a fraction of the signal
power of interest assuming that the interference emanated from the center of the cell
using the same frequency. Re-evaluate fρ using the assumption that the interference
emanates uniformly in the cells using the same frequency. (You might need to do
numerical computations varying the power decay rate α.)

Exercise 5.5. Consider the expression in (5.23) for the rate in the uplink at very high
SNR values.

1. Plot the rate as a function of the reuse parameter ρ.

2. Show that ρ = 1/2, i.e., reusing the frequency every other cell, yields the largest
rate.
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Exercise 5.6. In this exercise, we study time sharing, as a means to communicate
over the AWGN channel by using different codes over different intervals of time.

1. Consider a communication strategy over the AWGN channel where for a fraction
of time α a capacity achieving code at power level P1 is used and for the rest of
the time, a capacity achieving code at power level P2 is used, meeting the overall
average power constraint P . Show that this strategy is strictly suboptimal, i.e.,
it is not capacity achieving for the power constraint P .

2. Consider an additive noise channel:

y[m] = x[m] + w[m]. (5.120)

The noise is still independent over time but not necessarily Gaussian. Let C(P )
be the capacity of this channel under an average power constraint of P . Show
that C(P ) must be a concave function of P . Hint: Hardly any calculation is
needed. The insight from part (1) will be useful.

Exercise 5.7. In this exercise we use the formula for the capacity of the AWGN
channel to see the contrast with the performance of certain communication schemes
studied in Chapter 3. At high SNR, the capacity of the AWGN channel scales like
log2 SNR bits/s/Hz. Is this consistent with how the rate of an uncoded QAM system
scale with the SNR?

Exercise 5.8. For the AWGN channel with general SNR, there is no known explicitly
constructed capacity-achieving code. However, it is known that orthogonal codes can
achieve the minimum Eb/N0 in the power-limited regime. This exercise shows that
orthogonal codes can get arbitrary reliability with a finite Eb/N0. Exercise 5.9 demon-
strates how the Shannon limit can actually be achieved. We focus on the discrete-time
complex AWGN channel with noise variance N0 per dimension.

1. An orthogonal code consists of M orthogonal codewords, each with the same
energy Es. What is the energy per bit Eb for this code? What is the minimum
block length required? What is the data rate?

2. Does the ML error probability of the code depend on the specific choice of the
orthogonal set? Explain.

3. Give an expression for the pairwise error probability, and provide a good upper
bound for it.

4. Using the union bound, derive a bound on the overall ML error probability.
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5. To achieve reliable communication, we let the number of codewords M grow and
adjust the energy Es per codeword such that the Eb/N0 remains fixed. What is the
minimum Eb/N0 such that your bound in part (4) vanishes with M increasing?
How far are you from the Shannon limit of −1.59 dB?

6. What happens to the data rate? Reinterpret the code as consuming more and
more bandwidth but at a fixed data rate (in bits/s).

7. How do you contrast the situation with using a repetition code of longer and
longer block length (as in Section 5.1.1)? In what sense is the orthogonal code
better?

Exercise 5.9. (Orthogonal codes achieve Eb/N0 = −1.59 dB.) The minimum Eb/N0

derived in Exercise 5.8 does not meet the Shannon limit, not because the orthogonal
code is not good but because the union bound is not tight enough when Eb/N0 is close
to the Shannon limit. This exercise explores how the union bound can be tightened in
this range.

1. Let ui be the real part of the inner product of the received signal vector with the
ith orthogonal codeword. Express the ML detection rule in terms of the ui’s.

2. Suppose codeword 1 is transmitted. Conditional on u1 large, the ML detector
can get confused with very few other codewords, and the union bound on the
conditional error probability is quite tight. On the other hand, when u1 is small,
the ML detector can get confused with many other codewords and the union
bound is lousy and can be much larger than 1. In the latter regime, one might as
well bound the conditional error by 1. Compute then a bound on the ML error
probability in terms of γ, a threshold that determines whether u1 is “large” or
“small”. Simplify your bound as much as possible.

3. By an appropriate choice of γ, find a good bound on the ML error probability in
terms of Eb/N0 so that you can demonstrate that orthogonal codes can approach
the Shannon limit of −1.59 dB. Hint: a good choice of γ is when the union bound
on the conditional error is approximately 1. Why?

4. In what range of Eb/N0 does your bound in the previous part coincides with the
union bound used in Exercise 5.8?

5. From your analysis, what insights about the typical error events in the various
ranges of Eb/N0 can you derive?

Exercise 5.10. The outage performance of the slow fading channel depends on the
randomness of log(1 + |h|2SNR). One way to quantify the randomness of a random
variable is by the ratio of the standard deviation to the mean. Show that this parameter
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goes to zero at high SNR. What about low SNR? Does this make sense to you in light
of your understanding of the various regimes associated with the AWGN channel?

Exercise 5.11. Show that the transmit beamforming strategy in Section 5.3.2 max-
imizes the received SNR for a given total transmit power constraint. (Part of the
question involves making precise what this means!)

Exercise 5.12. Consider coding over N OFDM blocks in the parallel channel in
(5.33), i.e., i = 1, . . . , N , with power Pn over the nth sub-channel. Suppose that
ỹn := [ỹn[1], . . . , ỹn[N ]]t, with d̃n and w̃n defined similarly. Consider the entire received
vector with 2NNc real dimensions:

ỹ := diag
{

h̃1IN , . . . , h̃NcIN

}
d̃ + w̃, (5.121)

where d̃ :=
[
d̃t

1, . . . , d̃
t
Nc

]t

and w̃ :=
[
w̃t

1, . . . , w̃
t
Nc

]t
.

1. Fix ε > 0 and consider the ellipsoid E(ε) defined as

{
a : a∗

(
diag

{
P1|h̃1|2IN , . . . , PNc |h̃Nc |2IN

}
+ N0INNc

)−1

a ≤ N (Nc + ε)

}
.

(5.122)
Show for every ε that

P
{
ỹ ∈ E(ε)

} → 1, as N →∞. (5.123)

Thus we can conclude that the received vector lives in the ellipsoid E(0) for large
N with high probability.

2. Show that the volume of the ellipsoid E(0) is equal to

(
Nc−1∏
n=0

(
|h̃n|2Pn + N0

)N
)

(5.124)

times the volume of a 2NNc-dimensional real sphere with radius
√

NNc. This
justifies the expression in (5.50).

3. Show that
P

{‖w̃‖2 ≤ N0N (Nc + ε)
} → 1, as N →∞. (5.125)

Thus w̃ lives, with high probability, in a 2NNc-dimensional real sphere of radius√
N0NNc. Compare the volume of this sphere to the volume of the ellipsoid in

(5.124) to justify the expression in (5.51).
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Exercise 5.13. Consider a system with 1 transmit antenna and L receive antennas.
Independent CN (0, N0) noise corrupts the signal at each of the receive antennas. The
transmit signal has a power constraint of P .

1. Suppose the gain between the transmit antenna and each of the receive antennas
is constant, equal to 1. What is the capacity of the channel? What is the
performance gain compared to a single receive antenna system? What is the
nature of the performance gain?

2. Suppose now the signal to each of the receive antenna is subject to independent
Rayleigh fading. Compute the capacity of the (fast) fading channel with channel
information only at the receiver. What is the nature of the performance gain
compared to a single receive antenna system? What happens when L →∞?

3. Give an expression for the capacity of the fading channel in part (2) with CSI at
both the transmitter and the receiver. At low SNR, do you think the benefit of
having CSI at the transmitter is more or less significant when there are multiple
receive antennas? How about when the operating SNR is high?

4. Now consider the slow fading scenario when the channel is random but constant.
Compute the outage probability and quantify the performance gain of having
multiple receive antennas.

Exercise 5.14. Consider a MISO slow fading channel.

1. Verify that the Alamouti scheme radiates energy in an isotropic manner.

2. Show that a transmit diversity scheme radiates energy in an isotropic manner if
and only if the signals transmitted from the antennas have the same power and
are uncorrelated.

Exercise 5.15. Consider the MISO channel with L transmit antennas and channel
gain vector h = [h1, . . . , hL]t. The noise variance is N0 per symbol and the total power
constraint across the transmit antennas is P .

1. First, think of the channel gains as fixed. Suppose someone uses a transmis-
sion strategy for which the input symbols at any time is zero mean and has
a covariance matrix Kx. Argue that the maximum achievable reliable rate of
communication under this strategy is no larger than

log

(
1 +

htKxh

N0

)
bits/symbol. (5.126)
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2. Now suppose we are in a slow fading scenario and h is random and i.i.d. Rayleigh.
The outage probability of the scheme in Part 1 is given by

pout(R) = P
{

log

(
1 +

htKxh

N0

)
< R

}
. (5.127)

Show that correlation never improves the outage probability: i.e., given a to-
tal power constraint P , one can do no worse by choosing Kx to be diagonal.
Hint: Observe that the covariance matrix Kx admits a decomposition of the
form Udiag {P1, . . . , PL}U∗.

Exercise 5.16. Exercise 5.15 shows that for the i.i.d. Raleigh slow fading MISO chan-
nel, one can always choose the input to be uncorrelated, in which case the outage
probability is

P

{
log

(
1 +

∑L
`=1 P`|h`|2

N0

)
< R

}
, (5.128)

where P` the power allocated to antenna `. Suppose the operating SNR is high relative
to the target rate and satisfies

log

(
1 +

P

N0

)
≥ R, (5.129)

with P equal to the total transmit power constraint.

1. Show the outage probability (5.128) is a symmetric function of P1, . . . , PL.

2. Show that the partial double derivative of the outage probability (5.128) with
respect to Pj is non-positive as long as

∑L
`=1 P` = P , for each j = 1, . . . , L.

These two conditions imply that the isotropic strategy, i.e., P1 = · · · = PL = P/L
minimizes the outage probability (5.128) subject to the constraint P1+· · ·+PL =
P . This result is adapted from Theorem 1 of [9], where the justification for this
last step is provided.

3. For different values of L, calculate the range of outage probabilities for which the
isotropic strategy is optimal, under condition (5.129).

Exercise 5.17. Consider the expression for the outage probability of the parallel
fading channel in (5.84). In this exercise we consider the Rayleigh model, i.e., the
channel entries h1, . . . , hL to be i.i.d. CN (0, 1), and show that uniform power allocation,
i.e., P1 = · · · = PL = P/L achieves the minimum in (5.84). Consider the outage
probability:

P

{
L∑

`=1

log

(
1 +

P`|h`|2
N0

)
< LR

}
. (5.130)
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1. Show that (5.130) is a symmetric function of P1, . . . , PL.

2. Show that (5.130) is a convex function of P`, for each ` = 1, . . . , L.9

With the sum power constraint
∑L

`=1 P` = P , these two conditions imply that the
map in (5.130) is minimized when P1 = · · · = PL = P/L. This observation follows
from a result in the theory of majorization, a partial order on vectors. In particular,
Theorem 3.A.4 in [65] provides the required justification.

Exercise 5.18. Compute a high-SNR approximation of the outage probability for the
parallel channel with L i.i.d. Rayleigh faded branches.

Exercise 5.19. 1. Give an expression for the outage probability of the repetition
scheme when used on the parallel channel with L branches.

2. Using the result in Exercise 5.18, compute the extra SNR required for the rep-
etition scheme to achieve the same outage probability as capacity at high SNR.
How does this depend on L, the target rate R and the SNR?

3. What about at low SNR?

Exercise 5.20. In this exercise we study the outage capacity of the parallel channel
in further detail.

1. Find an approximation for the ε-outage capacity of the parallel channel with L
branches of time diversity in the low SNR regime.

2. Simplify your approximation for the case of i.i.d. Rayleigh faded branches and
small outage probability ε.

3. IS-95 operates over a bandwidth of 1.25 MHz. The delay spread is 1µs, the
coherence time is 50ms, the delay constraint (on voice) is 100 ms. The SINR
each user sees is −17 dB per chip. Estimate the 1%-outage capacity for each
user. How far is that from the capacity of an unfaded AWGN channel with the
same SNR? Hint: You can model the channel as a parallel channel with i.i.d.
Rayleigh faded sub-channels.

Exercise 5.21. In Chapter 3, we have seen that one way to communicate over the
MISO channel is to convert it into a parallel channel by sending symbols over the
different transmit antennas one at at time.

1. Consider first the case when the channel is fixed (known to both the transmitter
and the receiver). Evaluate the capacity loss of using this strategy at high and
low SNR. In which regime is this transmission scheme a good idea?

9Observe that this condition is weaker than saying that (5.130) is jointly convex in the arguments
(P1, . . . , PL).
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2. Now consider the slow fading MISO channel. Evaluate the loss in performance
of using this scheme in terms of (i) the outage probability pout(R) at high SNR;
(ii) the ε-outage capacity Cε at low SNR.

Exercise 5.22. Consider the frequency-selective channel with CSI only at the receiver
with L i.i.d. Rayleigh faded paths.

1. Compute the capacity of the fast fading channel. Give approximate expressions
at the high and low SNR regimes.

2. Provide an expression for the outage probability of the slow fading channel. Give
approximate expressions at the high and low SNR regimes.

3. In Section 3.4, we introduced a sub-optimal scheme which transmits a symbol
every L symbol times and uses maximal ratio combining at the receiver to detect
each symbol. Find the outage and fast fading performance achievable by this
scheme if the transmitted symbols are ideally coded and the outputs from the
maximal-ratio are soft combined. Calculate the loss in performance in using this
scheme for a GSM system with 2 paths operating at average SNR of 15 dB. In
what regime do we not lose much performance by using this scheme?

Exercise 5.23. In this exercise, we revisit the CDMA system of Section 4.3 in the
light of our understanding of information theory.

1. In our analysis in Chapter 4 of the performance of CDMA systems, it was common
for us to assume a Eb/N0 requirement for each user. This requirement depends
on the data rate R of each user, the bandwidth W Hz, and also the code used.
Assuming an AWGN channel and the use of capacity-achieving codes, compute
the Eb/N0 requirement as a function of the data rate and bandwidth. What is
this number for an IS-95 system with R = 9.6 kbits/s and W = 1.25 MHz? At
the low SNR, power-limited regime, what happens to this Eb/N0 requirement?

2. In IS-95, the code used is not optimal however. In particular, each coded symbol
is repeated 4 times in the last stage of the spreading. With only this constraint
on the code, find the maximum achievable rate of reliable communication over
an AWGN channel. Hint: Exercise 5.13 (1) may be useful here.

3. Compare the performance of the code used in IS-95 with the capacity of the
AWGN channel. Is the performance loss greater in the low SNR or high SNR
regime? Explain intuitively.

4. With the repetition constraint of the code as in part (2), quantify the resulting
increase in Eb/N0 requirement compared to that in part (1). Is this penalty
serious for an IS-95 system with R = 9.6 kbits/s and W = 1.25 MHz?
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Exercise 5.24. (The price of channel inversion)

1. Consider a narrowband Rayleigh flat fading SISO channel. Show that the average
power (averaged over the channel fading) to implement the channel inversion
scheme is infinite for any positive target rate.

2. Suppose now there are L > 1 receive antennas. Show that the average power for
channel inversion is now finite.

3. Compute numerically and plot the average power as a function of the target rate
for different L to get a sense of the amount of gain from having multiple receive
antennas. Qualitatively describe the nature of the performance gain.

Exercise 5.25. This exercises applies some basic information theory to analyze the
IS-856 system. You should use the parameters of IS-865 given in the text.

1. Table 5.1 gives the SINR thresholds for using the various rates. What would
the thresholds have been if capacity-achieving codes were used? Are the codes
used in IS-856 close to optimal? (You can assume that the interference plus
noise is Gaussian and that the channel is time-invariant over the time-scale of
the coding.)

2. At low rates, the coding is performed by a turbo code followed by a repetition
code to reduce the complexity. How much is the sub-optimality of the IS-865
codes due to the repetition structure? In particular, at the lowest rate of 38.4
kbits/s, coded symbols are repeated 16 times. With only this constraint on the
code, find the minimum SINR needed for reliable communication. Comparing
this to the corresponding threshold calculated in part (1), can you conclude
whether one loses a lot from the repetition?

Exercise 5.26. In this problem we study the nature of the error in the channel es-
timate fed back to the transmitter (to adapt the transmission rate, as in the IS-856
system). Consider the following time-varying channel model:

h[m + 1] =
√

1− δ h[m] +
√

δ w[m + 1], m ≥ 0, (5.131)

with {w[m]} a sequence of i.i.d. CN (0, 1) random variables independent of h[0] ∼
CN (0, 1). The coherence time of the channel is controlled by the parameter δ.

1. Calculate the autocorrelation function of the channel process in (5.131).

2. Defining the coherence time as the largest time for which the autocorrelation
is larger than 0.5 (c.f. Section 2.4.3), derive an expression for δ in terms of the
coherence time and the sample rate. What are some typical values of δ for the
IS-856 system at different vehicular speeds?
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3. The channel is estimated at the receiver using training symbols. The estimation
error (evaluated in Section 3.5.2) is small at high SNRs and we will ignore it
by assuming that h[0] is estimated exactly. Due to the delay, the fed back h[0]
reaches the transmitter at time n. Evaluate the predictor ĥ[n] of h[n] from h[0]
that minimizes the mean squared error.

4. Show that the minimum mean squared error predictor can be expressed as

ĥ[n] = h[n] + he[n], (5.132)

with the error he[n] independent of h[n] and distributed as CN (0, σ2
e). Find an

expression for the variance of the prediction error σ2
e in terms of the delay n and

the channel variation parameter δ. What are some typical values of σ2
e for the

IS-856 system with a 2 slot delay in the feedback link?

Exercise 5.27. Consider the slow fading channel (c.f. Section 5.4.1)

y[m] = hx[m] + w[m], (5.133)

with h ∼ CN (0, 1). If there is a feedback link to the transmitter, then an estimate of
the channel quality can be relayed back to the transmitter (as in the IS-856 system).
Let us suppose that the transmitter is aware of ĥ, which is modeled as

ĥ = h + he, (5.134)

where the error in the estimate he is independent of the channel realization h and is
CN (0, σ2

e) (see Exercise 5.26 and (5.132) in particular). The rate of communication R
is chosen as a function of the channel estimate ĥ. If the estimate is perfect, i.e., σ2

e = 0,
then the slow fading channel is simply an AWGN channel and R can be chosen to be
less than the capacity and an arbitrarily small error probability is achieved. On the
other hand, if the estimate is very noisy, i.e., σ2

e >> 1, then we have the original slow
fading channel studied in Section 5.4.1.

1. Argue that the outage probability, conditioned on the estimate of the channel to
be ĥ, is

P
{

log
(
1 + |h|2SNR

)
< R(ĥ) | ĥ

}
. (5.135)

2. Let us fix the outage probability in (5.135) to be less than ε for every realization
of the channel estimate ĥ. Then the rate can be adapted as a function of the
channel estimate ĥ. To get a feel for the amount of loss in the rate due to
the imperfect channel estimate, carry out the following numerical experiment.
Fix ε = 0.01 and evaluate numerically (using a software such as MATLAB) the
average difference between the rate with perfect channel feedback and the rate
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R with imperfect channel feedback for different values of the variance of the
channel estimate error σ2

e (the average is carried out over the joint distribution
of the channel and its estimate).

What is the average difference for the IS-856 system at different vehicular speeds?
You can use the results from the calculation in Exercise 5.26(3) that connect the
vehicular speeds to σ2

e in the IS-856 system.

3. The numerical example gave a feel for the amount of loss in transmission rate
due to the channel uncertainty. In this part, we study approximations to the
optimal transmission rate as a function of the channel estimate.

(a) If ĥ is small, argue that the optimal rate adaptation is of the form

R(ĥ) ≈ log
(
1 + a1|ĥ|2 + b1

)
, (5.136)

by finding appropriate constants a1, b1 as functions of ε and σ2
e .

(b) When ĥ is large, argue that the optimal rate adaptation is of the form

R(ĥ) ≈ log
(
1 + a2|ĥ|+ b2

)
, (5.137)

and find appropriate constants a2, b2.

Exercise 5.28. In the text we have analyzed the performance of fading channels
under the assumption of receiver CSI. The CSI is obtained in practice by transmitting
training symbols. In this exercise, we will study how the loss in degrees of freedom
from sending training symbols compares with the actual capacity of the noncoherent
fading channel. We will conduct this study in the context of a block fading model: the
channel remains constant over a block of time equal to the coherence time and jumps
to independent realizations over different coherent time intervals. Formally,

y[m + nTc] = h[n]x[m + nTc] + w[m + nTc], m = 1, . . . , Tc, n ≥ 1, (5.138)

where Tc is the coherence time of the channel (measured in terms of the number of
samples). The channel variations across the blocks h[n] are i.i.d. Rayleigh.

1. For the IS-856 system, what are typical values of Tc at different vehicular speeds?

2. Consider the following pilot (or training symbol) based scheme that converts
the non-coherent communication into a coherent one by providing receiver CSI.
The first symbol of the block is a known symbol and information is sent of the
remaining symbols (Tc − 1 of them). At high SNR, the pilot symbol allows the
receiver to estimate the channel (h[n], over the nth block) with a high degree of
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accuracy. Argue that the reliable rate of communication using this scheme at
high SNR is approximately

Tc − 1

Tc

C (SNR) bits/s/Hz, (5.139)

where C (SNR) is the capacity of the channel in (5.138) with receiver CSI. In
what mathematical sense can you make this approximation precise?

3. A reading exercise is to study [68] where the authors show that the capacity of
the original noncoherent block fading channel in (5.138) is comparable (in the
same sense as the approximation in the previous part) to the rate achieved with
the pilot based scheme (c.f. (5.139)). Thus there is little loss in performance with
pilot based reliable communication over fading channels at high SNR.

Exercise 5.29. Consider the block fading model (c.f. (5.138)) with a very short co-
herent time Tc. In such a scenario, the pilot based scheme does not perform very well
as compared to the capacity of the channel with receiver CSI (c.f. (5.139)). A reading
exercise is to study the literature on the capacity of the noncoherent i.i.d. Rayleigh
fading channel (i.e., the block fading model in (5.138) with Tc = 1) [53, 91, 1]. The
main result is that the capacity is approximately

log log SNR (5.140)

at high SNR, i.e., communication at high SNR is very inefficient. An intuitive way
to think about this result is to observe that a logarithmic transform converts the
multiplicative noise (channel fading) into an additive Gaussian one. This allows us to
use techniques from the AWGN channel, but now the effective SNR is only log SNR.

Exercise 5.30. In this problem we will derive the capacity of the underspread frequency-
selective fading channel modeled as follows. The channel is time invariant over each
coherence time interval (with length Tc). Over the ith coherence time interval the
channel has Ln taps with coefficients:10

h0[i], . . . , hLn−1[i]. (5.141)

The underspread assumption (Tc À Ln) means that the edge effect of having the next
coherent interval overlap with the last Ln − 1 symbols of the current coherent interval
is insignificant. One can then jointly code over coherent time intervals with the same
(or nearly the same) channel tap values to achieve the corresponding largest reliable
communication rate afforded by that frequency-selective channel. To simplify notation
we use this operational reasoning to make the following assumption: over the finite
time interval Tc, the reliable rate of communication can be well approximated to be
equal to the capacity of the corresponding time-invariant frequency-selective channel.

10We have slightly abused our notation here: in the text h`[m] was used to denote the `th tap at
symbol time m, but here h`[i] is the `th tap at the ith coherence interval.
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1. Suppose a power P [i] is allocated to the ith coherence time interval. Use the
discussion in Section 5.4.7 to show that the largest rate of reliable communication
over the ith coherence time interval is

max
P0[i],...,PTc−1[i]

1

Tc

Tc−1∑
n=0

log

(
1 +

Pn[i]|h̃n[i]|2
N0

)
, (5.142)

subject to the power constraint

Tc−1∑
n=0

Pn[i] ≤ TcP [i]. (5.143)

It is optimal to choose Pn[i] to waterfill N0/|h̃n[i]|2 where h̃0[i], . . . , h̃Tc−1[i] is the
Tc-point DFT of the channel h0[i], . . . , hLn−1[i] scaled by

√
Tc.

2. Now consider M coherence time intervals over which the powers P [1], . . . , P [M ]
are to be allocated subject to the constraint

M∑
i=1

P [i] ≤ MP.

Determine the optimal power allocation Pn[i], n = 0, . . . , Tc − 1 and i =
1, . . . , M as a function of the frequency selective channels in each of the coherence
time intervals.

3. What happens to the optimal power allocation as M , the number of coherence
time intervals, grows large? State precisely any assumption you make about the
ergodicity of the frequency selective channel sequence.
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Chapter 6

Multiuser Capacity and
Opportunistic Communication

In Chapter 4, we studied several specific multiple access techniques (TDMA/FDMA,
CDMA, OFDM) designed to share the channel among several users. A natural question
is: what are the “optimal” multiple access schemes? To address this question, one must
now step back and take a fundamental look at the multiuser channels themselves.
Information theory can be generalized from the point-to-point scenario, considered in
Chapter 5, to the multiuser ones, providing limits to multiuser communications and
suggesting optimal multiple access strategies. New techniques and concepts such as
successive cancellation, superposition coding and multiuser diversity emerge.

The first part of the chapter focuses on the uplink (many-to-one) and downlink
(one-to-many) AWGN channel without fading. For the uplink, an optimal multiple
access strategy is for all users to spread their signal across the entire bandwidth, much
like in the CDMA system in Chapter 4. However, rather than decoding every user
treating the interference from other users as noise, a successive interference cancellation
(SIC) receiver is needed to achieve capacity. That is, after one user is decoded, its
signal is stripped away from the aggregate received signal before the next user is
decoded. A similar strategy is optimal for the downlink, with signals for the users
superimposed on top of each other and SIC done at the mobiles: each user decodes the
information intended for all of the weaker users and strips them off before decoding
its own. It is shown that in situations where users have very disparate channels to the
base station, CDMA together with successive cancellation can offer significant gains
over the conventional multiple access techniques discussed in Chapter 4.

In the second part of the chapter, we shift our focus to multiuser fading channels.
One of the main insights learnt in Chapter 5 is that, for fast fading channels, the
ability to track the channel at the transmitter can increase point-to-point capacity by
opportunistic communication: transmitting at high rates when the channel is good,
and at low rates or not at all when the channel is poor. We extend this insight to

265
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the multiuser setting, both for the uplink and for the downlink. The performance gain
of opportunistic communication comes from exploiting the fluctuations of the fading
channel. Compared to the point-to-point setting, the multiuser settings offer more
opportunities to exploit. In addition to the choice of when to transmit, there is now
an additional choice of which user(s) to transmit from (in the uplink) or to transmit
to (in the downlink) and the amount of power to allocate between the users. This
additional choice provides a further performance gain not found in the point-to-point
scenario. It allows the system to benefit from a multiuser diversity effect: at any time
in a large network, with high probability there is a user whose channel is near its peak.
By allowing such a user to transmit at that time, the overall multiuser capacity can
be achieved.

In the last part of the chapter, we will study the system issues arising from the
implementation of opportunistic communication in a cellular system. We use as a
case study IS-856, the third-generation standard for wireless data already introduced
in Chapter 5. We show how multiple antennas can be used to further boost the
performance gain that can be extracted from opportunistic communication, a technique
known as opportunistic beamforming. We distill the insights into a new design principle
for wireless systems based on opportunistic communication and multiuser diversity.

6.1 Uplink AWGN Channel

6.1.1 Capacity via Successive Interference Cancellation

The baseband discrete-time model for the uplink AWGN channel with two users (Fig-
ure 6.1) is:

y[m] = x1[m] + x2[m] + w[m], (6.1)

where w[m] ∼ CN (0, N0) is i.i.d. complex Gaussian noise. User k has an average
power constraint of Pk Joules/symbol (with k = 1, 2).

In the point-to-point case, the capacity of a channel provides the performance limit:
reliable communication can be attained at any rate R < C; reliable communication is
impossible at rates R > C. In the multiuser case, we should extend this concept to a
capacity region C: this is the set of all pairs (R1, R2) such that simultaneously user 1 and
2 can reliably communicate at rate R1 and R2, respectively. Since the two users share
the same bandwidth, there is naturally a tradeoff between the reliable communication
rates of the users: if one wants to communicate at a higher rate, the other user may
need to lower its rate. For example, in orthogonal multiple access schemes, such as
OFDM, this tradeoff can be achieved by varying the number of sub-carriers allocated
to each user. The capacity region C characterizes the optimal tradeoff achievable by
any multiple access scheme. From this capacity region, one can derive other scalar
performance measures of interest. For example:
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Figure 6.1: Two-user uplink.

• The symmetric capacity:
Csym := max

(R,R)∈C
R (6.2)

is the maximum common rate at which both the users can simultaneously reliably
communicate.

• The sum capacity:
Csum := max

(R1,R2)∈C
R1 + R2 (6.3)

is the maximum total throughput that can be achieved.

Just like the capacity of the AWGN channel, there is a very simple characterization
of the capacity region C of the uplink AWGN channel: this is the set of all rates (R1, R2)
satisfying the three constraints (Appendix B.9 provides a formal justification):
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R1 < log

(
1 +

P1

N0

)
, (6.4)

R2 < log

(
1 +

P2

N0

)
, (6.5)

R1 + R2 < log

(
1 +

P1 + P2

N0

)
. (6.6)

The capacity region is the pentagon shown in Figure 6.2. All the three constraints
are natural. The first two say that the rate of the individual user cannot exceed the
capacity of the point-to-point link with the other user absent from the system (these
are called single-user bounds). The third says that the total throughput cannot exceed
the capacity of a point-to-point AWGN channel with the sum of the received powers
of the two users. This is indeed a valid constraint since the signals the two users send
are independent and hence the power of the aggregate received signal is the sum of
the powers of the individual received signals.1 Note that without the third constraint,
the capacity region would have been a rectangle, and both users could simultaneously
transmit at the point-to-point capacity as if the other user did not exist. This is clearly
too good to be true and indeed the third constraint says this is not possible: there
must be a tradeoff between the performance of the two users.

Nevertheless, something surprising does happen: user 1 can achieve its single-user
bound while at the same time user 2 can get a non-zero rate; in fact as high as its rate
at point A, i.e.,

R∗
2 = log

(
1 +

P1 + P2

N0

)
− log

(
1 +

P1

N0

)
= log

(
1 +

P2

P1 + N0

)
. (6.7)

How can this be achieved? Each user encodes its data using a capacity-achieving
AWGN channel code. The receiver decodes the information of both the users in two
stages. In the first stage, it decodes the data of user 2, treating the signal from user 1
as Gaussian interference. The maximum rate user 2 can achieve is precisely given by
(6.7). Once the receiver decodes the data of user 2, it can reconstruct user 2’s signal and
subtract it from the aggregate received signal. The receiver can then decode the data
of user 1. Since there is now only the background Gaussian noise left in the system,
the maximum rate user 1 can transmit at is its single-user bound log (1 + P1/N0).
This receiver is called a successive interference cancellation (SIC) receiver or simply
a successive cancellation decoder. If one reverses the order of cancellation, then one
can achieve point B, the other corner point. All the other rate points on the segment
AB can be obtained by time-sharing between the multiple access strategies in point

1This is the same argument we used for deriving the capacity of the MISO channel in Section 5.3.2.
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1 + P1
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Figure 6.2: Capacity region of the two-user uplink AWGN channel.

A and point B (we see in Exercise 6.7 another technique called rate-splitting that also
achieves these intermediate points).

The segment AB contains all the “optimal” operating points of the channel, in the
sense that any other point in the capacity region is component-wise dominated by some
point on AB. Thus one can always increase both users’ rates by moving to a point in
AB, and there is no reason not to.2 No such domination exists among the points on
AB, and the preferred operating point depends on the system objective. If the goal of
the system is to maximize the sum rate, then any point on AB is equally fine. On the
other hand, some operating points are not fair, especially if the received power of one
user is much larger than the other. In this case, consider operating at the corner point
in which the strong user is decoded first: now the weak user gets the best possible
rate.3 In the case when the weak user is the one farther away from the base station, it
is shown in Exercise 6.10 that this decoding order has the property of minimizing the
total transmit power to meet given target rates for the two users. Not only does this
lead to savings in the battery power of the users, it also translates to an increase in
the system capacity of an interference-limited cellular system (see Exercise 6.11).

2In economics terms, the points on AB are called Pareto optimal.
3This operating point is said to be max-min fair.
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6.1.2 Comparison with Conventional CDMA

There is a certain similarity between the multiple access technique that achieves points
A and B, and the CDMA technique discussed in Chapter 4. The only difference is
that in the CDMA system described there, every user is decoded treating the other
users as interference. This is sometimes called a conventional or a single-user CDMA
receiver. In contrast, the SIC receiver is a multiuser receiver: one of the users, say user
1, is decoded treating user 2 as interference, but user 2 is decoded with the benefit
of the signal of user 1 already removed. Thus, we can immediately conclude that
the performance of the conventional CDMA receiver is sub-optimal; in Figure 6.2, it
achieves the point C which is strictly in the interior of the capacity region.

The benefit of SIC over the conventional CDMA receiver is particularly significant
when the received power of one user is much larger than that of the other: by decoding
and subtracting the signal of the strong user first, the weaker user can get a much
higher data rate than when it has to contend with the interference of the strong user
(Figure 6.3). In the context of a cellular system, this means that rather than having to
keep the received powers of all users equal by transmit power control, users closer to
the base station can be allowed to take advantage of the stronger channel and transmit
at a higher rate while not degrading the performance of the users in the edge of the
cell. With a conventional receiver, this is not possible due to the near-far problem.
With the SIC, we are turning the near-far problem into a near-far advantage. This
advantage is less apparent in providing voice service where the required data rate of a
user is constant over time, but it can be important for providing data services where
users can take advantage of the higher data rates when they are closer to the base
station.

6.1.3 Comparison with Orthogonal Multiple Access

How about orthogonal multiple access techniques? Can they be information theoret-
ically optimal? Consider an orthogonal scheme which allocates a fraction α of the
degrees of freedom to user 1 and the rest 1 − α to user 2 (note that, it is irrelevant
for the capacity analysis whether the partitioning is across frequency or across time,
since the power constraint is on the average across the degrees of freedom). Since the
received power of user 1 is P1, the amount of received energy is P1/α Joules per degree
of freedom. The maximum rate user 1 can achieve over the total bandwidth W is

αW log

(
1 +

P1

αN0

)
bits/s. (6.8)

Similarly, the maximum rate user 2 can achieve is

(1− α)W log

(
1 +

P2

(1− α)N0

)
bits/s. (6.9)
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CDMA

to weak user

R2 (bps/Hz)

R1 (bits/s/Hz)

1

5.67

6.66

C A

B

0.585

0.5850.014

D

rate increase

Figure 6.3: In the case when the received powers of the users are very disparate,
successive cancellation (point A) can provide a significant advantage to the weaker
user compared to conventional CDMA decoding (point C). The conventional CDMA
solution is to control the received power of the strong user to equal that of the weak
user (point D), but then the rates of both users are much lower. Here, P1/N0 = 0 dB,
P2/N0 = 20 dB.
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Varying α from 0 to 1 yields all the rate pairs achieved by orthogonal schemes. See
Figure 6.4.

Comparing these rates with the capacity region, one can see that the orthogonal
schemes are in general sub-optimal, except for one point: when α = P1/(P1 + P2), i.e.,
the amount of degrees of freedom allocated to each user is proportional to its received
power (Exercise 6.2 explores the reason why). However, when there is a large disparity
between the received powers of the two users (as in the example of Figure 6.4), this
operating point is highly unfair since most of the degrees of freedom are given to the
strong user and the weak user has hardly any rate. On the other hand, by decoding the
strong user first and then the weak user, the weak user can achieve the highest possible
rate and this is therefore the most fair possible operating point (point A in Figure 6.4).
In contrast, orthogonal multiple access techniques can approach this performance for
the weak user only by nearly sacrificing all the rate of the strong user. Here again,
as in the comparison with CDMA, SIC’s advantage is in exploiting the proximity of a
user to the base station to give it high rate while protecting the far-away user.

6.1.4 General K-user Uplink Capacity

We have so far focused on the two-user case for simplicity, but the results extend
readily to an arbitrary number of users. The K-user capacity region is described by
2K − 1 constraints, one for each possible non-empty subset S of users:

∑

k∈S
Rk < log

(
1 +

∑
k∈S Pk

N0

)
for all S ⊂ {1, . . . , K}. (6.10)

The right-hand-side corresponds to the maximum sum rate that can be achieved by a
single transmitter with the total power of the users in S and with no other users in
the system. The sum capacity is

Csum = log

(
1 +

∑K
k=1 Pk

N0

)
bits/s/Hz. (6.11)

It can be shown that there are exactly K! corner points, each one corresponding to a
successive cancellation order among the users (see Exercise 6.9).

The equal received power case (P1 = . . . = PK = P ) is particularly simple. The
sum capacity is

Csum = log

(
1 +

KP

N0

)
. (6.12)

The symmetric capacity is

Csym = 1/K · log

(
1 +

KP

N0

)
. (6.13)
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Figure 6.4: Performance of orthogonal multiple access compared to capacity. The
SNRs of the two users are: P1/N0 = 0 dB and P2/N0 = 20 dB. Orthogonal multiple
access achieves the sum capacity at exactly one point, but at that point the weak user
1 has hardly any rate and it is therefore a highly unfair operating point. Point A gives
the highest possible rate to user 1 and is most fair.
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This is the maximum rate for each user that can be obtained if every user operates
at the same rate. Moreover, this rate can be obtained via orthogonal multiplexing:
each user is allocated a fraction 1/K of the total degrees of freedom.4 In particular,
we can immediately conclude that under equal received powers, the OFDM scheme
considered in Chapter 4 has a better performance than the CDMA scheme (which uses
conventional receivers.)

Observe that the sum capacity (6.12) is unbounded as the number of users grow.
In contrast, if the conventional CDMA receiver (decoding every user treating all other
users as noise) is used, each user will face an interference from K − 1 users of total
power (K − 1)P , and thus the sum rate is only:

K · log

(
1 +

P

(K − 1)P + N0

)
bits/s/Hz, (6.14)

which approaches

K · P

(K − 1)P + N0

log2 e ≈ log2 e = 1.442 bits/s/Hz, (6.15)

as K → ∞. Thus, the total spectral efficiency is bounded in this case: the growing
interference is eventually the limiting factor. Such a rate is said to be interference-
limited.

The above comparison pertains effectively to a single-cell scenario, since the only
external effect modelled is white Gaussian noise. In a cellular network, the out-of-
cell interference must be considered, and as long as the out-of-cell signals cannot be
decoded, the system would still be interference-limited, no matter what the receiver is.

6.2 Downlink AWGN Channel

The downlink communication features a single transmitter (the base station) sending
separate (i.e., independent) information to multiple receivers (the users) (Figure 6.5).
The baseband downlink AWGN channel with two users is:

yk [m] = hkx [m] + wk [m] , k = 1, 2, (6.16)

where wk [m] ∼ CN (0, N0) is i.i.d. complex Gaussian noise and yk [m] is the received
signal at user k at time m, for both the users k = 1, 2. Here hk is the fixed (complex)
channel gain corresponding to user k. We assume that hk is known to both the trans-
mitter and the user k (for k = 1, 2). The transmit signal {x [m]} has an average power
constraint of P Joules/symbol. Observe the difference from the uplink of this overall
constraint: there the power restrictions are separate for the signals of each user. The
users separately decode their data using the signals they receive.

4This fact is specific to the AWGN channel and does not hold in general. See Section 6.3.
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Figure 6.5: Two-user downlink.

As in the uplink, we can ask for the capacity region C, the region of the rates
(R1, R2), at which the two users can simultaneously reliably communicate. We have
the single-user bounds, as in (6.4) and (6.5),

Rk < log

(
1 +

P |hk|2
N0

)
, k = 1, 2. (6.17)

This upper bound on Rk can be attained by using all the power and degrees of freedom
to communicate to user k (with the other user getting zero rate). Thus, we have
the two extreme points (with rate of one user being zero) in Figure 6.6. Further,
we can share the degrees of freedom (time and bandwidth) between the users in an
orthogonal manner to obtain any rate pair that is a convex combination of these two
extreme points. Can we achieve a rate pair outside this triangle by a more sophisticated
communication strategy?

6.2.1 Symmetric Case: Two Capacity-Achieving Schemes

To get more insight, let us first consider the symmetric case where |h1| = |h2|. In
this symmetric situation, the SNR of both the users is the same. This means that
if user 1 can successfully decode its data, then user 2 should also be able to decode
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successfully the data of user 1 (and vice versa). Thus the sum information rate must
also be bounded by the single-user capacity:

R1 + R2 < log

(
1 +

P |h1|2
N0

)
. (6.18)

Comparing this with the single-user bounds in (6.17) and recalling the symmetry as-
sumption |h1| = |h2|, we have shown the triangle in Figure 6.6 to be the capacity region
of the symmetric downlink AWGN channel.

Let us continue our thought process within the realm of the symmetry assumption.
The rate pairs in the capacity region can be achieved by strategies used on point-
to-point AWGN channels and sharing the degrees of freedom (time and bandwidth)
between the two users. However, the symmetry between the two channels (c.f. (6.16))
suggests a natural, and alternative, approach. The main idea is that if user 1 can
successfully decode its data from y1, then user 2 which has the same SNR should also
be able to decode the data of user 1 from y2. Then user 2 can subtract the codeword
of user 1 from its received signal y2 to better decode its own data, i.e., it can perform
successive interference cancellation. Consider the following strategy that superposes
the signals of the two users, much like in a spread spectrum CDMA system. The
transmit signal is the sum of two signals,

x[m] = x1[m] + x2[m], (6.19)

where {xk[m]} is the signal intended for user k. The transmitter encodes the informa-
tion for each user using an i.i.d. Gaussian code spread on the entire bandwidth (and
powers P1, P2, respectively, with P1 + P2 = P ). User 1 treats the signal for user 2 as
noise and can hence be communicated to reliably at a rate of

R1 = log

(
1 +

P1|h1|2
P2|h1|2 + N0

)
= log

(
1 +

(P1 + P2) |h1|2
N0

)
− log

(
1 +

P2|h1|2
N0

)
.

(6.20)
User 2 performs successive interference cancellation: it first decodes the data of user 1
by treating x2 as noise, subtracts the exactly determined (with high probability) user
1 signal from y2 and extracts its data. Thus user 2 can support reliably a rate

R2 = log

(
1 +

P2|h2|2
N0

)
. (6.21)

This superposition strategy is schematically represented in Figures 6.7 and 6.8. Using
the power constraint P1 + P2 = P we see directly from (6.20) and (6.21) that the rate
pairs in the capacity region (Figure 6.6) can be achieved by this strategy as well. We
have hence seen two coding schemes for the symmetric downlink AWGN channel that
are both optimal: single-user codes followed by orthogonalization of the degrees of
freedom among the users, and the superposition coding scheme.
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Figure 6.6: The capacity region of the downlink with two users having symmetric
AWGN channels, i.e., |h1| = |h2|.
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Figure 6.7: Superposition encoding example. The QPSK constellation of user 2 is
superimposed on top of that of user 1.

6.2.2 General Case: Superposition Coding Achieves Capacity

Let us now return to the general downlink AWGN channel without the symmetry
assumption and take |h1| < |h2|. Now user 2 has a better channel than user 1 and
hence can decode any data that user 1 can successfully decode. Thus, we can use the
superposition coding scheme: First the transmit signal is the (linear) superposition
of the signals of the two users. Then, user 1 treats the signal of user 2 as noise and
decodes its data from y1. Finally, user 2 which has the better channel performs SIC: it
decodes the data of user 1 (and hence the transmit signal corresponding to the user 1’s
data) and then proceeds to subtract the transmit signal of user 1 from y2 and decode
its’ data. As before, with each possible power split of P = P1 + P2, the following rate
pair can be achieved:

R1 = log

(
1 +

P1|h1|2
P2|h1|2 + N0

)
bits/s/Hz

R2 = log

(
1 +

P2|h2|2
N0

)
bits/s/Hz. (6.22)

On the other hand, orthogonal schemes achieve, for each power split P = P1 + P2 and
degree-of-freedom split α ∈ [0, 1], as in the uplink (c.f. (6.8) and (6.9)),

R1 = α log

(
1 +

P1|h1|2
αN0

)
bits/s/Hz,

R2 = (1− α) log

(
1 +

P2|h2|2
(1− α) N0

)
bits/s/Hz. (6.23)
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Figure 6.8: Superposition decoding example. The transmitted constellation point of
user 1 is decoded first, followed by decoding of the constellation point of user 2.

Here, α represents the fraction of the bandwidth devoted to user 1. Figure 6.9 plots
the boundaries of the rate regions achievable with superposition coding and optimal
orthogonal schemes for the asymmetric downlink AWGN channel (with SNR1 = 0 dB
and SNR2 = 20 dB). We observe that the performance of the superposition coding
scheme is better than that of the orthogonal scheme.

One can show that the superposition decoding scheme is strictly better than the
orthogonalization schemes (except for the two corner points where only one user is
being communicated to), i.e., for any rate pair achieved by orthogonalization schemes
there is a power split for which the successive decoding scheme achieves rate pairs that
are strictly larger (see Exercise 6.25). This gap in performance is more pronounced
when the asymmetry between the two users deepens. In particular, superposition
coding can provide a very reasonable rate to the strong user, while achieving close to
the single-user bound for the weak user. In Figure 6.9, for example, while maintaining
the rate of the weaker user R1 at 0.9 bits/s/Hz, superposition coding can provide a rate
of around R2 = 3 bits/s/Hz to the strong user while an orthogonal scheme can provide
a rate of only around 1 bits/s/Hz. Intuitively, the strong user, being at high SNR, is
degree-of-freedom limited and superposition-coding allows it to use the full degrees of
freedom of the channel while being allocated only a small amount of transmit power,
thus causing small amount of interference to the weak user. In contrast, an orthogonal
scheme has to allocate a significant fraction of the degrees of freedom to the weak user
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Figure 6.9: The boundary of rate pairs (in bits/s/Hz) achievable by superposition
coding (solid line) and orthogonal schemes (dashed line) for the two user asymmetric
downlink AWGN channel with the user SNRs equal to 0 and 20 dB (i.e., P |h1|2/N0 = 1
and P |h2|2/N0 = 100). In the orthogonal schemes, both the power split P = P1 + P2

and split in degrees of freedom α are jointly optimized to compute the boundary.
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to achieve near single-user performance, and this causes a large degradation in the
performance of the strong user.

So far we have considered a specific signaling scheme: linear superposition of the
signals of the two users to form the transmit signal (c.f. (6.19)). With this specific
encoding method, the SIC decoding procedure is optimal. However, one can show that
this scheme in fact achieves the capacity and the boundary of the capacity region of
the downlink AWGN channel is given by (6.22) (see Exercise 6.26).

While we have restricted ourselves to two users in the presentation, these results
have natural extensions to the general K user downlink channel. In the symmetric
case |h1| = |h2| = |h|, the capacity region is given by the single constraint

K∑

k=1

Rk < log

(
1 +

P |h|2
N0

)
. (6.24)

In general with the ordering |h1| ≤ |h2| ≤ · · · ≤ |hK |, the boundary of the capacity
region of the downlink AWGN channel is given by the parameterized rate tuple

Rk = log


1 +

Pk|hk|2
N0 +

(∑K
j=k+1 Pj

)
|hk|2


 , k = 1 . . . K, (6.25)

where P =
∑K

k=1 Pk is the power splits among the users. Each rate tuple on the
boundary, as in (6.25), is achieved by superposition coding.

Since we have a full characterization of the tradeoff between the rates at which
users can be jointly reliably communicated to, we can easily derive specific scalar per-
formance measures. In particular, we focused on sum capacity in the uplink analysis;
to achieve the sum capacity we required all the users to transmit simultaneously (we
employed the SIC receiver to decode the data). In contrast, we see from (6.25) that
the sum capacity is achieved by transmitting to a single user, the user with the highest
SNR.

Summary 6.1 Uplink and Downlink AWGN Capacity

Uplink:

y[m] =
K∑

k=1

xk[m] + w[m] (6.26)

with user k having power constraint Pk.

Achievable rates satisfy:
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∑

k∈S
Rk ≤ log

(
1 +

∑
k∈S Pk

N0

)
for all S ⊂ {1, . . . , K} (6.27)

The K! corner points are achieved by SIC, one corner point for each cancellation
order. They all achieve the same optimal sum rate.

A natural ordering would be to decode starting from the strongest user first and
move towards the weakest user.

Downlink:
yk[m] = hkx[m] + wk[m], k = 1, . . . K (6.28)

with |h1| ≤ |h2| ≤ . . . ≤ |hK |.

The boundary of the capacity region is given by the rate tuples:

Rk = log


1 +

Pk|hk|2
N0 +

(∑K
j=k+1 Pj

)
|hk|2


 , k = 1 . . . K, (6.29)

for all possible splits P =
∑

k Pk of the total power at the base station.

The optimal points are achieved by superposition coding at the transmitter and
SIC at each of the receivers.

The cancellation order at every receiver is always to decode the weaker users
before decoding its own data.

Discussion 6.8: SIC: Implementation Issues

We have seen that successive interference cancellation plays an important role in
achieving the capacities of both the uplink and the downlink channel. In contrast
to the receivers for the multiple access systems in Chapter 4, SIC is a multiuser
receiver. Here we discuss several potential practical issues in using SIC in a
wireless system.

• Complexity scaling with the number of users: In the uplink, the base station
has to decode the signals of every user in the cell, whether it uses the conventional
single-user receiver or the SIC. In the downlink, on the other hand, the use of SIC
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at the mobile means that it now has to decode information intended for some of the
other users, something it would not be doing in a conventional system. Then the
complexity at each mobile scales with the number of users in the cell; this is not
very acceptable. However, we have seen that superposition coding in conjunction
with SIC has the largest performance gain when the users have very disparate
channels from the base station. Due to the spatial geometry, typically there are
only a few users close to the base station while most of the users are near the edge
of the cell. This suggests a practical way of limiting complexity: break the users
in the cell into groups, with each group containing a small number of users with
disparate channels. Within each group, superposition coding/SIC is performed,
and across the groups, transmissions are kept orthogonal. This should capture a
significant part of the performance gain.

• Error propagation: Capacity analysis assumes error-free decoding but of course
with actual codes, errors are made. Once an error occurs for a user, all the users
later in the SIC decoding order will very likely be decoded incorrectly. Exercise 6.12
shows that if p

(i)
e is the probability of decoding the ith user incorrectly, assuming

that all the previous users are decoded correctly, then the actual error probability
for the kth user under SIC is at most

k∑
i=1

p(i)
e . (6.30)

So, if all the users are coded with the same target error probability assuming no
propagation, the effect of error propagation degrades the error probability by a
factor of at most the number of users K. If K is reasonably small, this effect can
easily be compensated by using a slightly stronger code (by, say, increasing the
block length by a small amount).

• Imperfect channel estimates: To remove the effect of a user from the ag-
gregate received signal, its contribution must be reconstructed from the decoded
information. In a wireless multipath channel, this contribution depends also on
the impulse response of the channel. Imperfect estimate of the channel will lead
to residual cancellation errors. One concern is that, if the received powers of the
users are very disparate (as in the example in Figure (6.3) where they differ by 20
dB), then the residual error from cancelling the stronger user can still swamp the
weaker user’s signal. On the other hand, it is also easier to get an accurate channel
estimate when the user is strong. It turns out that these two effects compensate
each other and the effect of residual errors does not grow with the power disparity
(see Exercise 6.13).
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• Analog-to-digital quantization error: When the received powers of the users
are very disparate, the analog-to-digital (A/D) converter needs to have a very large
dynamic range, and at the same time, enough resolution to quantize accurately the
contribution from the weak signal. For example, if the power disparity is 20dB,
even 1-bit accuracy for the weak signal would require a 8-bit A/D converter. This
may well pose an implementation constraint on how much gain SIC can offer.

6.3 Uplink Fading Channel

Let us now include fading. Consider the complex baseband representation of the uplink
flat fading channel with K users:

y[m] =
K∑

k=1

hk[m]xk[m] + w[m], (6.31)

where {hk[m]}m is the fading process of user k. We assume that the fading processes
of different users are independent of each other and E[|hk[m]|2] = 1. Here, we focus on
the symmetric case when each user is subject to the same average power constraint, P ,
and the fading processes are identically distributed. In this situation, the sum and the
symmetric capacities are the key performance measures. We will see later in Section 6.7
how the insights obtained from this idealistic symmetric case can be applied to more
realistic asymmetric situations. To understand the effect of the channel fluctuations,
we make the simplifying assumption that the base station (receiver) can perfectly track
the fading processes of all the users.

6.3.1 Slow Fading Channel

Let us start with the slow fading situation where the time scale of communication is
short relative to the coherence time interval for all the users, i.e., hk[m] = hk for all
m. Suppose the users are transmitting at the same rate R bits/s/Hz. Conditioned
on each realization of the channels h1, . . . , hK , we have the standard uplink AWGN
channel with received SNR of user k equal to |hk|2P/N0. If the symmetric capacity
of this uplink AWGN channel is less than R, then the base station can never recover
all of the users’ information accurately; this results in outage. From the expression
for the capacity region of the general K-user uplink AWGN channel (c.f. (6.10)), the
probability of the outage event can be written as:

pul
out := P

{
log

(
1 + SNR

∑

k∈S
|hk|2

)
< |S|R, for some S ⊂ {1, . . . , K}

}
. (6.32)



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 285

Here |S| denotes the cardinality of the set S and SNR := P/N0. The corresponding
ε-outage symmetric capacity, Csym

ε , is then, the largest rate R such that the outage
probability in (6.32) is smaller than or equal to ε.

In Section 5.4.1, we have analyzed the behavior of the outage capacity, Cε (SNR),
of the point-to-point slow fading channel. Since this corresponds to the performance of
just a single user, it is equal to Csym

ε with K = 1. With more than one user, Csym
ε is only

smaller: now each user has to deal not only with a random channel realization but also
inter-user interference. Orthogonal multiple access is designed to completely eliminate
inter-user interference at the cost of lesser (by a factor of 1/K) degrees of freedom
to each user (but the SNR is boosted by a factor of K). Since the users experience
independent fading, an individual outage probability of ε for each user translates into

1− (1− ε)K ≈ Kε

outage probability when we require each user’s information to be successfully decoded.
We conclude that the largest symmetric ε-outage rate with orthogonal multiple access
is equal to

C ε
K

(KSNR)

K
. (6.33)

How much improved are the outage performances of more sophisticated multiple access
schemes, as compared to orthogonal multiple access?

At low SNRs, the outage performance for any K is just as poor as the point-to-
point case (with the outage probability, pout, in (5.54)): indeed, at low SNRs we can
approximate (6.32) as

pul
out ≈ P

{ |hk|2P
N0

< R loge 2, for some k ∈ {1, . . . , K}
}

≈ Kpout. (6.34)

So we can write

Csym
ε ≈ C ε

K
(SNR)

≈ F−1
(
1− ε

K

)
Cawgn. (6.35)

Here we used the approximation for Cε at low SNRs in (5.61). Since Cawgn is linear in
SNR at low SNRs,

Csym
ε ≈ C ε

K
(KSNR)

K
, (6.36)

the same performance as orthogonal multiple access (c.f. (6.33)).
The analysis at high SNR is more involved, so to get a feel for the role of inter-user

interference on the outage performance of optimal multiple access schemes, we plot
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Figure 6.10: Plot of the symmetric ε-outage capacity of the 2-user Rayleigh slow fading
uplink as compared to Cε, the corresponding performance of a point-to-point Rayleigh
slow fading channel.

Csym
ε for K = 2 users as compared to Cε, for Rayleigh fading, in Figure 6.10. As SNR

increases, the ratio of Csym
ε to Cε increases; thus the effect of the inter-user interference

is becoming smaller. However, as SNR becomes very large, the ratio starts to decrease;
the inter-user interference begins to dominate. In fact, at very large SNRs the ratio
drops back to 1/K (Exercise 6.14). We will obtain a deeper understanding of this
behavior when we study outage in the uplink with multiple antennas in Section 10.1.4.

6.3.2 Fast Fading Channel

Let us now turn to the fast fading scenario, where each {hk[m]}m is modelled as a
time-varying ergodic process. With the ability to code over multiple coherence time
intervals, we can have a meaningful definition of the capacity region of the uplink fading
channel. With only receiver CSI, the transmitters cannot track the channel and there
is no dynamic power allocation. Analogous to the discussion in the point-to-point case
(c.f. Section 5.4.5 and, in particular, (5.89)), the sum capacity of the uplink fast fading
channel can be expressed as:
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Csum = E

[
log

(
1 +

∑K
k=1 |hk|2P

N0

)]
. (6.37)

Here hk is the random variable denoting the fading of user k at a particular time and
the time averages are taken to converge to the same limit for all realizations of the
fading process (i.e., the fading process are ergodic). A formal derivation of the capacity
region of the fast fading uplink (with potentially multiple antenna elements) is carried
out in Appendix B.9.3.

How does this compare to the sum capacity (c.f. (6.12)) of the uplink channel
without fading (c.f. (6.12))? Jensen’s inequality implies that

E

[
log

(
1 +

∑K
k=1 |hk|2P

N0

)]
≤ log


1 +

E
[∑K

k=1 |hk|2
]
P

N0




= log

(
1 +

KP

N0

)
.

Hence, without channel state information at the transmitter, fading always hurts,
just as in the point-to-point case. However, when the number of users become large,
1/K ·∑K

k=1 |hk|2 → 1 with probability 1, and the penalty due to fading vanishes.
To understand why the effect of fading goes away as the number of users grows,

let us focus on a specific decoding strategy to achieve the sum capacity. With each
user spreading their information on the entire bandwidth simultaneously, the successive
interference cancellation (SIC) receiver, which is optimal for the uplink AWGN channel,
is also optimal for the uplink fading channel. Consider the kth stage of the cancellation
procedure, where user k is being decoded and users k + 1, . . . K are not canceled. The
effective channel that user k sees is:

y[m] = hk[m]xk[m] +
K∑

i=k+1

hi[m]xi[m] + w[m]. (6.38)

The rate that user k gets is

Rk = E

[
log

(
1 +

|hk|2P∑K
i=k+1 |hi|2P + N0

)]
. (6.39)

Since there are many users sharing the spectrum, the SINR for user k is low. Thus,
the capacity penalty due to the fading of user k is small (c.f. (5.92)). Moreover, there
is also averaging among the interferers. Thus, the effect of the fading of the interferers
also vanishes. More precisely:

Rk ≈ E

[
|hk|2P∑K

i=k+1 |hi|2P + N0

]
log2 e
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≈ E
[ |hk|2P
(K − k)P + N0

]
log2 e

=
P

(K − k)P + N0

log2 e,

which is the rate that user k would have got in the (unfaded) AWGN channel. The
first approximation comes from the linearity of log(1 + SNR) for small SNR, and the
second approximation comes from the law of large numbers.

In the AWGN case, the sum capacity can be achieved by an orthogonal multiple
access scheme which gives a fraction, 1/K, of the total degrees of freedom to each user.
How about the fading case? The sum rate achieved by this orthogonal scheme is:

K∑

k=1

1

K
E

[
log

(
1 +

K|hk|2P
N0

)]
= E

[
log

(
1 +

K|hk|2P
N0

)]
, (6.40)

which is strictly less than the sum capacity of the uplink fading channel (6.37) for
K ≥ 2. In particular, the penalty due to fading persists even when there is a large
number of users.

6.3.3 Full Channel Side Information

We now come to a case of central interest in this chapter, the fast fading channel with
tracking of the channels of all the users at the receiver and all the transmitters.5 As
opposed to the case with only receiver CSI, we can now dynamically allocate powers
to the users as a function of the channel states. Analogous to the point-to-point case,
we can without loss of generality focus on the simple block fading model

y[m] =
K∑

k=1

hk[m]xk[m] + w[m], (6.41)

where hk[m] = hk,` remains constant over the `th coherence period of Tc (Tc À 1) sym-
bols and is i.i.d. across different coherence periods. The channel over L such coherence
periods can be modelled as a parallel uplink channel with L sub-channels which fade
independently. For a given realization of the channel gains hk,`, k = 1, . . . , K, ` =
1, . . . , L, the sum capacity (in bits/symbol) of this parallel channel is, as for the point-
to-point case (c.f. (5.95)) :

max
Pk,`:k=1,...,K,`=1,...,L

1

L

L∑

`=1

log

(
1 +

∑K
k=1 Pk,`|hk,`|2

N0

)
(6.42)

5As we will see, the transmitters will not need to explicitly keep track of the channel variations of
all the users. Only an appropriate function of the channels of all the users needs to be tracked, which
the receiver can compute and feed back to the users.
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subject to the powers being nonnegative and the average power constraint on each
user:

1

L

L∑

`=1

Pk,` = P, k = 1, . . . , K. (6.43)

The solution to this optimization problem as L → ∞ yields the appropriate power
allocation policy to be followed by the users.

As discussed in the point-to-point communication context with full CSI (c.f. Sec-
tion 5.4.6), we can use a variable rate coding scheme: in the `th sub-channel, the
transmit powers dictated by the solution to the optimization problem above (6.42) are
used by the users and a code designed for this fading state is used. For this code, each
codeword sees a time-invariant uplink AWGN channel. Thus, we can use the encod-
ing and decoding procedures for the code designed for the uplink AWGN channel. In
particular, to achieve the maximum sum rate, we can use orthogonal multiple access:
this means that the codes designed for the point-to-point AWGN channel can be used.
Contrast this with the case when only the receiver has CSI, where we have shown that
orthogonal multiple access is strictly suboptimal for fading channels. Note that, this
argument on the optimality of orthogonal multiple access holds regardless of whether
the users have symmetric fading statistics.

In the case of the symmetric uplink considered here, the optimal power allocation
takes on a particularly simple structure. To derive it, let us consider the optimization
problem (6.42), but with the individual power constraints in (6.43) relaxed and replaced
by a total power constraint:

1

L

L∑

`=1

K∑

k=1

Pk,` = KP. (6.44)

The sum rate in the `th sub-channel is :

log

(
1 +

∑K
k=1 Pk,`|hk,`|2

N0

)
, (6.45)

and for a given total power
∑K

k=1 Pk,` allocated to the `th sub-channel, this quantity is
maximized by giving all that power to the user with the strongest channel gain. Thus,
the solution of the optimization problem (6.42) subject to the constraint (6.44) is that
at each time, allow only the user with the best channel to transmit. Since there is just
one user transmitting at any time, we have reduced to a point-to-point problem and
can directly infer from our discussion in Section 5.4.6 that the best user allocates its
power according to the waterfilling policy. More precisely, the optimal power allocation
policy is

Pk,` =

{ (
1
λ
− N0

maxi |hi,`|2
)+

if |hk,`| = maxi |hi,`|
0 else,

(6.46)
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where λ is chosen to meet the sum power constraint (6.44). Taking the number of
coherence periods L → ∞ and appealing to the ergodicity of the fading process, we
get the optimal capacity-achieving power allocation strategy, which allocates powers
to the users as a function of the joint channel state h := (h1, . . . , hK):

P ∗
k (h) =

{ (
1
λ
− N0

maxi |hi|2
)+

if |hk|2 = maxi |hi|2
0 else,

(6.47)

with λ chosen to satisfy the power constraint

K∑

k=1

E[P ∗
k (h)] = KP. (6.48)

(Rigorously speaking, this formula is valid only when there is exactly one user with the
strongest channel. See Exercise 6.16 for the generalization to the case when multiple
users can have the same fading state.) The resulting sum capacity is

Csum = E
[
log

(
1 +

Pk∗(h)|hk∗|2
N0

)]
, (6.49)

where k∗(h) is the index of the user with the strongest channel at joint channel state
h.

We have derived this result assuming a total power constraint on all the users, but
by symmetry, the power consumption of all the users is the same under the optimal
solution (recall that we are assuming independent and identical fading processes across
the users here). Therefore the individual power constraints in (6.43) are automatically
satisfied and we have solved the original problem as well.

This result is the multiuser generalization of the idea of opportunistic communica-
tion developed in Chapter 5: resource is allocated at the times and to the user whose
channel is good.

When one attempts to generalize the optimal power allocation solution from the
point-to-point setting to the multiuser setting, it may be tempting to think of “users”
as a new dimension, in addition to the time dimension, over which dynamic power
allocation can be performed. This may lead us to guess that the optimal solution is
waterfilling over the joint time/user space. This, as we have already seen, is not the
correct solution. The flaw in this reasoning is that, having multiple users does not
provide additional degrees of freedom in the system: the users are just sharing the
time/frequency degrees of freedom already existing in the channel. Thus, the optimal
power allocation problem should really be thought of as how to partition the total
resource (power) across the time/frequency degrees of freedom and how to share the
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resource across the users in each of those degrees of freedom. The above solution says
that from the point of view of maximizing the sum capacity, the optimal sharing is
just to allocate all the power to the user with the strongest channel on that degree of
freedom.

We have focused on the sum capacity in the symmetric case where users have
identical channel statistics and power constraints. It turns out that in the asymmetric
case, the optimal strategy to achieve sum capacity is still to have one user transmitting
at a time, but the criterion of choosing which user is different. This problem is analyzed
in Exercise 6.15. However, in the asymmetric case, maximizing the sum rate may not be
the appropriate objective, since the user with the statistically better channel may get a
much higher rate at the expense of the other users. In this case, one may be interested in
operating at points in the multiuser capacity region of the uplink fading channel other
than the point maximizing the sum rate. This problem is analyzed in Exercise 6.18.
It turns out that, as in the time-invariant uplink, orthogonal multiple access is not
optimal. Instead, users transmit simultaneously and are jointly decoded (using SIC,
for example), even though the rates and powers are still dynamically allocated as a
function of the channel states.

Summary 6.2 Uplink Fading Channel

Slow Rayleigh Fading: At low SNRs, the symmetric outage capacity is equal to
the outage capacity of the point-to-point channel, but scaled down by the number
of users. At high SNRs, the symmetric outage capacity for moderate number of
users is approximately equal to the outage capacity of the point-to-point channel.
Orthogonal multiple access is close to optimal at low SNRs.

Fast Fading, receiver CSI: With a large number of users, each user gets the same
performance as in an uplink AWGN channel with the same average SNR.
Orthogonal multiple access is strictly suboptimal.

Fast Fading, full CSI: Orthogonal multiple access can still achieve the sum
capacity. In a symmetric uplink, the policy of allowing only the best user to
transmit at each time achieves the sum capacity.

6.4 Downlink Fading Channel

We now turn to the downlink fading channel with K users:

yk[m] = hk[m]x[m] + wk[m], k = 1, . . . , K, (6.50)
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where {hk[m]}m is the channel fading process of user k. We retain the average power
constraint of P on the transmit signal and wk[m] ∼ CN (0, N0) to be i.i.d. in time m
(for each user k = 1, . . . , K).

As in the uplink, we consider the symmetric case: {hk [m]}m are identically dis-
tributed processes for k = 1 . . . K. Further, let us also make the same assumption we
did in the uplink analysis: the processes {hk [m]}m are ergodic (i.e., the time average
of every realization equals the statistical average).

6.4.1 Channel Side Information at Receiver Only

Let us first consider the case when the receivers can track the channel but the trans-
mitter does not have access to the channel realizations (but has access to a statistical
characterization of the channel processes of the users). To get a feel for good strategies
to communicate on this fading channel and to understand the capacity region, we can
argue as in the downlink AWGN channel. We have the single-user bounds, in terms of
the point-to-point fading channel capacity in (5.89):

Rk < E
[
log

(
1 +

|h|2P
N0

)]
, k = 1, . . . , K, (6.51)

where h is a random variable distributed as the stationary distribution of the ergodic
channel processes. In the symmetric downlink AWGN channel, we argued that the
users have the same channel quality and hence could decode each other’s data. Here,
the fading statistics are symmetric and by the assumption of ergodicity, we can extend
the argument of the AWGN case to say that, if user k can decode its data reliably,
then all the other users can also successfully decode user k’s data. Analogous to (6.18)
in the AWGN downlink analysis, we obtain:

K∑

k=1

Rk < E
[
log

(
1 +

|h|2P
N0

)]
. (6.52)

An alternative way to see that the right hand side in (6.52) is the best sum rate one
can achieve is outlined in Exercise 6.27. The bound (6.52) is clearly achievable by
transmitting to one user only or by time-sharing between any number of users. Thus
in the symmetric fading channel, we obtain the same conclusion as in the symmet-
ric AWGN downlink: the rate pairs in the capacity region can be achieved by both
orthogonalization schemes and superposition coding.

How about the downlink fading channel with asymmetric fading statistics of the
users? While we can use the orthogonalization scheme in this asymmetric model as
well, the applicability of superposition decoding is not so clear. Superposition coding
was successfully applied in the downlink AWGN channel because there is an ordering of
the channel strength of the users from weak to strong. In the asymmetric fading case,
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users in general have different fading distributions and there is no longer a complete
ordering of the users. In this case, we say that the downlink channel is non-degraded
and little is known about good strategies for communication. Another interesting
situation when the downlink channel is non-degraded arises when the transmitter has
an array of multiple antennas; this is studied in Chapter 10.

6.4.2 Full Channel Side Information

We saw in the uplink that the communication scenario becomes more interesting when
the transmitters can track the channel as well. In this case, the transmitters can
vary their powers as a function of the channel. Let us now turn to the analogous
situation in the downlink where the single transmitter tracks all the channels of the
users it is communicating to (the users continue to track their individual channels).
As in the uplink, we can allocate powers to the users as a function of the channel fade
level. To see the effect, let us continue focusing on sum capacity. We have seen that
without fading, the sum capacity is achieved by transmitting only to the best user.
Now as the channels vary, we can pick the best user at each time and further allocate
it an appropriate power subject to a constraint on the average power. Under this
strategy, the downlink channel reduces to a point-to-point channel with the channel
gain distributed as:

max
k=1...K

|hk|2.
The optimal power allocation is the, by now familiar, waterfilling solution:

P ∗(h) =

(
1

λ
− N0

maxk=1...K |hk|2
)+

, (6.53)

where h = (h1, . . . , hK) is the joint fading state and λ > 0 is chosen such that the
average power constraint is met. The optimal strategy is exactly the same as in the
sum capacity of the uplink. The sum capacity of the downlink is:

E
[
log

(
1 +

P ∗(h) (maxk=1...K |h2
k|)

N0

)]
. (6.54)

6.5 Frequency-Selective Fading Channels

The extension of the flat fading analysis in the uplink and the downlink to underspread
frequency-selective fading channels is conceptually straightforward. As we saw in Sec-
tion 5.4.7 in the point-to-point setting, we can think of the underspread channel as a
set of parallel sub-carriers over each coherence time interval and varying independently
from one coherence time interval to the other. We can see this constructively by im-
posing a cyclic prefix to all the transmit signals; the cyclic prefix should be of length
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that is larger than the largest multipath delay spread that we are likely to encounter
among the different users. Since this overhead is fixed, the loss is amortized when
communicating over a long block length.

We can apply exactly the same OFDM transformation to the multiuser channels.
Thus on the nth sub-carrier, we can write the uplink channel as

ỹn[i] =
K∑

k=1

h̃(k)
n [i] d̃(k)

n [i] + w̃n[i], (6.55)

where d̃(k)[i], h̃(k)[i] and ỹ[i], respectively, represent the DFTs of the transmitted
sequence of user k, of the channel and of the received sequence at OFDM symbol time
i.

The flat fading uplink channel can be viewed as a set of parallel multiuser sub-
channels, one for each coherence time interval. With full CSI, the optimal strategy to
maximize the sum rate in the symmetric case is to allow only the user with the best
channel to transmit at each coherence time interval. The frequency-selective fading
uplink channel can also be viewed as a set of parallel multiuser sub-channels, one for
each sub-carrier and each coherence time interval. Thus, the optimal strategy is to
allow the best user to transmit on each of these sub-channels. The power allocated
to the best user is waterfilling over time and frequency. As opposed to the flat fading
case, multiple users can now transmit at the same time, but over different sub-carriers.
Exactly the same comments apply to the downlink.

6.6 Multiuser Diversity

6.6.1 Multiuser Diversity Gain

Let us consider the sum capacity of the uplink and downlink flat fading channels (see
(6.49) and (6.54), respectively). Each can be interpreted as the waterfilling capacity
of a point-to-point link with a power constraint equal to the total transmit power (in
the uplink this is equal to KP and in the downlink it is equal to P ), and a fading
process whose magnitude varies as {maxk |hk[m]|}. Compared to a system with a
single transmitting user, the multiuser gain comes from two effects:

1. the increase in total transmit power in the case of the uplink;

2. the effective channel gain at time m that is improved from |h1[m]|2 to max1≤k≤K |hk[m]|2.
The first effect already appeared in the uplink AWGN channel and also in the fading
channel with channel side information only at the receiver. The second effect is entirely
due to the ability to dynamically schedule resources among the users as a function of
the channel state.
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Figure 6.11: Sum capacity of the uplink Rayleigh fading channel is plotted as a function
of SNR = KP/N0.

The sum capacity of the uplink Rayleigh fading channel with full CSI is plotted
in Figure 6.11 for different number of users. The performance curves are plotted as
a function of the total SNR := KP/N0 so as to focus on the second effect. The sum
capacity of the channel with only CSI at the receiver is also plotted for different number
of users. The capacity of the point-to-point AWGN channel with received power KP
(which is also the sum capacity of a K-user uplink AWGN channel) is shown as a
baseline. Figure 6.12 focuses on the low SNR regime.

Several observations can be made from the plots:
• The sum capacity without transmitter CSI increases with the number of the users,

but not significantly. This is due to the multiuser averaging effect explained in the
last section. This sum capacity is always bounded by the capacity of the AWGN
channel.

• The sum capacity with full CSI increases significantly with the number of users.
In fact, with even 2 users, this sum capacity already exceeds that of the AWGN
channel. At 0 dB, the capacity with K = 16 users is about a factor of 2.5 of the
capacity with K = 1. The corresponding power gain is about 7dB. Compared to
the AWGN channel, the capacity gain for K = 16 is about a factor of 2.2 and an
SNR gain of 5.5 dB.
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Figure 6.12: Sum capacity of the uplink Rayleigh fading channel is plotted as a function
of SNR = KP/N0 in the low SNR regime. Everything is plotted as a fraction of the
AWGN channel capacity.
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• For K = 1, the capacity benefit of transmitter CSI becomes only apparent at
quite low SNR levels; at high SNR there is no gain. For K > 1 the benefit is
apparent throughout the entire SNR range, although the relative gain is still more
significant at low SNR. This is because the gain is still primarily a power gain.

The increase in the full CSI sum capacity comes from a multiuser diversity effect:
when there are many users which fade independently, at any one time there is a high
probability that one of the users will have a strong channel. By allowing only that user
to transmit, the shared channel resource is used in the most efficient manner and the
total system throughput is maximized. The larger the number of users, the stronger
tends to be the strongest channel, and the more the multiuser diversity gain.

The amount of multiuser diversity gain depends crucially on the tail of the fading
distribution |hk|2: the heavier the tail, the more likely there is a user with a very
strong channel, and the larger the multiuser diversity gain. This is shown in Figure
6.13, where the sum capacity is plotted as a function of the number of users for both
Rayleigh and Ricean fading with κ-factor equaling to 5, with the total SNR, equal to
KP/N0, fixed at 0 dB. Recall from Section 2.4 that, Ricean fading models the situation
when there is a strong specular line-of-sight path plus many small reflected paths. The
parameter κ is defined as the ratio of the energy in the specular line-of-sight path to
the energy in the diffused components. Because of the line-of-sight component, the
Ricean fading distribution is less “random” and has a lighter tail than the Rayleigh
distribution with the same average channel gain. As a consequence, it can be seen that
the multiuser diversity gain is significantly smaller in the Ricean case compared to the
Rayleigh case (see Exercise 6.21).

6.6.2 Multiuser versus Classical Diversity

We have called the above explained phenomenon multiuser diversity. Like the diversity
techniques discussed in Chapter 3, multiuser diversity also arises from the existence of
independently faded signal paths, in this case from the multiple users in the network.
However, there are several important differences. First, the main objective of the
diversity techniques in Chapter 3 is to improve the reliability of communication in
slow fading channels; in contrast, the role of multiuser diversity is to increase the total
throughput over fast fading channels. Under the sum capacity-achieving strategy, a
user has no guarantee of a high rate in any particular slow fading state; only by
averaging over the variations of the channel a high long-term average throughput is
attained. Second, while the diversity techniques are designed to counteract the adverse
effect of fading, multiuser diversity improves system performance by exploiting channel
fading: channel fluctuations due to fading ensure that with high probability there is
a user with a channel strength much larger than the mean level; by allocating all the
system resources to that user, the benefit of this strong channel is fully capitalized.
Third, while the diversity techniques in Chapter 3 pertain to a point-to-point link,
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the benefit of multiuser diversity is system-wide, across the users in the network. This
aspect of multiuser diversity has ramifications on the implementation of multiuser
diversity in a cellular system. We will discuss this next.

6.7 Multiuser Diversity: System Aspects

The cellular system requirements to extract the multiuser diversity benefits are:

• the base station has access to channel quality measurements: in the downlink,
we need each receiver to track its own channel SNR, through say a common
downlink pilot, and feed back the instantaneous channel quality to the base
station (assuming an FDD system), and in the uplink, by having transmissions
from the users so that their channel qualities can be tracked;

• the ability of the base station to schedule transmissions among the users as well
as to adapt the data rate as a function of the instantaneous channel quality.

These features are already present in the designs of many third-generation systems.
Nevertheless, in practice there are several considerations to take into account before
realizing such gains. In this section, we study three main hurdles towards a system
implementation of the multiuser diversity idea and some prominent ways of addressing
these issues.

1. Fairness and Delay: To implement the idea of multiuser diversity in a real
system, one is immediately confronted with two issues: fairness and delay. In
the ideal situation when users’ fading statistics are the same, the strategy of
communicating with the user having the best channel, maximizes not only the
total capacity of the system but also the throughput of individual users. In
reality, the statistics are not symmetric; there are users who are closer to the base
station with a better average SNR; there are users who are stationary and some
that are moving; there are users who are in a rich scattering environment and
some with no scatterers around them. Moreover, the strategy is only concerned
with maximizing long-term average throughputs; in practice there are latency
requirements, in which case the average throughputs over the delay time-scale is
the performance metric of interest. The challenge is to address these issues while
at the same time exploiting the multiuser diversity gain inherent in a system
with users having independent, fluctuating channel conditions. As a case study,
we will look at one particular scheduler that harnesses multiuser diversity while
addressing the real-world fairness issues.

2. Channel Measurement and Feedback: One of the key system requirements
to harness multiuser diversity is to have scheduling decisions by the base station



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 300

be made as a function of the channel states of the users. In the uplink, the base
station has access to the user transmissions (over trickle channels which are used
to convey control information) and has an estimate of the user channels. In the
downlink, the users have access to their channel states but need to feedback these
values to the base station. Both, the error in channel state measurement and
the delay in feeding it back, constitute a significant bottleneck in extracting the
multiuser diversity gains.

3. Slow and Limited Fluctuations: We have observed that the multiuser diver-
sity gains depend on the distribution of channel fluctuations. In particular, larger
and faster variations in a channel are preferred over slow ones. However, there
may be a line-of-sight path and little scattering in the environment, and hence
the dynamic range of channel fluctuations may be small. Further, the channel
may fade very slowly compared to the delay constraints of the application so that
transmissions cannot wait until the channel reaches its peak. Effectively, the dy-
namic range of channel fluctuations is small within the time scale of interest.
Both are important sources of hindrance to implementing multiuser diversity in
a real system. We will see a simple and practical scheme using an antenna array
at the base station that creates fast and large channel fluctuations even when
the channel is originally slow fading with a small range of fluctuation.

6.7.1 Fair Scheduling and Multiuser Diversity

As a case study, we describe a simple scheduling algorithm, called the proportional
fair scheduler, designed to meet the challenges of delay and fairness constraints while
harnessing multiuser diversity. This is the baseline scheduler for the downlink of IS-856,
the third-generation data standard, introduced in Chapter 5. Recall that, the downlink
of IS-856 is TDMA-based, with users scheduled on time slots of length 1.67 ms based
on the requested rates from the users (Figure 5.26). We have already discussed the
rate adaptation mechanism in Chapter 5; here we will study the scheduling aspect.

mobile is from describes
this support. To keep

Proportional Fair Scheduling

The scheduler decides which user to transmit information to at each time slot, based
on the requested rates the base station has previously received from the mobiles. The
simplest scheduler transmits data to each user in a round-robin fashion, regardless of
the channel conditions of the users. The scheduling algorithm used in IS-856 schedules
in a channel-dependent manner to exploit multiuser diversity. It works as follows. It
keeps track of the average throughput Tk[m] of each user in an exponentially weighted
window of length tc. In time slot m, the base station receives the “requested rates”
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Rk[m], k = 1, . . . , K, from all the users and the scheduling algorithm (this algorithm
is called proportional fair scheduling) simply transmits to the user k∗ with the largest

Rk[m]

Tk[m]

among all active users in the system. The average throughputs Tk[m] are updated
using an exponentially weighted low-pass filter:

Tk[m + 1] =





(1− 1
tc

)Tk[m] + 1
tc

Rk[m] k = k∗

(1− 1
tc

)Tk[m] k 6= k∗.
(6.56)

One can get an intuitive feel of how this algorithm works by inspecting Figures 6.14
and 6.15. We plot the sample paths of the requested data rates of two users as a
function of time slots (each time slot is 1.67 ms in IS-856). In Figure 6.14, the two
users have identical fading statistics. If the scheduling time-scale tc is much larger than
the correlation time-scale of the fading dynamics, then by symmetry the throughput of
each user Tk[m] converges to the same quantity. The scheduling algorithm reduces to
always picking the user with the highest requested rate. Thus, each user is scheduled
when its channel is good and at the same time the scheduling algorithm is perfectly
fair in the long term.

In Figure 6.15, due to perhaps different distances from the base station, one user’s
channel is much stronger than that of the other user on average, even though both
channels fluctuate due to multipath fading. Always picking the user with the highest
requested rate means giving all the system resources to the statistically stronger user,
and would be highly unfair. In contrast, under the scheduling algorithm described
above, users compete for resources not directly based on their requested rates but
based on the rates normalized by their respective average throughputs. The user with
the statistically stronger channel will have a higher average throughput.

Thus, the algorithm schedules a user when its instantaneous channel quality is high
relative to its own average channel condition over the time-scale tc. In short, data is
transmitted to a user when its channel is near its own peaks. Multiuser diversity benefit
can still be extracted because channels of different users fluctuate independently so that
if there is a sufficient number of users in the system, most likely there will be a user
near its peak at any one time.

The parameter tc is tied to the latency time-scale of the application. Peaks are
defined with respect to this time-scale. If the latency time-scale is large, then the
throughput is averaged over a longer time-scale and the scheduler can afford to wait
longer before scheduling a user when its channel hits a really high peak.

The main theoretical property of this algorithm is the following: With a very large
tc (approaching ∞), the long term average throughput of each user exists, and the
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Figure 6.14: For symmetric channel statistics of users, the scheduling algorithm reduces
to serving each user with the largest requested rate.
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Figure 6.15: In general, with asymmetric user channel statistics, the scheduling algo-
rithm serves each user when it is near its peak within the latency time-scale tc.
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algorithm maximizes
K∑

k=1

log Tk, (6.57)

among the class of all schedulers (see Exercise 6.28).

Multiuser Diversity and Superposition Coding

Proportional fair scheduling is an approach to deal with fairness among asymmetric
users within the orthogonal multiple access constraint (TDMA in the case of IS-856).
But we understand from Section 6.2.2 that for the AWGN channel, superposition cod-
ing in conjunction with SIC can yield significantly better performance than orthogonal
multiple access in such asymmetric environments. One would expect similar gains in
fading channels, and it is therefore natural to combine the benefits of superposition
coding with multiuser diversity scheduling.

One approach is to divide the users in a cell into say two classes depending on
whether they are near the base station or near the cell edge, so that users in each
class have statistically comparable channel strengths. Users whose current channel is
instantaneously strongest in their own class are scheduled for simultaneous transmis-
sion via superposition coding (Figure 6.16). The user near the base station can decode
its own signal after stripping off the signal destined for the far-away user. By trans-
mitting to the strongest user in each class, multiuser diversity benefits are captured.
On the other hand, the nearby user has a very strong channel and the full degrees
of freedom available (as opposed to only a fraction under orthogonal multiple access),
and thus only needs to be allocated a small fraction of the power to enjoy very good
rates. Allocating a small fraction of power to the nearby user, has a salutary effect:
the presence of this user will affect minimally the performance of the cell-edge user.
Hence, fairness can be maintained by a suitable allocation of power. The efficiency of
this approach over proportional fair TDMA scheduling is quantified in Exercise 6.20.
Exercise 6.19 shows that this strategy is in fact optimal in achieving any point on the
boundary of the downlink fading channel capacity region (as opposed to the strategy
of transmitting to the user with the best channel overall, which is only optimal for the
sum rate and which is an unfair operating point in this asymmetric scenario).

Multiuser Diversity Gain in Practice

We can use the proportional fair algorithm to get some more insights into the issues
involved in realizing multiuser diversity benefits in practice. Consider the plot in Figure
6.17, showing the total simulated throughput of the 1.25 MHz IS-856 downlink under
the proportional fair scheduling algorithm in three environments:
• fixed: users are fixed, but there are movements of objects around them (2 Hz

Ricean, κ := Edirect/Especular = 5). Here Edirect is the energy in the direct path that
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Figure 6.16: Superposition coding in conjunction with multiuser diversity schedul-
ing. The strongest user from each cluster is scheduled and they are simultaneously
transmitted to, via superposition coding.

is not varying, while Especular refers to the energy in the specular or time varying
component that is assumed to be Rayleigh distributed. The Doppler spectrum of
this component follows Clarke’s model with a Doppler spread of 2 Hz.

• low mobility: users move at walking speeds (3 km/hr, Rayleigh).

• high mobility: users move at 30 km/hr, Rayleigh.

The average channel gain E[|h|2] is kept the same in all the three scenarios for
fairness of comparison. The total throughput increases with the number of users in
both the fixed and low mobility environments, but the increase is more dramatic in the
low mobility case. While the channel fades in both cases, the dynamic range and the
rate of the variations is larger in the mobile environment than in the fixed one (Figure
6.18). This means that over the latency time-scale (tc = 1.67 s in these examples) the
peaks of the channel fluctuations are likely to be higher in the mobile environment, and
the peaks are what determines the performance of the scheduling algorithm. Thus, the
inherent multiuser diversity is more limited in the fixed environment.

Should one then expect an even higher throughput gain in the high mobility en-
vironment? In fact quite the opposite is true. The total throughput hardly increases
with the number of users! It turns out that at this speed, the receiver has trouble
tracking and predicting the channel variations, so that the predicted channel is a low-
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Figure 6.17: Multiuser diversity gain in fixed and mobile environments.
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pass smoothed version of the actual fading process. Thus, even though the actual
channel fluctuates, opportunistic communication is impossible without knowing when
the channel is actually good.

In the next section, we will discuss how the tracking of the channel can be improved
in high mobility environments. In Section 6.7.3, we will discuss a scheme that boosts
the inherent multiuser diversity in fixed environments.

6.7.2 Channel Prediction and Feedback

The prediction error is due to two effects: the error in measuring the channel from
the pilot and the delay in feeding back the information to the base station. In the
downlink, the pilot is shared between many users and is strong; so, the measurement
error is quite small and the prediction error is mainly due to the feedback delay. In IS-
856, this delay is about two time slots, i.e., 3.33 ms. At a vehicular speed of 30 km/h
and carrier frequency of 1.9 GHz, the coherence time is approximately 2.5 ms; the
channel coherence time is comparable to the delay and this makes prediction difficult.

One remedy to reduce the feedback delay is to shrink the size of the scheduling time
slot. However, this increases the requested rate feedback frequency in the uplink and
thus, increases the system overhead. There are ways to reduce this feedback, though.
In the current system, every user feeds back the requested rates, but in fact only users
whose channels are near their peaks have any chance of getting scheduled. Thus,
an alternative is for each user to feed back the requested rate only when its current
requested rate to average throughput ratio, Rk[m]/Tk[m], exceeds a threshold γ. This
threshold, γ, can be chosen to tradeoff the average aggregate amount of feedback the
users send with the probability that none of the users sends any feedback in a given
time slot (thus wasting the slot) (Exercise 6.22).

In IS-856, multiuser diversity scheduling is implemented in the downlink, but the
same concept can be applied to the uplink. However, the issues of prediction error
and feedback are different. In the uplink, the base station would be measuring the
channels of the users, and so a separate pilot would be needed for each user. The
downlink has a single pilot and this amortization among the users is used to have a
strong pilot. However, in the uplink fraction of power devoted to the pilot is typically
small. Thus, it is expected that the measurement error will play a larger role in the
uplink. Moreover, the pilot will have to be sent continuously even if the user is not
currently scheduled, thus causing some interference to other users. On the other hand,
the base station only needs to broadcast which user is scheduled at that time slot,
so the amount of feedback is much smaller than in the downlink (unless the selective
feedback scheme is implemented).

The above discussion pertains to an FDD system. You are asked to discuss the
analogous issues for a TDD system in Exercise 6.23.
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Figure 6.19: Same signal is transmitted over the two antennas with time varying phase
and powers.

6.7.3 Opportunistic Beamforming using Dumb Antennas

The amount of multiuser diversity depends on the rate and dynamic range of channel
fluctuations. In environments where the channel fluctuations are small, a natural idea
comes to mind: why not amplify the multiuser diversity gain by inducing faster and
larger fluctuations? Focusing on the downlink, we describe a technique that does this
using multiple transmit antennas at the base station as illustrated in Figure 6.19.

Consider a system with nt transmit antennas at the base station. Let hlk [m] be the
complex channel gain from antenna l to the kth user in time m. In time m, the same
symbol x[m] is transmitted from all of the antennas except that it is multiplied by a
complex number

√
αl[m]ejθl[m] at antenna l, for l = 1 . . . nt, such that

∑nt

l=1 αl[m] = 1,
preserving the total transmit power. The received signal at user k (see the basic
downlink fading channel model in (6.50) for comparison) is given by:

yk[m] =

(
nt∑

l=1

√
αl[m]ejθl[m]hlk[m]

)
x[m] + wk[m]. (6.58)
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In vector form, the scheme transmits q[m]x[m] at time m, where

q[m] :=




√
α1[m]ejθ1[m]

·
·√

αnt [m]ejθnt [m]


 (6.59)

is a unit vector and
yk[m] = (hk[m]∗q[m]) x[m] + wk[m] (6.60)

where hk[m]∗ := (h1k[m], . . . , hnt,k[m]) is the channel vector from the transmit antenna
array to user k.

The overall channel gain seen by user k is now

hk[m]∗q[m] =
nt∑

l=1

√
αl[m]ejθl[m]hlk[m]. (6.61)

The αl[m]’s denote the fractions of power allocated to each of the transmit antennas,
and the θl[m]’s denote the phase shifts applied at each antenna to the signal. By
varying these quantities over time (αl[m]’s from 0 to 1 and θl[m]’s from 0 to 2π) , the
antennas transmit signals in a time-varying direction, and fluctuations in the overall
channel can be induced even if the physical channel gains {hlk[m]} have very little
fluctuations (Figure 6.20).

As in the single transmit antenna system, each user k feeds back the overall re-
ceived SNR of its own channel, |hk[m]∗q[m]|2/N0, to the base station (or equivalently
the data rate that the channel can currently support) and the base station schedules
transmissions to users accordingly. There is no need to measure the individual channel
gains hlk[m] (phase or magnitude); in fact, the existence of multiple transmit antennas
is completely transparent to the users. Thus only a single pilot signal is needed for
channel measurement (as opposed to a pilot to measure each antenna gain). The pilot
symbols are repeated at each transmit antenna, exactly like the data symbols.

The rate of variation of {αl[m]} and {θl[m]} in time (or, equivalently, of the transmit
direction q[m]) is a design parameter of the system. We would like it to be as fast as
possible to provide full channel fluctuations within the latency time scale of interest.
On the other hand, there is a practical limitation to how fast this can be. The variation
should be slow enough and should happen at a time scale that allows the channel to be
reliably estimated by the users and the SNR fed back. Further, the variation should
be slow enough to ensure that the channel seen by a user does not change abruptly
and thus maintains stability of the channel tracking loop.

Slow Fading: Opportunistic Beamforming

To get some insight into the performance of this scheme, consider the case of slow
fading where the channel gain vector of each user k remains constant, i.e., hk[m] = hk,
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Figure 6.20: Pictorial representation of the slow fading channels of two users before
(above) and after (below) applying opportunistic beamforming.
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for all m. (In practice, this means: for all m over the latency time-scale of interest.)
The received SNR for this user would have remained constant if only one antenna were
used. If all users in the system experience such slow fading, no multiuser diversity gain
can be exploited. Under the proposed scheme, on the other hand, the overall channel
gain hk[m]∗q[m] for each user k varies in time and provides opportunity for exploiting
multiuser diversity.

Let us focus on a particular user k. Now if q[m] varies across all directions, the am-
plitude squared of the channel |hk[m]∗q[m]|2 seen by user k varies from 0 to

∑nt

l=1 |hlk|2.
The peak value occurs when the transmission is aligned along the direction of the chan-
nel of user k, i.e., q[m] = hk/‖hk‖ (recall Example 2 in Section 5.3). The power and
phase values are then in the beamforming configuration :

αl =
| hlk |2∑nt

j=1 | hjk |2 , l = 1, . . . , nt,

θl = −arg(hlk), l = 1, . . . , nt.

To be able to beamform to a particular user, the base station needs to know indi-
vidual channel amplitude and phase responses from all the antennas, which requires
much more information to feedback than just the overall SNR. However, if there are
many users in the system, the proportional fair algorithm will schedule transmission
to a user only when its overall channel SNR is near its peak. Thus, it is plausible that
in a slow fading environment, the technique can approach the performance of coherent
beamforming but with only overall SNR feedback (Figure 6.21). In this context, the
technique can be interpreted as opportunistic beamforming: by varying the phases and
powers allocated to the transmit antennas, a beam is randomly swept and at any time
transmission is scheduled to the user which is currently closest to the beam. This
intuition has been formally justified (see Exercise 6.29).

Fast Fading: Increasing Channel Fluctuations

We see that opportunistic beamforming can significantly improve performance in slow
fading environments by adding fast time-scale fluctuations on the overall channel qual-
ity. The rate of channel fluctuation is artificially sped up. Can opportunistic beam-
forming help if the underlying channel variations are already fast (fast compared to
the latency time-scale)?

The long term throughput under fast fading depends only on the stationary dis-
tribution of the channel gains. The impact of opportunistic beamforming in the fast
fading scenario then depends on how the stationary distributions of the overall channel
gains can be modified by power and phase randomization. Intuitively, better multiuser
diversity gain can be exploited if the dynamic range of the distribution of hk can be
increased, so that the maximum SNRs can be larger. We consider two examples of
common fading models.
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Figure 6.21: Plot of spectral efficiency under opportunistic beamforming as a function
of the total number of users in the system. The scenario is for slow Rayleigh faded
channels for the users and the channels are fixed in time. The spectral efficiency plotted
is the performance averaged over the Rayleigh distribution. As the number of users
grow, the performance approaches the performance of true beamforming.
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• Independent Rayleigh fading: In this model, appropriate for an environment
where there is full scattering and the transmit antennas are spaced sufficiently
apart, the channel gains h1k[m], . . . , hntk[m] are i.i.d. CN random variables. In
this case, the channel vector hk[m] is isotropically distributed, and hk[m]∗q[m] is
circularly symmetric Gaussian for any choice of q[m]; moreover the overall gains
are independent across the users. Hence, the stationary statistics of the channel
are identical to the original situation with one transmit antenna. Thus, in an
independent fast Rayleigh fading environment, the opportunistic beamforming
technique does not provide any performance gain.

• Independent Ricean fading: In contrast to the Rayleigh fading case, opportunis-
tic beamforming has a significant impact in a Ricean environment, particularly
when the κ-factor is large. In this case, the scheme can significantly increase
the dynamic range of the fluctuations. This is because the fluctuations in the
underlying Ricean fading process come from the diffused component, while with
randomization of phase and powers, the fluctuations are from the coherent ad-
dition and cancellation of the direct path components in the signals from the
different transmit antennas, in addition to the fluctuation of the diffused compo-
nents. If the direct path is much stronger than the diffused part (large κ values),
then much larger fluctuations can be created with this technique.

This intuition is substantiated in Figure 6.22, which plots the total throughput
with the proportional fair algorithm (large tc, of the order of 100 time-slots) for
Ricean fading with κ = 10. We see that there is a considerable improvement in
performance going from the single transmit antenna case to dual transmit anten-
nas with opportunistic beamforming. For comparison, we also plot the analogous
curves for pure Rayleigh fading; as expected, there is no improvement in perfor-
mance in this case. Figure 6.23 compares the stationary distributions of the
overall channel gain |hk[m]∗q[m]| in the single-antenna and dual-antenna cases;
one can see the increase in dynamic range due to opportunistic beamforming.

Antennas: Dumb, Smart and Smarter

In this section so far, our discussion has focused on the use of multiple transmit an-
tennas to induce larger and faster channel fluctuations for multiuser diversity benefits.
It is insightful to compare this with the two other point-to-point transmit antenna
techniques we have already discussed earlier in the book :
• space-time codes like the Alamouti scheme (Section 3.3.2). They are primarily

used to increase the diversity in slow fading point-to-point links.

• transmit beamforming (Section 5.3.2). In addition to providing diversity, a power
gain is also obtained through the coherent addition of signals at the users.
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Figure 6.22: Total throughput as a function of the number of users under Ricean fast
fading, with and without opportunistic beamforming. The power allocation αl[m]’s
are uniformly distributed in [0, 1] and the phases θl[m]’s uniform in [0, 2π].
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The three techniques have different system requirements. Coherent space-time
codes like the Alamouti scheme require the users to track all the individual channel
gains (amplitude and phase) from the transmit antennas. This requires separate pilot
symbols on each of the transmit antennas. Transmit beamforming has an even stronger
requirement that the channel should be known at the transmitter. In an FDD system,
this means feedback of the individual channel gains (amplitude and phase). In contrast
to these two techniques, the opportunistic beamforming scheme requires no knowledge
of the individual channel gains, neither at the users nor at the transmitter. In fact, the
users are completely ignorant of the fact that there are multiple transmit antennas and
the receiver is identical to that in the single transmit antenna case. Thus, they can be
termed dumb antennas. Opportunistic beamforming does rely on multiuser diversity
scheduling, which requires the feedback of the overall SNR of each user. However, this
only needs a single pilot to measure the overall channel.

What is the performance of these techniques when used in the downlink? In a
slow fading environment, we have already remarked that opportunistic beamforming
approaches the performance of transmit beamforming when there are many users in
the system. On the other hand, space-time codes do not perform as well as transmit
beamforming since they do not capture the array power gain. This means, for example,
using the Alamouti scheme on dual transmit antennas in the downlink is 3 dB worse
than using opportunistic beamforming combined with multiuser diversity scheduling
when there are many users in the system. Thus, dumb antennas together with smart
scheduling can surpass the performance of smart space-time codes and approach that
of the even smarter transmit beamforming.

How about in a fast Rayleigh fading environment? In this case, we have observed
that dumb antennas have no effect on the overall channel as the full multiuser diversity
gain has already been realized. Space-time codes, on the other hand, increase the
diversity of the point-to-point links and consequently decrease the channel fluctuations
and hence the multiuser diversity gain . (Exercise 6.31 makes this more precise.) Thus,
the use of space-time codes as a point-to-point technology in a multiuser downlink with
rate control and scheduling can actually be harmful, in the sense that even the naturally
present multiuser diversity is removed. The performance impact of using transmit
beamforming is not so clear: on the one hand it reduces the channel fluctuation and
hence the multiuser diversity gain, but on the other hand it provides an array power
gain. However, in an FDD system the fast fading channel may make it very difficult
to feed back so much information to enable coherent beamforming.

The comparison between the three schemes is summarized in Table 6.1. All three
techniques use the multiple antennas to transmit to only one user at a time. With full
channel knowledge at the transmitter, an even smarter scheme can transmit to multiple
users simultaneously, exploiting the multiple degrees of freedom existing inherently in
the multiple antenna channel. We will discuss this in Chapter 10.
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Dumb Antennas Smart Antennas Smarter Antennas
(Opp. beamform) (Space Time codes) (Transmit beamform)

Channel overall SNR entire CSI at Rx entire CSI at Rx, Tx
Knowledge
Slow Fading diversity and power diversity gain diversity and power

Performance Gain gains only gains
Fast Fading no impact multiuser diversity ↓ multiuser diversity ↓

Performance Gain power ↑
Table 6.1: A comparison between three methods of using transmit antennas.

6.7.4 Multiuser Diversity in Multi-cell Systems

So far we have considered a single-cell scenario, where the noise is assumed to be white
Gaussian. For wide band cellular systems with full frequency reuse (such as the CDMA
and OFDM based systems in Chapter 4), it is important to consider the effect of inter-
cell interference on the performance of the system, particularly in interference-limited
scenarios. In a cellular system, this effect is captured by measuring the channel quality
of a user by the SINR, signal-to-interference-plus-noise ratio. In a fading environment,
the energies in both the received signal and the received interference fluctuate over
time. Since the multiuser diversity scheduling algorithm allocates resources based on
the channel SINR (which depends on both the channel amplitude and the amplitude
of the interference), it automatically exploits both the fluctuations in the energy of
the received signal as well as that of the interference: the algorithm tries to schedule
resource to a user whose instantaneous channel is good and the interference is weak.
Thus, multiuser diversity naturally takes advantage of the time-varying interference to
increase the spatial reuse of the network.

From this point of view, amplitude and phase randomization at the base station
transmit antennas plays an additional role: it increases not only the amount of fluctu-
ations of the received signal to the intended users within the cells, it also increases the
fluctuations of the interference the base station causes in adjacent cells. Hence, oppor-
tunistic beamforming has a dual benefit in an interference-limited cellular system. In
fact, opportunistic beamforming performs opportunistic nulling simultaneously: while
randomization of amplitude and phase in the transmitted signals from the antennas
allows near coherent beamforming to some user within the cell, it will create near nulls
at some other user in adjacent cells. This in effect allows interference avoidance for
that user if it is currently being scheduled.

Let us focus on the downlink and slow flat fading scenario to get some insight into
the performance gain from opportunistic beamforming and nulling. Under amplitude
and phase randomization at all base stations, the received signal of a typical user that
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is interfered by J adjacent base stations is given by

y[m] = (h∗q[m]) x[m] +
J∑

j=1

(
g∗jqj[m]

)
uj[m] + z[m]. (6.62)

Here, x[m],h,q[m] are respectively the signal, channel vector and random transmit
direction from the base station of interest; uj[m],gj,qj[m] are respectively the inter-
fering signal, channel vector and random transmit direction from the jth base station.
All base stations have the same transmit power, P, and nt transmit antennas and are
performing amplitude and phase randomization independently.

By averaging over the signal x[m] and the interference uj[m]’s, the (time-varying)
SINR of the user k can be computed to be:

SINRk[m] =
P |h∗q[m]|2

P
∑J

j=1 |g∗jqj[m]|2 + N0

. (6.63)

As the random transmit directions q[m],qj[m] vary, the overall SINR changes over
time. This is due to the variations of the overall gain from the base station of interest as
well as those from the interfering base stations. The SINR is high when q[m] is closely
aligned to the channel vector h, and/or for many j’s, qj[m] is nearly orthogonal to gj,
i.e., the user is near a null of the interference pattern from the jth base station. In a
system with many other users, the proportional fair scheduler will serve this user while
its SINR is at its peak P‖h‖2/N0, i.e., when the received signal is the strongest and the
interference is completely nulled out. Thus, the opportunistic nulling and beamforming
technique has the potential of shifting a user from a low SINR, interference-limited
regime to a high SINR, noise-limited regime. An analysis of the tail of the distribution
of SINR is conducted in Exercise 6.30.

6.7.5 A System View

A new design principle for wireless systems can now be seen through the lens of mul-
tiuser diversity. In the three systems in Chapter 4, much of the design techniques
centered on making the individual point-to-point links as close to AWGN channels
as possible, with a reliable channel quality that is constant over time. This is ac-
complished by channel averaging, and includes the use of diversity techniques such as
multipath combining, time interleaving and antenna diversity that attempt to keep the
channel fading constant in time, as well as interference management techniques such
as interference averaging by means of spreading.

However, if one shifts from the view of the wireless system as a set of point-to-point
links to the view as a system with multiple users sharing the same resources (spectrum
and time), then quite a different design objective suggests itself. Indeed, the results
in this chapter suggest that one should instead try to exploit the channel fluctuations.
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This is done through an appropriate scheduling algorithm that “rides the peaks”, i.e.,
each user is scheduled when it has a very strong channel, while taking into account real
world traffic constraints such as delay and fairness. The technique of dumb antennas
goes one step further by creating variations when there are none. This is accomplished
by varying the strengths of both the signal and the interference that a user receives
through opportunistic beamforming and nulling.

The viability of the opportunistic communication scheme depends on traffic that
has some tolerance to scheduling delays. On the other hand, there are some forms of
traffic that are not so flexible. The functioning of the wireless systems is supported by
the overhead control channels which are “circuit-switched” and hence have very tight
latency requirements, unlike data which have the flexibility to allow dynamic schedul-
ing. From the perspective of these signals, it is preferable that the channel remained
unfaded; a requirement that is contradictory to our scheduler-oriented observation that
we would prefer the channel to have fast and large variations.

This issue suggests the following design perspective: separate very-low latency
signals (such as control signals) from flexible latency data. One way to achieve this
separation is to split the bandwidth into two parts. One part is made as flat as possible
(by using the principles we saw in Chapter 4 such as spreading over this part of the
bandwidth) and is used to transmit flows with very low latency requirements. The
performance metric here is to make the channel as reliable as possible (equivalently
keeping the probability of outage low) for some fixed data rate. The second part
uses opportunistic beamforming to induce large and fast channel fluctuations and a
scheduler to harness the multiuser diversity gains. The performance metric on this
part is to maximize the multiuser diversity gain.

The gains of the opportunistic beamforming and nulling depend on the probability
that the received signal is near beamformed and all the interference is near null. In the
interference-limited regime and when P/N0 À 1, the performance depends mainly on
the probability of the latter event see Exercise 6.30). In the downlink, this probability
is large since there are only one or two base stations contributing most of the interfer-
ence. The uplink poses a contrasting picture: there is interference from many mobiles
allowing interference averaging. Now the probability that the total interference is near
null is much smaller. Interference averaging, which is one of the principle design fea-
tures of the wideband full reuse systems (such as the ones we saw in Chapter 4 based
on CDMA and OFDM) is actually unfavorable for the opportunistic scheme described
here, since it reduces the likelihood of the nulling of the interference and hence the
likelihood of the peaks of the SINR.

In a typical cell, there will be a distribution of users, some closer to the base station
and some closer to the cell boundaries. Users close to the base station are at high
SINR and are noise-limited; the contribution of the inter-cell interference is relatively
small. These users benefit mainly from opportunistic beamforming. Users close to
the cell boundaries, on the other hand, are at low SINR and are interference-limited;
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the average interference power can be much larger than the background noise. These
users benefit both from opportunistic beamforming and from opportunistic nulling of
inter-cell interference. Thus, the cell-edge users benefit more in this system than users
in the interior. This is rather desirable from a system fairness point-of-view, as the
cell-edge users tend to have poorer service. This feature is particularly important for a
system without soft handoff (which is difficult to implement in a packet data scheduling
system). To maximize the opportunistic nulling benefits, the transmit power at the
base station should be set as large as possible, subject to regulatory and hardware
constraints. (See Exercise 6.30(5) where this is explored in more detail.)

We have seen the multiuser diversity as primarily a form of power gain. The
opportunistic beamforming technique of using an array of multiple transmit antennas
has approximately an nt fold improvement in received SNR to a user in a slow fading
environment, as compared to the single-antenna case. With an array of nr receive
antennas at each mobile (and say a single transmit antenna at the base station),
the received SNR of any user gets an nr fold improvement as compared to a single
receive antenna; this gain is realized by receiver beamforming. This operation is easy
to accomplish since the mobile has full channel information at each of the antenna
elements. Hence the gains of opportunistic beamforming are about the same order as
that of installing sets of receive antenna arrays at each of the mobiles.

Thus, for a system designer, the opportunistic beamforming technique provides a
compelling case for implementation, particularly in view of the constraints of space
and cost of installing multiple antennas on each mobile device. Further, this technique
neither needs any extra processing on part of any user, nor any updates to an existing
air-link interface standard. In other words, the mobile receiver can be completely
ignorant to the use or non-use of this technique. This means that it does not have
to be “designed in” (by appropriate inclusions in the air interface standard and the
receiver design) and can be added/removed at any time. This is one of the important
benefits of this technique from an overall system design point of view.

In the cellular wireless systems studied in Chapter 4, the cell is sectorized to allow
better focusing of the power transmitted from the antennas and also to reduce the inter-
ference seen by mobile users from transmissions of the same base station but intended
for users in different sectors. This technique is particularly gainful in scenarios when
the base station is located at a fairly large height and thus there is limited scattering
around the base station. In contrast, in systems with far denser deployment of base
stations (a strategy that can be expected to be a good one for wireless systems aiming
to provide mobile, broadband data services), it is unreasonable to stipulate that the
base stations be located high above the ground so that the local scattering (around the
base station) is minimal. In an urban environment, there is substantial local scattering
around a base station and the gains of sectorization are minimal; users in a sector also
see interference from the same base station (due to the local scattering) intended for
another sector. The opportunistic beamforming scheme can be thought of as sweeping
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Conventional Multiple Access Opportunistic Communication
Guiding principle averaging out fast exploiting

Channel fluctuations channel fluctuations
Knowledge at Tx track slow fluctuations track as much

no need to track fast ones fluctuations as possible
Control power control the rate control to

slow fluctuations all fluctuations
Delay requirement can support tight delay needs some laxity

Role of Tx antennas point-to-point diversity increase fluctuations
Power gain in downlink multiple Rx antennas opportunistic beamform

via multiple Tx antennas
Interference management averaged opportunistically avoided

Table 6.2: Contrast between conventional multiple access and opportunistic commu-
nication.

a random beam and scheduling transmissions to users when they are beamformed.
Thus, the gains of sectorization are automatically realized. We conclude that the op-
portunistic beamforming technique is particularly suited to harness sectorization gains
even in low height base stations with plenty of local scattering. In a cellular system,
the opportunistic beamforming scheme also obtains the gains of nulling, a gain tradi-
tionally obtained by coordinated transmissions from neighboring base stations in a full
frequency reuse system or by appropriately designing the frequency reuse pattern.

The discussion is summarized in Table 6.2.
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Chapter 6: The Main Plot

This chapter looked at the capacities of uplink and downlink channels. Two
important sets of concepts emerged:
• successive interference cancellation (SIC) and superposition coding;

• multiuser opportunistic communication and multiuser diversity.

SIC and Superposition Coding

Uplink:

Capacity is achieved by allowing users to simultaneously transmit on the full
bandwidth and the use of SIC to decode the users.

SIC has a significant performance gain over conventional multiple access
techniques in near-far situations. It takes advantage of the strong channel of the
nearby user to give it high rate while providing the weak user with the best
possible performance.

Downlink:

Capacity is achieved by superimposing users’ signals and the use of SIC at the
receivers. The strong user decodes the weak user’s signal first and then decode its
own.

Superposition coding/SIC has a significant gain over orthogonal techniques. Only
small amount of power has to be allocated to the strong user to give it a high
rate, while delivering near-optimal performance to the weak user.

Opportunistic Communication

Symmetric uplink fading channel:

y[m] =
K∑

k=1

hk[m]xk[m] + w[m]. (6.64)

Sum capacity with CSI at receiver only:

Csum = E

[
log

(
1 +

∑K
k=1 |hk|2P

N0

)]
(6.65)
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Very close to AWGN capacity for large number of users. Orthogonal multiple
access is strictly sub-optimal.

Sum capacity with full CSI:

Csum = E
[
log

(
1 +

Pk∗(h)|hk∗ |2
N0

)]
, (6.66)

where k∗ is the user with the strongest channel at joint channel state h. This is
achieved by transmitting only to the user with the best channel and a waterfilling
power allocation Pk∗(h) over the fading state.

Symmetric downlink fading channel:

yk[m] = hk[m]x[m] + wk[m], k = 1, . . . , K. (6.67)

Sum capacity with CSI at receiver only:

Csum = E
[
log

(
1 +

|hk|2P
N0

)]
(6.68)

Can be achieved by orthogonal multiple access.

Sum capacity with full CSI: same as uplink.

Multiuser Diversity

Multiuser diversity gain: under full CSI, capacity increases with the number of
users: in a large system with high probability there is always a user with a very
strong channel.

System issues in implementing multiuser diversity:
• fairness: fair access to the channel when some users are statistically stronger than

others.

• delay: cannot wait too long for a good channel.

• channel tracking: channel has to be measured and fed back fast enough.

• small and slow channel fluctuations: multiuser diversity gain is limited when
channel varies too slowly and/or has a small dynamic range.

The solutions discussed were:
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• Proportional fair scheduler transmits to a user when its channel is near its peak
within the delay constraint. Every user has access to the channel for roughly the
same amount of time.

• Channel feedback delay can be reduced by having shorter time slots and feeding
back more often. Aggregate feedback can be reduced by each user selectively
feeding channel state back only when its channel is near its peak.

• Channel fluctuations can be sped up and their dynamic range increased by the
use of multiple transmit antennas to perform opportunistic beamforming. The
scheme sweeps a random beam and schedules transmissions to users when they
are beamformed.

In a cellular system, multiuser diversity scheduling performs interference
avoidance as well: a user is scheduled transmission when its channel is strong and
the out-of-cell interference is weak.

Multiple transmit antennas can perform opportunistic beamforming as well as
nulling.
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6.8 Bibliographical Notes

Classical treatment of the general multiple access channel was initiated by Ahlswede
[2] and Liao [58] who characterized the capacity region. A good survey of the literature
on MACs is done by Gallager [35].

The general broadcast channel was introduced by Cover [21] and a complete char-
acterization of its capacity is one of the famous open problems in information theory.
Degraded broadcast channels, where the users can be “ordered” based on their channel
quality, are fully understood with superposition coding being the optimal strategy; a
text book reference is Chapter 14.6 in [22]. The best inner and outer bounds are by
Marton [66] and a good survey of the literature appears in [20].

The capacity region of the uplink fading channel with receiver CSI was derived by
Gallager [34], where he also showed that orthogonal multiple access schemes are strictly
sub-optimal in fading channels. Knopp and Humblet [51] studied the sum capacity of
the uplink fading channel with full CSI. They noted that transmitting to only one user
is the optimal strategy. An analogous result was obtained earlier by Cheng and Verdú
[17] in the context of the time-invariant uplink frequency selective channels. Both
these channels are instances of the parallel Gaussian multiple access channel, so the
two results are mathematically equivalent. The latter authors also derived the capacity
region in the two user case. The solution for arbitrary number of users was obtained
by Tse and Hanly [98], exploiting a basic polymatroid property of the region.

The study of downlink fading channels with full CSI was carried out by Tse [99] and
Lifang and Goldsmith [59]. The key aspect of the study was to observe that the fading
downlink really constitutes a set of parallel degraded broadcast channels which have
been fully understood [26]. There is an intriguing similarity in the downlink resource
allocation solution to the uplink one. This connection is studied further in Chapter 10.

Multiuser diversity is a key distinguishing feature of the uplink and the downlink
fading channel study as compared to our understanding of the point-to-point fading
channel. The term multiuser diversity was coined by Knopp and Humblet [51]. The
multiuser diversity concept was integrated into the downlink design of IS-856 (CDMA
2000 EV-DO) via the proportional fair scheduler, in [16]. In realistic scenarios, perfor-
mance gains of 50% to 100% have been reported by Esteves and Wu [120]. Channel
measurement and feedback are important system parameters that determine the gain
and are studied in [?].

If the channels are slowly varying, then the multiuser diversity gains are limited.
The opportunistic beamforming idea mitigates this defect by artificially creating vari-
ations while maintaining the same average channel quality; this was proposed by
Viswanath, Tse and Laroia [114], who also studied its impact on system design.

Several works have studied the design of schedulers that harness the multiuser
diversity gain. A theoretical analysis of the proportional fair scheduler has appeared
in several places including a work by Borst and Whiting [10].
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Exercises

Exercise 6.1. The sum constraint in (6.6) applies because the two users send inde-
pendent information and cannot cooperate in the encoding. If they could cooperate,
what is the maximum sum rate they can achieve, assuming still individual power con-
straints P1 and P2 on the two users? In the case P1 = P2, quantify the cooperation
gain at low and at high SNR. In which regime is the gain more significant?

Exercise 6.2. Consider the basic uplink AWGN channel in (6.1) with power con-
straints Pk on user k (for k = 1, 2). In Section 6.1.3, we stated that orthogonal
multiple access is optimal when the degrees of freedom are split in direct proportion
to the powers of the users. Verify this. Show also that any other split of degrees of
freedom is strictly suboptimal, i.e., the corresponding rate pair lies strictly inside the
capacity region given by the pentagon in Figure 6.2. Hint: Think of the sum rate as
the performance of a point-to-point channel and apply the insight from Exercise 5.6.

Exercise 6.3. Calculate the symmetric capacity, (6.2), for the two-user uplink chan-
nel. Identify scenarios where there are definitely superior operating points.

Exercise 6.4. Consider the uplink of a single IS-95 cell where all the users are con-
trolled to have the same received power P at the base station.

1. In the IS-95 system, decoding is done by a conventional CDMA receiver which
treats the interference of the other users as Gaussian noise. What is the maximum
number of voice users that can be accommodated, assuming capacity-achieving
point-to-point codes? You can assume a total bandwidth of 1.25 MHz and a data
rate per user of 9.6 kbits/s. You can also assume that the background noise is
negligible compared to the intra-cell interference.

2. Now suppose one of the users is a data user and it happens to be close to the base
station. By not controlling its power, its received power can be 20 dB above the
rest. Propose a receiver that can give this user a higher rate while still delivering
9.6 kbits/s to the other (voice) users. What rate can it get?

Exercise 6.5. Consider the uplink of an IS-95 system.

1. A single cell is modelled as a disk of radius 1 km. If a mobile at the edge of the
cell transmits at its maximum power limit, its received SNR at the base station
is 15 dB when no one else is transmitting. Estimate (via numerical simulations)
the average sum capacity of the uplink with 16 users that are independently
and uniformly located in the disk. Compare this to the corresponding average
total throughput in a system with conventional CDMA decoding and each user
perfectly power controlled at the base station. What is the potential percentage
gain in spectral efficiency by using the more sophisticated receiver? You can
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assume that all mobiles have the same transmit power constraint and the path
loss (power) attenuation is proportional to r−4.

2. Part 1 ignores out-of-cell interference. With out-of-cell interference taken into
consideration, the received SINR of the cell-edge user is only −10 dB. Redo
part 1. Is the potential gain from using a more sophisticated receiver still as
impressive?

Exercise 6.6. Consider the downlink of the IS-856 system.

1. Suppose there are 2 users on the cell-edge. Users are scheduled on a TDMA basis,
with equal time for each user. The received SINR of each user is 0 dB when it is
transmitted to. Find the rate that each user gets. The total bandwidth is 1.25
MHz and you can assume an AWGN channel and the use of capacity-achieving
codes.

2. Now suppose there is an extra user which is near the base station with a 20 dB
SINR advantage over the other two users. Consider two ways to accommodate
this user:

• Give a fraction of the time slots to this user and divide the rest equally
among the two cell-edge users.

• Give a fraction of the power to this user and superimpose its signal on top
of the signals of both users. The two cell-edge users are still scheduled on
a TDMA basis with equal time, and the strong user uses a SIC decoder to
extract its signal after decoding the other users’ signal at each time slot.

Since the two cell-edge users have weak reception, it is important to maintain
the best possible quality of service to them. So suppose the constraint is that we
want each of them to have 95% of the rates they were getting before this strong
user has joined. Compare the performance that the strong user gets in the two
schemes above.

Exercise 6.7. The capacity region of the 2 user AWGN uplink channel is in Figure 6.2.
The two corner points A and B can be achieved using successive cancellation. Points
inside the line segment AB can be achieved by time sharing. In this exercise we will see
another way to achieve every point (R1, R2) on the line segment AB using successive
cancellation. By definition we must have

Rk < log

(
1 +

Pk

N0

)
k = 1, 2, (6.69)

R1 + R2 = log

(
1 +

P1 + P2

N0

)
. (6.70)
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Define δ > 0 by

R2 = log

(
1 +

P2

δ + N0

)
. (6.71)

Now consider the situation when user 1 splits itself into two users, say users 1a and 1b,
with power constraints δ and P1− δ respectively. We decode the users with successive
cancellation in the order user 1a, 2, 1b, i.e., user 1a is decoded first, user 2 is decoded
next (with user 1a cancelled) and finally user 1b is decoded (seeing no interference
from users 1a and 2).

1. Calculate the rates of reliable communication (r1a, r2, r1b) for the users 1a, 2 and
1b using the successive cancellation just outlined.

2. Show that r2 = R2 and r1a + r1b = R1. This means that the point (R1, R2) on
the line segment AB can be achieved by successive cancellation of 3 users formed
by one of the users “splitting” itself into two virtual users.

Exercise 6.8. In Exercise 6.7, we studied rate splitting multiple access for two users.
A reading exercise is to study [82], where this result was introduced and generalized to
the K user uplink: K−1 users can split themselves into 2 users each (with appropriate
power splits) so that any rate vector on the boundary of the capacity region that meets
the sum power constraint can be achieved via successive cancellation (with appropriate
ordering of the 2K − 1 users).

Exercise 6.9. Consider the K user AWGN uplink channel with user power constraints
P1, . . . , PK . The capacity region is the set of rate vectors that lie in the intersection of
the constraints (c.f. (6.10)):

∑

k∈S
Rk < log

(
1 +

∑
k∈S Pk

N0

)
, (6.72)

for every subset S of the K users.

1. Fix an ordering of the users π1, . . . , πK (here π represents a permutation of set

{1, . . . , K}). Show that the rate vector
(
R

(π)
1 , . . . , R

(π)
K

)
:

R(π)
πk

:= log

(
1 +

Pπk∑K
i=k+1 Pπi

+ N0

)
k = 1, . . . , K, (6.73)

is in the capacity region. This rate vector can be interpreted using the successive
cancellation view point: the users are successively decoded in the order π1, . . . , πK

with cancellation after each decoding step. So, user πk has no interference from
the previously decoded users π1, . . . , πk−1, but experiences interference from the
users following it (namely πk+1, . . . , πK). In Figure 6.2, the point A corresponds
to the permutation π1 = 2, π2 = 1 and the point B corresponds to the identity
permutation π1 = 1, π2 = 2.
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2. Consider maximizing the linear objective function
∑K

k=1 akRk with nonnegative
a1, . . . , aK over the rate vectors in the capacity region. (ak can be interpreted as
the revenue per unit rate for user k.) Show that the maximum occurs at the rate
vector of the form in (6.73) with the permutation π defined by the property:

aπ1 ≤ aπ2 ≤ · · · ≤ aπK
. (6.74)

This means that optimizing linear objective functions on the capacity region can
be done in a greedy way: we order the users based on their priority (ak for
user k). This ordering is denoted by the permutation π in (6.74). Next, the
receiver decodes via successive cancellation using this order: the user with the
least priority is decoded first (seeing full interference from all the other users)
and the user with the highest priority decoded last (seeing no interference from
the other users). Hint: Show that if the ordering is not according to (6.74), then
one can always improve the objective function by changing the decoding order.

3. Since the capacity region is the intersection of hyperplanes, it is a convex polyhe-
dron. An equivalent representation of a convex polyhedron is through enumerat-
ing its vertices: points which cannot be expressed as a strict convex combination

of any subset of other points in the polyhedron. Show that
(
R

(π)
1 , . . . , R

(π)
K

)
is a

vertex of the capacity region. Hint: Consider the following fact: a linear object
function is maximized on a convex polyhedron at one of the vertices. Further,
every vertex must be optimal for some linear objective function.

4. Show that vertices of the form (6.73) (one for each permutation, so there are
K! of them) are the only interesting vertices of the capacity region. (This means
that any other vertex of the capacity region is component-wise dominated by one
of these K! vertices).

Exercise 6.10. [?]
Consider the K-user uplink AWGN channel. In the text, we focus on the capac-

ity region C(P): the set of achievable rates for given power constraint vector P :=
(P1, . . . , PK). A “dual” characterization is the power region P(R): set of all feasible
received power vectors that can support a given target rate vector R := (R1, . . . , RK).

1. Write down the constraints describing P(R). Sketch the region for K = 2.

2. What are the vertices of P(R)?

3. Find a decoding strategy and a power allocation that minimizes
∑K

k=1 bkPk while
meeting the given target rates. Here, the constants bk’s are positive and should
be interpreted as “power prices”. Hint: Exercise 6.9 may be useful.



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 330

4. Suppose users are at different distances from the base station so that the transmit
power of user k is attenuated by a factor of γi. Find a decoding strategy and
a power allocation that minimizes the total transmit power of the users while
meeting the target rates R.

5. In IS-95, the code used by each user is not necessarily capacity-achieving but
communication is considered reliable as long as a Eb/I0 requirement of 7 dB is
met. Suppose these codes are used in conjunction with SIC. Find the optimal
decoding order to minimize the total transmit power in the uplink.

Exercise 6.11. (Impact of using SIC on interference-limited capacity)
Consider the two-cell system in Exercise 4.11. The interference-limited spectral

efficiency in the many-user regime was calculated for both CDMA and OFDM. Now
suppose SIC is used instead of the conventional receiver in the CDMA system. In
the context of SIC, the interference I0 in the target Eb/I0 requirement refers to the
interference from the uncancelled users. Below you can always assume that interference
cancellation is perfect.

1. Focus on a single cell first and assume a background noise power of N0. Is the
system interference-limited under the SIC receiver? Was it interference-limited
under the conventional CDMA receiver?

2. Suppose there are K users with user k at a distance rk from the base station. Give
an expression for the total transmit power saving (in dB) in using SIC with the
optimal decoding order as compared to the conventional CDMA receiver (with
an Eb/I0 requirement of β).

3. Give an expression for the power saving in the asymptotic regime with large
number of users and large bandwidth. The users are randomly located in the
single cell as specified in Exercise 4.11. What is this value when β = 7 dB and
the power decay is r−2 (i.e., α = 2)?

4. Now consider the two-cell system. Explain why in this case the system is
interference-limited even when using SIC.

5. Nevertheless, SIC increases the interference-limited capacity because of the re-
duction in transmit power which translates into a reduction of out-of-cell in-
terference. Give an expression for the asymptotic interference-limited spectral
efficiency under SIC in terms of β and α. You can ignore the background noise
and assume that users closer to the base station are always decoded before the
users further away.

6. For β = 7 dB and α = 2, compare the performance with the conventional CDMA
system and the OFDM system.
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7. Is the cancellation order in part 5 optimal? If not, find the optimal order and
give an expression for the resulting asymptotic spectral efficiency. Hint: You
might find Exercise 6.10 useful.

Exercise 6.12. Verify the bound (6.30) on the actual error probability of the kth user
in the SIC, accounting for error propagation.

Exercise 6.13. Consider the two-user uplink fading channel,

y[m] = h1[m]x1[m] + h2[m]x2[m] + w[m]. (6.75)

Here the user channels {h1[m]} , {h2[m]} are statistically independent. Suppose that
h1[m] and h2[m] are CN (0, 1) and user k has power Pk, k = 1, 2, with P1 À P2.
The background noise w[m] is i.i.d. CN (0, N0). An SIC receiver decodes user 1 first,
removes its contribution from {y[m]} and then decodes user 2. We would like to assess
the effect of channel estimation error of h1 on the performance of user 2.

1. Assuming that the channel coherence time is Tc seconds and user 1 spends 20%
of its power on sending a training signal, what is the mean-square estimation
error of h1? You can assume the same setup as in Section 3.5.2. You can ignore
the effect of user 2 in this estimation stage, since P1 À P2.

2. The SIC receiver decodes the transmitted signal from user 1 and subtracts its
contribution from {y[m]}. Assuming that the information is decoded correctly,
the residual error is due to the channel estimation error of h1. Quantify the
degradation in SINR of user 2 due to this channel estimation error. Plot this
degradation as a function of P1/N0 for Tc = 10 ms. Does the degradation worsen
if the power P1 of user 1 increases? Explain.

3. In part (2), user 2 still faced some interference due to the presence of user 1
despite decoding the information meant for user 1 accurately. This is due to the
error in the channel estimate of user 1. In the calculation in part (2), we used the
expression for the error of user 1’s channel estimate as derived from the training
symbol. However, conditioned on the event that the first user’s information has
been correctly decoded, the channel estimate of user 1 can be improved. Model
this situation appropriately and arrive at an estimate of the error in user 1’s
channel estimate. Now re-do part (2). Does your answer change qualitatively?

Exercise 6.14. Consider the probability of the outage event (pul
out, c.f. (6.32)) in a

symmetric slow Rayleigh fading uplink with the K users operating at the symmetric
rate R bits/s/Hz.
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1. Suppose pul
out is fixed to be ε. Argue that at very high SNR (with SNR defined

to be P/N0), the dominating event is the one on the sum rate:

KR > log

(
1 +

∑K
k=1 P |hk|2

N0

)
.

2. Show that the ε-outage symmetric capacity, Csym
ε , can be approximated at very

high SNR as

Csym
ε ≈ 1

K
log2

(
1 +

Pε
1
K

N0

)
.

3. Argue that at very high SNR, the ratio of Csym
ε to Cε (the ε-outage capacity with

just a single user in the uplink) is approximately 1/K.

Exercise 6.15. In Section 6.3.3, we have discussed the optimal multiple access strat-
egy for achieving the sum capacity of the uplink fading channel when users have iden-
tical channel statistics and power constraints.

1. Solve the problem for the general case when the channel statistics and the power
constraints of the users are arbitrary.

Hint: Construct a Lagrangian for the convex optimization problem (6.42) with a
separate Lagrange multiplier for each of the individual power constraint (6.43).

2. Do you think the sum capacity is a reasonable performance measure in the asym-
metric case?

Exercise 6.16. In Section 6.3.3, we have derived the optimal power allocation with
full CSI in the symmetric uplink with the assumption that there is always a unique user
with the strongest channel at any one time. This assumption holds with probability
1 when the fading distributions are continuous. Moreover, under this assumption,
the solution is unique. This is in contrast to the uplink AWGN channel where there
is a continuum of solution that achieves the optimal sum rate, of which only one is
orthogonal. We will see in this exercise that transmitting to only one user at a time
is not necessarily the unique optimal solution even for fading channels, if the fading
distribution is discrete (to model measurement realities, such as the feedback of a finite
number of rate levels).

Consider the full CSI two user uplink with identical, independent, stationary and
ergodic flat fading processes for the two users. The stationary distribution of the flat
fading for both of the users takes one of just two values: channel amplitude is either
at 0 or at 1 (with equal probability). Both of the users are individually average power
constrained (by P̄ ). Calculate explicitly all the optimal joint power allocation and
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decoding policies to maximize the sum rate. Is the optimal solution unique? Hint:
Clearly there is no benefit by allocating power to a user whose channel is fully faded
(the zero amplitude state).

Exercise 6.17. In this exercise we further study the nature of the optimal power and
rate control strategy that achieves the sum capacity of the symmetric uplink fading
channel.

1. Show that the optimal power/rate allocation policy for achieving the sum capac-
ity of the symmetric uplink fading channel can be obtained by solving for each
fading state the optimization problem:

max
r,p

K∑

k=1

rk − λ

K∑

k=1

pk, (6.76)

subject to the constraint that

r ∈ C(p,h), (6.77)

where C(p,h) is the uplink AWGN channel capacity region with received power
pk|hk|2. Here λ is chosen to meet the average power constraint of P for each user.

2. What happens when the channels are not symmetric but we are still interested
in the sum rate?

Exercise 6.18. [98] In the text, we focused on computing the power/rate allocation
policy that maximizes the sum rate. More generally, we can look for the policy that
maximizes a weighted sum of rates

∑
k µkRk. Since the uplink fading channel capacity

region is convex, solving this for all non-negative µi’s will enable us to characterize the
entire capacity region (as opposed to just the sum capacity point).

In analogy with Exercise 6.17, it can be shown that the optimal power/rate al-
location policy can be computed by solving for each fading state h the optimization
problem:

max
r,p

K∑

k=1

µkrk −
K∑

k=1

λkpk, (6.78)

subject to the constraint that
r ∈ C(p,h), (6.79)

where λk’s are chosen to meet the average power constraints Pk’s of the users (averaged
over the fading distribution). If we define qk := pk|hk|2 as the received power, then we
can rewrite the optimization problem as:

max
r,q

K∑

k=1

µkrk −
K∑

k=1

λk

|hk|2pk (6.80)
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subject to the constraint that
r ∈ C(q), (6.81)

where C(q) is the uplink AWGN channel capacity region. You are asked to solve this
optimization problem in several steps below.

1. Verify that the capacity of a point-to-point AWGN channel can be written in the
integral form:

Cawgn = log

(
1 +

P

N0

)
=

∫ P

0

1

N0 + z
dz. (6.82)

Give an interpretation in terms of splitting the single user into many infinites-
imally small virtual users, each with power dz (c.f. Exercise 6.7). What is the
interpretation of the quantity 1/(N0 + z)dz?

2. Consider first K = 1 in the uplink fading channel above, i.e., the point-to-point
scenario. Define the utility function:

u1(z) =
µ1

N0 + z
− λ1

|h1|2 , (6.83)

where N0 is the background noise power. Express the optimal solution in terms
of the graph of u1(z) against z. Interpret the solution as a greedy solution and
also give an interpretation of u1(z). Hint: Make good use of the rate-splitting
interpretation in part 1.

3. Now for K > 1, define the utility function of user k to be:

uk(z) =
µk

N0 + z
− λk

|hk|2 . (6.84)

Guess what the optimal solution should be in terms of the graphs of uk(z) against
z for k = 1, . . . , K.

4. Show that each pair of the utility functions intersects at most once for non-
negative z’s.

5. Using the previous parts, verify your conjecture in part 3.

6. Can the optimal solution be achieved by successive cancellation?

7. Verify that your solution reduces to the known solution for the sum capacity
problem (i.e., when µ1 = . . . = µK).

8. What does your solution look like when there are two groups of users such that
within each group, users have the same µk’s and λk’s (but not necessarily the
same hk’s).
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9. Using your solution to the optimization problem (6.78), compute numerically the
boundary of the capacity region of the two-user Rayleigh uplink fading channel
with average received SNR of 0 dB for each of the two users.

Exercise 6.19. [99] Consider the downlink fading channel.

1. Formulate and solve the downlink version of Exercise 6.18.

2. The total transmit power varies as a function of time in the optimal solution.
But now suppose we fix the total transmit power to be P at all times (as in the
IS-856 system). Re-derive the optimal solution.

Exercise 6.20. Within a cell in the IS-856 system there are 8 users on the edge and
1 user near the base station. Every user experiences independent Rayleigh fading, but
the average SNR of the user near the base station is γ times the users on the edge.
Suppose the average SNR of a cell-edge user is 0 dB when all the power of the base
station is allocated to it. A fixed transmit power of P is used at all times.

1. Simulate the proportional fair scheduling algorithm for tc large and compute the
performance of each user for a range of γ from 1 to 100. You can assume the use
of capacity-achieving codes.

2. Fix γ. Show how you would compute the optimal achievable rate among all
strategies for the user near the base-station, given a (equal) rate for all the users
on the edge. Hint: Use the results in Exercise 6.19.

3. Plot the potential gain in rate for the strong user over what it gets under the
proportional fair algorithm, for the same rate for the weak users.

Exercise 6.21. In Section 6.6, we have seen the multiuser diversity gain comes about
because the effective channel gain becomes the maximum of the channel gains of the
K users:

|h|2 := max
k=1...K

|hk|2.

1. Let h1, . . . , hK be i.i.d. CN (0, 1) random variables. Show that

E
[|h|2] =

K∑

k=1

1

k
. (6.85)

Hint: You might find it easier to prove the following stronger result (using in-
duction):

|h|2 has the same distribution as
K∑

k=1

|hk|2
k

. (6.86)
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2. Using the previous part, or directly, show that

E [|h|2]
loge K

→ 1, as K →∞; (6.87)

thus the mean of the effective channel grows logarithmically with the number of
users.

3. Now suppose h1, . . . , hK are i.i.d. CN
( √

κ√
1+κ

, 1
1+κ

)
(i.e., Ricean random variables

with the ratio of specular path power to diffuse path power equal to κ). Show
that

E [|h|2]
loge K

→ 1

1 + κ
as K →∞; (6.88)

i.e., the mean of the effective channel is now reduced by a factor 1 + κ compared
to the Rayleigh fading case. Can you see this result intuitively as well? Hint:
You might find the following limit theorem (p. 260 of [24]) useful for this exercise.
Let h1, . . . , hK be i.i.d. real random variables with a common cdf F (·) and pdf
f(·) satisfying F (h) is less than 1 and is twice differentiable for all h, and is such
that

lim
h→∞

[
1− F (h)

f(h)

]
= c > 0, (6.89)

for some constant c. Then
max

1≤k≤K
hk − lK

converges in distribution to a limiting random variable with cdf

exp(−e−x/c).

In the above, lK is given by F (lK) = 1 − 1/K. This result states that the
maximum of K such i.i.d. random variables grows like lK .

Exercise 6.22. (Selective feedback) The downlink of IS-856 has K users each expe-
riencing i.i.d. Rayleigh fading with average SNR of 0 dB. Each user selectively feeds
back the requested rate only if its channel is greater than a threshold γ. Suppose
γ is chosen such that the probability that no one sends a requested rate is ε. Find
the expected number of users that sends in a requested rate. Plot this number for
K = 2, 4, 8, 16, 32, 64 and for ε = 0.1 and ε = 0.01. Is selective feedback effective?

Exercise 6.23. The discussions in Section 6.7.2 about channel measurement, predic-
tion and feedback are based on an FDD system. Discuss the analogous issues for a
TDD system, both in the uplink and in the downlink.
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Exercise 6.24. Consider the two user downlink AWGN channel (c.f. (6.16)):

yk [m] = hkx [m] + zk [m] , k = 1, 2. (6.90)

Here zk [m] are i.i.d. CN (0, N0) Gaussian processes marginally (k = 1, 2). Let us take
|h1| > |h2| for this problem.

1. Argue that the capacity region of this downlink channel does not depend on
the correlation between the additive Gaussian noise processes z1 [m] and z2 [m].
Hint: Since the two users cannot cooperate, it should be intuitive that the error
probability for user k depends only on the marginal distribution of zk [m] (for
both k = 1, 2).

2. Now consider the following specific correlation between the two additive noises
of the users. The pair (z1 [m] , z2 [m]) is i.i.d. with time m with the distribution
CN (0,Kz). To preserve the marginals, the diagonal entries of the covariance
matrix Kz have to be both equal to N0. The only parameter that is free to be
chosen is the off-diagonal element (denoted by ρN0 with |ρ| ≤ 1):

Kz =

[
N0 ρN0

ρN0 N0

]
.

Let us now allow the two users to cooperate, in essence creating a point-to-point
AWGN channel with a single transmit but two receive antennas. Calculate the
capacity (C(ρ)) of this channel as a function of ρ and show that if the rate pair
(R1, R2) is within the capacity region of the downlink AWGN channel, then

R1 + R2 ≤ C(ρ). (6.91)

3. We can now choose the correlation ρ to minimize the upper bound in (6.91). Find
the minimizing ρ (denoted by ρmin) and show that the corresponding (minimal)
C(ρmin) is equal to log (1 + |h1|2P/N0).

4. The result of the calculation in the previous part is rather surprising: the rate
log (1 + |h1|2P/N0) can be achieved by simply user 1 alone. This means that with
a specific correlation (ρmin), cooperation among the users is not gainful. Show
this formally by proving that for every time m with the correlation given by ρmin,
the sequence of random variables x[m], y1[m], y2[m] form a Markov chain (i.e.,
conditioned on y1[m], the random variables x[m] and y2[m] are independent).

Exercise 6.25. Consider the rate vectors in the downlink AWGN channel (c.f. (6.16))
with superposition coding and orthogonal signaling as given in (6.22) and (6.23),
respectively. Show that superposition coding is strictly better than the orthogonal
schemes, i.e., for every nonzero rate pair achieved by an orthogonal scheme, there ex-
ists a superposition coding scheme which allows each user to strictly increase its rate.
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Exercise 6.26. A reading exercise is to study [7] where the sufficiency of superposition
encoding and decoding for the downlink AWGN channel is shown.

Exercise 6.27. Consider the two user symmetric downlink fading channel with re-
ceiver CSI alone (c.f. (6.50)). We have seen that the capacity region of the down-
link channel does not depend on the correlation between the additive noise processes
z1[m] and z2[m] (c.f. Exercise 6.24(1)). Consider the following specific correlation:
(z1[m], z2[m]) are CN (0,K[m]) and independent in time m. To preserve the marginal
variance, the diagonal entries of the covariance matrix K[m] must be N0 each. Let us
denote the off-diagonal term by ρ[m]N0 (with |ρ[m]| ≤ 1). Suppose now we let the two
users cooperate.

1. Show that by a careful choice of ρ[m] (as a function of h1[m] and h2[m]), cooper-
ation is not gainful: that is, for any reliable rates R1, R2 in the downlink fading
channel,

R1 + R2 ≤ E
[
log

(
1 +

|h|2P
N0

)]
, (6.92)

the same as that can be achieved by a single user alone (c.f. (6.51)). Here
distribution of h is the symmetric stationary distribution of the fading processes
{hk[m]} (for k = 1, 2). Hint: You will find Exercise 6.24(3) useful.

2. Conclude that the capacity region of the symmetric downlink fading channel is
that given by (6.92).

Exercise 6.28. Show that the proportional fair algorithm with an infinite time-scale
window maximizes (among all scheduling algorithms) the sum of the logarithms of the
throughputs of the users. This justifies (6.57). This result has been derived in the
literature at several places, including [10].

Exercise 6.29. Consider the opportunistic beamforming scheme in conjunction with a
proportional fair scheduler operating in a slow fading environment. A reading exercise
is to study Theorem 1 of [114] which shows that the rate available to each user is
approximately equal to the instantaneous rate when it is being transmit beamformed,
scaled down by the number of users.

Exercise 6.30. In a cellular system, the multiuser diversity gain in the downlink is
expressed through the maximum SINR (c.f. (6.63))

SINRmax := max
k=1...K

SINRk =
P |hk|2

N0 + P
∑J

j=1 |gkj|2
, (6.93)

where we have denoted P by the average received power at a user. Let us denote
the ratio P/N0 by SNR. Let us suppose that h1, . . . , hK are i.i.d. CN (0, 1) random



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 339

variables, and {gkj, k = 1 . . . K, j = 1 . . . J} are i.i.d. CN (0, 0.2) random variables in-
dependent of the h’s. (A factor of 0.2 is used to model the average scenario of the
mobile user being closer to the base station it is communicating with as opposed to all
the other base stations it is hearing interference from, c.f. Section 4.2.3.)

1. Show using the limit theorem in Exercise 6.21 that

E [SINRmax]

xK

→ 1, as K →∞, (6.94)

where xK satisfies the nonlinear equation:

(
1 +

xK

5

)J

= Kexp
(
− xK

SNR

)
. (6.95)

2. Plot xK for K = 1, . . . , 16 for different values of SNR (ranging from 0 dB to 20
dB). Can you intuitively justify the observation from the plot that xK increases
with increasing SNR values? Hint: The probability that |hk|2 is less than or
equal to a small positive number ε is approximately equal to ε itself, while the
probability that |hk|2 is larger than a large number 1/ε is exp (−1/ε). Thus the
likely way SINR becomes large is by the denominator being small as opposed to
the numerator becoming large.

3. Show using part (1), or directly, that at small values of SNR, the mean of the
effective SINR grows like log K. You can also see this directly from (6.93): at
small values of SNR, the effective SINR is simply the maximum of K Rayleigh
distributed random variables and from Exercise 6.21(2) we know that the mean
value grows like log K.

4. At very high values of SNR, we can approximate exp (−xK/SNR) in (6.95) by 1.
With this approximation, show, using part (1), that the scaling xK is approxi-
mately like K1/J . This is a faster growth rate than the one at low SNR.

5. In a cellular system, typically the value of P is chosen such that the background
noise N0 and the interference term are of the same order. This makes sense for a
system where there is no scheduling of users: since the system is interference plus
noise limited, there is no point in making one of them (interference or background
noise) much smaller than the other. In our notation here, this means that SNR is
approximately 0 dB. From the calculations of this exercise what design setting of
P can you infer for a system using the multiuser diversity harnessing scheduler?
Thus, conventional transmit power settings will have to be revisited in this new
system point of view.
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Exercise 6.31. (Interaction between space-time codes and multiuser diversity schedul-
ing) A design is proposed for the downlink IS-856 using dual transmit antennas at the
base station. It employs the Alamouti scheme when transmitting to a single user and
among the users schedule the user with the best effective instantaneous SNR under
the Alamouti scheme. We would like to compare the performance gain, if any, of using
this scheme as opposed to using just a single transmit antenna and scheduling to the
user with the best instantaneous SNR. Assume independent Rayleigh fading across the
transmit antennas.

1. Plot the distribution of the instantaneous effective SNR under the Alamouti
scheme, and compare that to the distribution of the SNR for single antenna.

2. Suppose there is only a single user (i.e., K = 1). From your plot in part 1, do
you think the dual transmit antennas provide any gain? Justify your answer.
Hint: Use Jensen’s inequality.

3. How about when K > 1? Plot the achievable throughput under both schemes at
average SNR = 0 dB and for different values of K.

4. Is the proposed way of using dual transmit antennas smart?
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Chapter 7

MIMO I: Spatial Multiplexing and
Channel Modeling

In this book, we have seen several different uses of multiple antennas in wireless com-
munication. In Chapter 3, multiple antennas were used to provide diversity gain and
increase the reliability of wireless links. Both receive and transmit diversity were con-
sidered. Moreover, receive antennas can also provide a power gain. In Chapter 5, we
saw that with channel knowledge at the transmitter, multiple transmit antennas can
also provide a power gain via transmit beamforming. In Chapter 6, multiple transmit
antennas were used to induce channel variations, which can then be exploited by op-
portunistic communication techniques. The scheme can be interpreted as opportunistic
beamforming and provides a power gain as well.

In this and the next few chapters, we will study a new way to use multiple antennas.
We will see that under suitable channel fading conditions, having both multiple transmit
and multiple receive antennas (i.e., a MIMO channel) provides an additional spatial
dimension for communication and yields a degree-of-freedom gain. These additional
degrees of freedom can be exploited by spatially multiplexing several data streams onto
the MIMO channel, and lead to an increase in the capacity: the capacity of such a
MIMO channel with n transmit and receive antennas is proportional to n.

Historically, it has been known for a while that a multiple access system with mul-
tiple antennas at the base station allows several users to simultaneously communicate
with the base station. The multiple antennas allow spatial separation of the signals
from the different users. It has been observed in the mid 1990’s that a similar effect
can occur for a point-to-point channel with multiple transmit and receive antennas,
i.e., even when the transmit antennas are not geographically far apart. This holds
provided that the scattering environment is rich enough to allow the receive antennas
to separate out the signals from the different transmit antennas. We have already
seen how channel fading can be exploited by opportunistic communication techniques.
Here, we see yet another example where channel fading is beneficial to communication.

341
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It is insightful to compare and contrast the nature of the performance gains offered
by opportunistic communication and by MIMO techniques. Opportunistic communi-
cation techniques primarily provide a power gain. This power gain is very significant
in the low SNR regime where systems are power-limited but less so in the high SNR
regime where they are bandwidth-limited. As we will see, MIMO techniques can pro-
vide both a power gain and a degree-of-freedom gain. Thus, MIMO techniques become
the primary tool to increase capacity significantly in the high SNR regime.

MIMO communication is a rich subject, and its study will span the remaining chap-
ters of the book. The focus of the present chapter is to investigate the properties of
the physical environment which enable spatial multiplexing and show how these prop-
erties can be succinctly captured in a statistical MIMO channel model. We proceed as
follows. Through a capacity analysis, we first identify key parameters which determine
the multiplexing capability of a deterministic MIMO channel. We then go through
a sequence of physical MIMO channels to assess their spatial multiplexing capabili-
ties. Building on the insights from these examples, we argue that it is most natural to
model the MIMO channel in the angular domain and discuss a statistical model based
on that approach. Our approach here parallels that in Chapter 2, where we started
with a few idealized examples of multipath wireless channels to gain insights into the
underlying physical phenomena, and proceeded to statistical fading models which are
more appropriate for the design and performance analysis of communication schemes.
We will in fact see a lot of parallelism in the specific channel modeling technique as
well.

Our focus throughout is on flat fading MIMO channels. The extensions to frequency-
selective MIMO channels are straightforward and are developed in the exercises.

7.1 Multiplexing Capability of Deterministic MIMO

Channels

A narrowband time-invariant wireless channel with nt transmit and nr receive antennas
is described by a nr by nt deterministic matrix H. What are the key properties of H
that determine how much spatial multiplexing it can support? We answer this question
by looking at the capacity of the channel.

7.1.1 Capacity via Singular Value Decomposition

The time-invariant channel is described by

y = Hx + w, (7.1)

where x ∈ Cnt , y ∈ Cnr and w ∼ CN (0, N0Inr) denote the transmitted signal, re-
ceived signal and white Gaussian noise respectively at a symbol time (the time index
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is dropped for simplicity). The channel matrix H ∈ Cnr×nt is deterministic and as-
sumed to be constant at all times and known to both the transmitter and the receiver.
Here, hij is the channel gain from transmit antenna j to receive antenna i. There is a
total power constraint, P , on the signals from the transmit antennas.

This is a vector Gaussian channel. The capacity can be computed by decomposing
the vector channel into a set of parallel, independent scalar Gaussian sub-channels.
From basic linear algebra, every linear transformation can be represented as a com-
position of three operations: a rotation operation, a scaling operation, and another
rotation operation. In the notation of matrices, the matrix H has a singular value
decomposition (SVD):

H = UΛV∗, (7.2)

where U ∈ Cnr×nr and V ∈ Cnt×nt are (rotation) unitary matrices1 and Λ ∈ <nr×nt is a
rectangular matrix whose diagonal elements are nonnegative real numbers and whose
non-diagonal elements are zero.2 The diagonal elements λ1 ≥ λ2 ≥ · · · ≥ λnmin

are the
ordered singular values of the matrix H, where nmin := min (nt, nr). Since

HH∗ = UΛΛtU∗, (7.3)

the squared singular values λ2
i are the eigenvalues of the matrix HH∗ and also of H∗H.

Note that there are nmin singular values. We can rewrite the SVD as

H =

nmin∑
i=1

λiuiv
∗
i , (7.4)

i.e., the sum of rank-one matrices λiuiv
∗
i ’s. It can be seen that the rank of H is

precisely the number of non-zero singular values.
If we define

x̃ := V∗x, (7.5)

ỹ = U∗y, (7.6)

w̃ = U∗w, (7.7)

then we can rewrite the channel (7.1) as

ỹ = Λx̃ + w̃, (7.8)

where w̃ ∼ CN (0, N0Inr) has the same distribution as w (c.f. (A.22) in Appendix A),
and ‖x̃‖2 = ‖x‖2. Thus, the energy is preserved and we have an equivalent represen-
tation as a parallel Gaussian channel:

ỹi = λix̃i + w̃i, i = 1, 2, . . . , nmin. (7.9)
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Figure 7.1: Converting the MIMO channel into a parallel channel through the SVD.

The equivalence is summarized in Figure 7.1.
The SVD decomposition can be interpreted as two coordinate transformations: it

says that if the input is expressed in terms of a coordinate system defined by the
columns of V and the output is expressed in terms of a coordinate system defined by
the columns of U, then the input-output relationship is very simple. Equation (7.8) is
a representation of the original channel (7.1) with the input and output expressed in
terms of these new coordinates.

We have already seen examples of Gaussian parallel channels in Chapter 5, when
we talked about capacities of time-invariant frequency-selective channels and about
time-varying fading channels with full CSI. The time-invariant MIMO channel is yet
another example. Here, the spatial dimension plays the same role as the time and
frequency dimensions in those other problems. The capacity is by now familiar:

C =

nmin∑
i=1

log

(
1 +

P ∗
i λ2

i

N0

)
bits/s/Hz, (7.10)

where P ∗
1 , . . . , P ∗

nmin
are the waterfilling power allocations:

1Recall that a unitary matrix U satisfies U∗U = UU∗ = I.
2We will call this matrix diagonal even though it may not be square.
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Figure 7.2: The SVD architecture for MIMO communication.

P ∗
i =

(
µ− N0

λ2
i

)+

, (7.11)

with µ chosen to satisfy the total power constraint
∑

i P
∗
i = P . Each of the λi’s

corresponds to an eigenmode of the channel, also called an eigenchannel. Each non-
zero eigenchannel can support a data stream; thus, the MIMO channel can support the
spatial multiplexing of multiple streams. Figure 7.2 pictorially depicts the SVD-based
architecture for reliable communication.

There is a clear analogy between this architecture and the OFDM system introduced
in Chapter 3. In both cases, a transformation is applied to convert a matrix channel into
a set of parallel independent sub-channels. In the OFDM setting, the matrix channel is
given by the circulant matrix C in (3.139), defined by the ISI channel together with the
cyclic prefix added onto the input symbols. In fact, the decomposition C = Q−1ΛQ in
(3.143) is the SVD decomposition of a circulant matrix C, with U = Q−1 and V∗ = Q.
The important difference between the ISI channel and the MIMO channel is that, for
the former, the U and V matrices (DFTs) do not depend on the specific realization of
the ISI channel while for the latter, they do depend on the specific realization of the
MIMO channel.

7.1.2 Rank and Condition Number

What are the key parameters that determine performance? It is simpler to focus
separately on the high and the low SNR regimes. At high SNR, the water level is deep
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and the policy of allocating equal amounts of power on the non-zero eigenmodes is
asymptotically optimal (c.f. Figure 5.25(a)):

C ≈
k∑

i=1

log

(
1 +

Pλ2
i

kN0

)
≈ k log SNR +

k∑
i=1

log

(
λ2

i

k

)
bits/s/Hz, (7.12)

where k is the number of nonzero λ2
i ’s, i.e., the rank of H, and SNR := P/N0. The

parameter k is the number of spatial degrees of freedom per second per Hz. It represents
the dimension of the transmitted signal as modified by the MIMO channel, i.e., the
dimension of the signal Hx. This is equal to the rank of the matrix H and with full
rank, we see that a MIMO channel provides nmin spatial degrees of freedom.

The rank is a first-order but crude measure of the capacity of the channel. To get
a more refined picture, one needs to look at the non-zero singular values themselves.
By Jensen’s inequality,

1

k

k∑
i=1

log

(
1 +

P

kN0

λ2
i

)
≤ log

(
1 +

P

kN0

(
1

k

k∑
i=1

λ2
i

))
(7.13)

Now,
k∑

i=1

λ2
i = Tr[HH∗] =

∑
i,j

|hij|2, (7.14)

which can be interpreted as the total power gain of the matrix channel if one spreads
the energy equally between all the transmit antennas. Then, the above result says that
among the channels with the same total power gain, the one which has the highest
capacity is the one with all the singular values equal. More generally, the less spread
out the singular values, the larger the capacity in the high SNR regime. In numerical
analysis, (maxi λi/ mini λi) is defined to be the condition number of the matrix H. The
matrix is said to be well-conditioned if the condition number is close to 1. From the
above result, an important conclusion is:

Well-conditioned channel matrices facilitate communication in the high SNR
regime.

At low SNR, the optimal policy is to allocate power only to the strongest eigenmode
(the bottom of the vessel to waterfill, c.f. Figure 5.25(b)). The resulting capacity is:

C ≈ P

N0

(
max

i
λ2

i

)
log2 e bits/s/Hz. (7.15)

The MIMO channel provides a power gain of maxi λ
2
i . In this regime, the rank or

condition number of the channel matrix is less relevant. What matters is how much
energy gets transferred from the transmitter to the receiver.
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7.2 Physical Modeling of MIMO Channels

In this section, we would like to gain some insight on how the spatial multiplexing
capability of MIMO channels depends on the physical environment. We do so by
looking at a sequence of idealized examples and analyzing the rank and conditioning
of their channel matrices. These deterministic examples will also suggest a natural
approach to statistical modeling of MIMO channels, which we discuss in Section 7.3.
To be concrete, we restrict ourselves to uniform linear antenna arrays, where the
antennas are evenly spaced on a straight line. The details of the analysis depends on
the specific array structure but the concepts we want to convey do not.

7.2.1 Line-of-Sight SIMO channel

The simplest SIMO channel has a single line of sight (Figure 7.3(a)). Here, there
is only free space without any reflectors or scatterers, and only a direct signal path
between each antenna pair. The antenna separation is ∆rλc, where λc is the carrier
wavelength and ∆r is the normalized receive antenna separation, normalized to the
unit of the carrier wavelength. The dimension of the antenna array is much smaller
than the distance between the transmitter and the receiver.

The continuous-time impulse response hi(τ) between the transmit antenna and the
ith receive antenna is given by:

hi(τ) = aδ(τ − di/c), i = 1, . . . , nr, (7.16)

where di is the distance between the transmit antenna and ith receive antenna, c is the
speed of light and a is the attenuation of the path, which we assume to be the same
for all antenna pairs. Assuming di/c ¿ 1/W , where W is the transmission bandwidth,
the baseband channel gain is given by (2.34) and (2.27):

hi = a exp

(
−j2πfcdi

c

)
= a exp

(
−j2πdi

λc

)
, (7.17)

where fc is the carrier frequency. The SIMO channel can be written as

y = hx + w (7.18)

where x is the transmitted symbol, w ∼ CN (0, N0I) is the noise and y is the received
vector. The vector of channel gains h = [h1, . . . , hnr ]

t is sometimes called the the
signal direction or the spatial signature induced on the receive antenna array by the
transmitted signal.

Since the distance between the transmitter and the receiver is much larger than
size of the receive antenna array, the paths from the transmit antenna to each of the
receive antennas are, to a first-order, parallel and

di ≈ d + (i− 1)∆rλc cos φ, i = 1, . . . , nr, (7.19)
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Figure 7.3: (a) Line-of-sight channel with single transmit antenna and multiple receive
antennas. The signals from the transmitting antenna arrive almost in parallel at the
receiving antennas. (b). Line-of-sight channel with multiple transmit antennas and
single receive antenna.
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where d is the distance from the transmit antenna to the first receive antenna and φ
is the angle of incidence of the line of sight onto the receive antenna array. (You are
asked to verify this in Exercise 7.1.) The quantity (i−1)∆rλc cos φ is the displacement
of receive antenna i from receive antenna 1 in the direction of the line of sight. The
quantity

Ω := cos φ

is often called the directional cosine with respect to the receive antenna array. The
spatial signature h = [h1, . . . , hnr ]

t is therefore given by

h = a exp

(
−j2πd

λc

)




1
exp (−j2π∆rΩ)
exp (−j2π2∆rΩ)

·
·

exp (−j2π (nr − 1) ∆rΩ)




, (7.20)

i.e., the signals received at consecutive antennas differ in phase by 2π∆rΩ due to the
relative delay. For notational convenience, we define

er (Ω) :=
1√
nr




1
exp (−j2π∆rΩ)
exp (−j2π2∆rΩ)

·
·

exp (−j2π (nr − 1) ∆rΩ)




, (7.21)

as the unit spatial signature in the directional cosine Ω.
The optimal receiver simply projects the noisy received signal onto the signal di-

rection, i.e., maximal ratio combining or receive beamforming (c.f. Section 5.3.1). It
adjusts for the different delays so that the received signals at the antennas can be
combined constructively, yielding a nr-fold power gain. The resulting capacity is

C = log

(
1 +

P‖h‖2

N0

)
= log

(
1 +

Pa2nr

N0

)
bits/s/Hz. (7.22)

The SIMO channel thus provide a power gain but no degree-of-freedom gain.
In the context of a line-of-sight channel, the receive antenna array is sometimes

called a phased-array antenna.

7.2.2 Line-of-Sight MISO Channel

The MISO channel with multiple transmit antennas and single receive antenna is re-
ciprocal to the SIMO channel (Figure 7.3(b)). If the transmit antennas are separated
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by ∆tλc apart and there is a single line of sight with angle of departure of φ (directional
cosine Ω := cos φ), the MISO channel is given by

y = h∗x + w (7.23)

where

h = a exp

(
−j2πd

λc

)




1
exp (−j2π∆tΩ)
exp (−j2π2∆tΩ)

·
·

exp (−j2π (nr − 1) ∆tΩ)




, (7.24)

The optimal transmission (transmit beamforming) is performed along the direction
et (Ω) of h, where

et (Ω) :=
1√
nt




1
exp (−j2π∆tΩ)
exp (−j2π2∆tΩ)

·
·

exp (−j2π (nt − 1) ∆tΩ)




, (7.25)

is the unit spatial signature in the transmit direction of Ω (c.f. Section 5.3.2). The
phase of the signal from each of the transmit antennas is adjusted so that they add
constructively at the receiver, yielding a nt-fold power gain. The capacity is the same
as (7.22). Again there is no degree-of-freedom gain.

7.2.3 Antenna arrays with only a line-of-sight path

Let us now consider a MIMO channel with only direct line-of-sight paths between
the antennas. Both the transmit and the receive antennas are in linear arrays (Figure
7.4(a)). Suppose the normalized transmit antenna separation is ∆t and the normalized
receive antenna separation is ∆r. The channel gain between the kth transmit antenna
and the ith receive antenna is:

hik = a exp (−j2πdik/λc) , (7.26)

where dik is the distance between the antennas, and a is the attenuation along the
line-of-sight path (assumed to be the same for all antenna pairs). Assuming again that
the antenna array sizes are much smaller than the distance between the transmitter
and the receiver, to a first order:

dik = d + (i− 1)∆rλc cos φr − (k − 1)∆tλc cos φt, (7.27)



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 351

where d is the distance between transmit antenna 1 and receive antenna 1, and φt, φr are
the angles of incidence of the line-of-sight path on the transmit and receive antenna
arrays, respectively. Define Ωt := cos φt and Ωr := cos φr. Substituting (7.27) into
(7.26), we get

hik = a exp

(
−j2πd

λc

)
· exp (j2π (k − 1) ∆tΩt) · exp (−j2π (i− 1) ∆rΩr) (7.28)

and we can write the channel matrix as

H = a
√

ntnr exp

(
−j2πd

λc

)
er (Ωr) et (Ωt)

∗ , (7.29)

where er (·) and et (·) are defined in (7.21) and (7.25), respectively. Thus, H is a rank-
one matrix with a unique non-zero singular value λ1 = a

√
ntnr. The capacity of this

channel follows from (7.10):

C = log

(
1 +

Pa2ntnr

N0

)
bits/s/Hz. (7.30)

The decomposition of H is shown in Figure 7.4(b). Note that although there
are multiple transmit and multiple receive antennas, the transmitted signals are all
projected onto a single-dimensional space (the only non-zero eigenmode) and thus only
one spatial degree of freedom is available. The receive spatial signatures at the receive
antenna array from all the transmit antennas (i.e., the columns of H) are along the
same direction, er (Ωr). Thus, the number of available spatial degrees of freedom does
not increase even though there are multiple transmit and multiple receive antennas.

The factor ntnr is the power gain of the MIMO channel. If nt = 1, the power
gain is equal to the number of receive antennas and is obtained by maximal ratio
combining at the receiver (receive beamforming). If nr = 1, the power gain is equal
to the number of transmit antennas and is obtained by transmit beamforming. For
general number of transmit and receive antennas, one gets benefits from both transmit
and receive beamforming: the transmitted signals are constructively added in-phase at
each receive antenna, and the signal at each receive antenna is further constructively
combined with each other.

In summary: in a line-of-sight only environment, a MIMO channel provides a power
gain but no degree-of-freedom gain.

7.2.4 Geographically separated antennas

Geographically separated transmit antennas

How do we get a degree-of-freedom gain? Consider the thought experiment where the
transmit antennas can now be placed very far apart, with a separation of the order
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of the distance between the transmitter and the receiver. For concreteness, suppose
there are two transmit antennas (Figure 7.5(a)). Each transmit antenna has only a
line-of-sight path to the receive antenna array, with attenuations a1 and a2 and angles
of incidence φr1 and φr2, respectively. Assume that the delay spread of the signals
from the transmit antennas is much smaller than 1/W so that we can continue with
the single-tap model. The spatial signature that transmit antenna k impinges on the
receive antenna array is:

hk = ak

√
nr exp

(−j2πd1k

λc

)
er (Ωrk) , k = 1, 2, (7.31)

where d1k is the distance between transmit antenna k and receive antenna 1, Ωrk :=
cos φrk and er (·) is defined in (7.21).

It can be directly verified that the spatial signature er (Ω) is a periodic function of
Ω with period 1/∆r, and within one period it never repeats itself (Exercise 7.2). Thus,
the channel matrix H = [h1,h2] has distinct and linearly independent columns as long
as the separation in the directional cosines

Ωr := Ωr2 − Ωr1 6= 0 mod
1

∆r

. (7.32)

In this case, it has two non-zero singular values λ2
1 and λ2

2, yielding two degrees of
freedom. Intuitively, the transmitted signal can now be received from two different
directions that can be resolved by the receive antenna array. Contrast this with the
example in Section 7.2.3, where the antennas are placed close together and the spatial
signatures of the transmit antennas are all aligned with each other.

Note that since Ωr1, Ωr2, being directional cosines, lie in [−1, 1] and cannot differ by
more than 2, the condition (7.32) reduces to the simpler condition Ωr1 6= Ωr2 whenever
the antenna spacing ∆r ≤ 1/2.

Resolvability in the angular domain

The channel matrix H is full rank whenever the separation in the directional cosines
Ωr 6= 0 mod 1/∆r. However, it can still be very ill-conditioned. We now give an
order-of-magnitude estimate on how large the angular separation has to be so that H
is well-conditioned and the two degrees of freedom can be effectively used to yield a
high capacity.

The conditioning of H is determined by how aligned the spatial signatures of the
two transmit antennas are: the less aligned the spatial signatures are, the better the
conditioning of H. The angle θ between the two spatial signatures satisfies:

| cos θ| := |er (Ωr1)
∗ er (Ωr2) |. (7.33)
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Figure 7.5: (a) Two geographically separated transmit antennas each with line-of-sight
to a receive antenna array. (b) Block diagram representation of the channel.
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Note that er (Ωr1)
∗ er (Ωr2) depends only on the difference Ωr := Ωr2 − Ωr1. Define

then:
fr (Ωr2 − Ωr1) := er (Ωr1)

∗ er (Ωr2) . (7.34)

By direct computation (Exercise 7.3),

fr (Ωr) =
1

nr

exp (jπ∆rΩr (nr − 1))
sin (πLrΩr)

sin (πLrΩr/nr)
, (7.35)

where Lr := nr∆r is the normalized length of the receive antenna array. Hence,

| cos θ| =
∣∣∣∣

sin (πLrΩr)

nr sin (πLrΩr/nr)

∣∣∣∣ . (7.36)

The conditioning of the matrix H depends directly on this parameter. For simplicity,
consider the case when the gains a1 = a2 = a. The squared singular values of H are:

λ2
1 = a2nr (1 + | cos θ|) , λ2

2 = a2nr (1− | cos θ|) (7.37)

and the condition number of the matrix is

λ1

λ2

=

√
1 + | cos θ|
1− | cos θ| . (7.38)

The matrix is ill-conditioned whenever | cos θ| ≈ 1, and is well-conditioned otherwise.
In Figure 7.6, this quantity | cos θ| = |fr (Ωr) | is plotted as a function of Ωr for a fixed
array size and different values of nr. The function fr (·) has the following properties :

• fr (Ωr) is periodic with period nr/Lr = 1/∆r.

• fr (Ωr) peaks at Ωr = 0; f (0) = 1;

• fr (Ωr) = 0 at Ωr = k/Lr, k = 1, . . . , nr − 1.

The periodicity of fr (·) follows from the periodicity of the spatial signature er (·).
It has a main lobe of width 2/Lr centered around integer multiples of 1/∆r. All the
other lobes have significantly lower peaks. This means that the signatures are close to
being aligned and the channel matrix is ill conditioned whenever

|Ωr − m

∆r

| ¿ 1

Lr

(7.39)

for some integer m. Now, since Ωr ranges from −2 to 2, this condition reduces to

|Ωr| ¿ 1

Lr

(7.40)
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whenever the antenna separation ∆r ≤ 1/2.
Increasing the number of antennas for a fixed antenna length Lr does not substan-

tially change the qualitative picture above. In fact, as nr →∞ and ∆r → 0,

fr (Ωr) → ejπLrΩr sinc (LrΩr) (7.41)

and the dependency of fr (·) on nr vanishes. Eqn. (7.41) can be directly derived from
(7.35), using the definition sinc (x) = sin (πx) /πx (c.f. (2.30)).

The parameter 1/Lr can be thought of as a measure of resolvability in the angular
domain: if Ωr ¿ 1/Lr, then the signals from the two transmit antennas cannot be
resolved by the receive antenna array and there is effectively only one degree of freedom.
Packing more and more antenna elements in a given amount of space does not increase
the angular resolvability of the receive antenna array; it is intrinsically limited by the
length of the array.

A common pictorial representation of the angular resolvability of an antenna array
is the (receive) beamforming pattern. If the signal arrives from a single direction φ0,
then the optimal receiver projects the received signal onto the vector er (cos φ0); recall
that this is called the (receive) beamforming vector. A signal from any other direction
φ is attenuated by a factor of

|er (cos φ0)
∗ er (cos φ) | = |fr (cos φ− cos φ0) |. (7.42)

The beamforming pattern associated with the vector er(cos φ) is the polar plot

(φ, |fr (cos φ− cos φ0) |) (7.43)

(Figures 7.7 and 7.8). Two important points to note about the beamforming pattern:
• It has main lobes around φ0 and also around any angle φ for which

cos φ = cos φ0 mod
1

∆r

; (7.44)

this follows from the periodicity of fr(·). If the antenna separation ∆r is less than
1/2, then there is only one main lobe at φ, together with its mirror image at −φ If
the separation is greater than 1/2, there can be several more pairs of main lobes.
(See Figure 7.7).

• The main lobe has a directional cosine width of 2/Lr; this is also called the beam
width. The larger the array length Lr, the narrower the beam and the higher the
angular resolution: the array filters out the signal from all directions except for a
narrow range around the direction of interest (Figure 7.8).

There is a clear analogy between the roles of the antenna array size Lr and the
bandwidth W in a wireless channel. The parameter 1/W measures the resolvability of
signals in the time domain: multipaths arriving at time separation much less than 1/W
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Figure 7.6: The function |f (Ωr) | plotted as a function of Ωr for fixed Lr = 8 and
different values of the number of receive antennas nr.
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Figure 7.7: Receive beamforming patterns aimed at 90o, with antenna array length
Lr = 2 and different numbers of receive antennas nr. Note that the beamforming
pattern is always symmetrical about the 0o − 180o axis, so lobes always appear in
pairs. For nr = 4, 6, 32, the antenna separation ∆r ≤ 1/2, and there is a single main
lobe around 90o (together with its mirror image). For nr = 2, ∆r = 1 > 1/2 and there
is an additional pair of main lobes.
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Figure 7.8: Beamforming patterns for different antenna array lengths. (Left) Lr = 4
and (right) Lr = 8. Antenna separation is fixed at half the carrier wavelength. The
larger the length of the array, the narrower the beam.

cannot be resolved by the receiver. The parameter 1/Lr measures the resolvability of
signals in the angular domain: signals that arrive within an angle much less than
1/Lr cannot be resolved by the receiver. Just as over-sampling cannot increase the
time-domain resolvability beyond 1/W , adding more antenna elements cannot increase
the angular-domain resolvability beyond 1/Lr. This analogy will be exploited in the
statistical modeling of MIMO fading channels and explained more precisely in Section
7.3.

Geographically separated receive antennas

We have increased the number of degrees of freedom by placing the transmit antennas
far apart and keeping the receive antennas close together, but we can achieve the same
goal by placing the receive antennas far apart and keeping the transmit antennas close
together (see Figure 7.9). The channel matrix is given by

H =

[
h∗1
h∗2

]
, (7.45)

where

hi = ai exp

(
−j2πdi1

λc

)
et (Ωti) , (7.46)

and Ωti is the directional cosine of departure of the path from the transmit antenna
array to receive antenna i and di1 is the distance between transmit antenna 1 and
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Figure 7.9: (a) Two geographically separated receive antennas each with line of sight
from a transmit antenna array. (b) Block diagram representation of the channel.

receive antenna i. As long as

Ωt := Ωt2 − Ωt1 6= 0 mod
1

∆t

, (7.47)

the two rows of H are linearly independent and the channel has rank 2, yielding 2
degrees of freedom. The output of the channel spans a two-dimensional space as we
vary the transmitted signal at the transmit antenna array. In order to make H well-
conditioned, the angular separation Ωt of the two receive antennas should be of the
order or larger than 1/Lt, where Lt := nt∆t is the length of the transmit antenna array,
normalized to the carrier wavelength.

Analogous to the receive beamforming pattern, one can also define a transmit beam-
forming pattern. This measures the amount of energy dissipated in other directions
when the transmitter attempts to focus its signal along a direction φ0. The beam
width is 2/Lt; the longer the antenna array, the sharper the transmitter can focus the
energy along a desired direction and the better it can spatially multiplex information
to the multiple receive antennas.
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7.2.5 Line-of-sight plus one reflected path

Can we get a similar effect to that of the example in Section 7.2.4, without putting
either the transmit antennas or the receive antennas far apart? Consider again the
transmit and receive antenna arrays in that example, but now suppose in addition to
a line-of-sight path there is another path reflected off a wall (see Figure 7.10(a)). Call
the direct path, path 1 and the reflected path, path 2. Path i has an attenuation of
ai, makes an angle of φti (Ωti := cos φti) with the transmit antenna array and an angle
of φri (Ωri := cos φri) with the receive antenna array. The channel H is given by the
principle of superposition:

H = ab
1er (Ωr1) et (Ωt1)

∗ + ab
2er (Ωr2) et (Ωt2)

∗ (7.48)

where for i = 1, 2,

ab
i := ai

√
ntnr exp

(
−j2πd(i)

λc

)
, (7.49)

and d(i) is the distance between transmit antenna 1 and receive antenna 1 along path
i. We see that as long as

Ωt1 6= Ωt2 mod
1

∆t

(7.50)

and

Ωr1 6= Ωr2 mod
1

∆r

, (7.51)

the matrix H is of rank 2. In order to make H well-conditioned, the angular separation
|Ωt| of the two paths at the transmit array should be of the same order or larger than
1/Lt and the angular separation |Ωr| at the receive array should be of the same order
or larger than 1/Lr, where

Ωt = cos φt2 − cos φt1, Lt := nt∆t (7.52)

and
Ωr = cos φr2 − cos φr1, Lr := nr∆r. (7.53)

To see clearly what the role of the multipath is, it is helpful to rewrite H as
H = H′′H′, where

H′′ =
[
ab

1er (Ωr1) , ab
2er (Ωr2)

]
, H′ =

[
e∗t (Ωt1)
e∗t (Ωt2)

]
. (7.54)

H′ is a 2 by nt matrix while H′′ is an nr by 2 matrix. One can interpret H′ as the
matrix for the channel from the transmit antenna array to two imaginary receivers at
point A and point B, as marked in Figure 7.10. Point A is the point of incidence of
the reflected path on the wall; point B is along the line-of-sight path. Since points A
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and B are geographically widely separated, the matrix H′ has rank 2; its conditioning
depends on the parameter LtΩt. Similarly, one can interpret the second matrix H′′ as
the matrix channel from two imaginary transmitters at A and B to the receive antenna
array. This matrix has rank 2 as well; its conditioning depends on the parameter
LrΩr. If both matrices are well-conditioned, then the overall channel matrix H is also
well-conditioned.

The MIMO channel with two multipaths is essentially a concatenation of the nt by 2
channel in Figure 7.9 and the 2 by nr channel in Figure 7.5. Although both the transmit
antennas and the receive antennas are close together, multipaths in effect provide
virtual “relays” which are geographically far apart. The channel from the transmit
array to the relays as well as the channel from the relays to the receive array both have
two degrees of freedom, and so does the overall channel. Spatial multiplexing is now
possible. In this context, multipath fading can be viewed as providing an advantage
that can be exploited.

It is important to note in this example that significant angular separation of the
two paths at both the transmit and the receive antenna arrays is crucial for the well-
conditionedness of H. This may not hold in some environments. For example, if the
reflector is local around the receiver and is much closer to the receiver than to the
transmitter, then the angular separation Ωt at the transmitter is small. Similarly,
if the reflector is local around the transmitter and is much closer to the transmitter
than to the receiver, then the angular separation Ωr at the receiver is small. In either
case H would not be very well-conditioned (Figure 7.11). In a cellular system this
suggests that if the base station is high on top of a tower with most of the scatterers
and reflectors locally around the mobile, then the size of the antenna array at the base
station will have to be many wavelengths to be able to exploit this spatial multiplexing
effect.

Summary 7.1 Multiplexing Capability of MIMO Channels

SIMO and MISO channels provide a power gain but no degree-of-freedom gain.

Line-of-sight MIMO channels with co-located transmit antennas and co-located
receive antennas also provide no degree-of-freedom gain.

MIMO channels with far-apart transmit antennas having angular separation
greater than 1/Lr at the receive antenna array provides an effective
degree-of-freedom gain. So do MIMO channels with far-apart receive antennas
having angular separation greater than 1/Lt at the transmit antenna array.

Multipath MIMO channels with co-located transmit antennas and co-located
receive antennas but with scatterers/reflectors far away also provide a
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Figure 7.11: (a) The reflectors and scatterers are in a ring locally around the receiver;
their angular separation at the transmitter is small. (b) The reflectors and scatterers
are in a ring locally around the transmitter; their angular separation at the receiver is
small.
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degree-of-freedom gain.

7.3 Modeling of MIMO Fading Channels

The examples in the previous section are deterministic channels. Building on the
insights obtained, we migrate towards statistical MIMO models which capture the key
properties that enable spatial multiplexing.

7.3.1 Basic Approach

In the previous section, we assessed the capacity of physical MIMO channels by first
looking at the rank of the physical channel matrix H and then its condition number.
In the example in Section 7.2.4, for instance, the rank of H is 2 but the condition
number depends on how the angle between the two spatial signatures compares to the
spatial resolution of the antenna array. The two-step analysis process is conceptually
somewhat awkward. It suggests that physical models of the MIMO channel in terms
of individual multipaths may not be at the right level of abstraction from the point of
view of the design and analysis of communication systems. Rather, one may want to
abstract the physical model into a higher-level model in terms of spatially resolvable
paths.

We have in fact followed a similar strategy in the statistical modeling of frequency
selective fading channels in Chapter 2. There, the modeling is directly on the gains of
the taps of the discrete-time sampled channel rather than on the gains of the individual
physical paths. Each tap can be thought of as a (time-)resolvable path, consisting of
an aggregation of individual physical paths. The bandwidth of the system dictates
how finely or coarsely the physical paths are grouped into resolvable paths. From the
point of view of communication, it is the behavior of the resolvable paths that matters,
not that of the individual paths. Modeling the taps directly rather than the individual
paths has the additional advantage that the aggregation makes statistical modeling
more reliable.

Using the analogy between the finite time-resolution of a bandlimited system and
the finite angular-resolution of an array-size-limited system, we can follow the approach
of Section 2.2.3 in modeling MIMO channels. The transmit and receive antenna array
lengths Lt and Lr dictate the degree of resolvability in the angular domain: paths whose
transmit directional cosines differ by less than 1/Lt and receive directional cosines by
less than 1/Lr are not resolvable by the arrays. This suggests that we should “sample”
the angular domain at fixed angular spacings of 1/Lt at the transmitter and at fixed
angular spacings of 1/Lr at the receiver, and represent the channel in terms of these new
input and output coordinates. The (k, l)th channel gain in these angular coordinates
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Figure 7.12: A representation of the MIMO channel in the angular domain. Due to
the limited resolvability of the antenna arrays, the physical paths are partitioned into
resolvable bins of angular widths 1/Lr by 1/Lt.

is then roughly the accumulation of all paths whose transmit directional cosine is
within an angular window of width 1/Lt around l/Lt and whose receive directional
cosine is within an angular window of width 1/Lr around k/Lr. See Figure 7.12 for
an illustration of the linear transmit and receive antenna array with the corresponding
angular windows. In the following subsections, we will develop this approach explicitly
for uniform linear arrays.

7.3.2 MIMO Multipath Channel

Consider the narrowband MIMO channel:

y = Hx + w. (7.55)

The nt transmit and nr receive antennas are placed in uniform linear arrays of normal-
ized lengths Lt and Lr, respectively. The normalized separation between the transmit
antennas is ∆t = Lt/nt and the normalized separation between the receive antennas is
∆r = Lr/nr. The normalization is by the wavelength λc of the passband transmitted
signal. To simplify notation, we are now thinking of the channel H as fixed and it is
easy to add the time-variation later on.

Suppose there is an arbitrary number of physical paths between the transmitter and
the receiver; the ith path has an attenuation of ai, makes an angle of φti (Ωti := cos φti)
with the transmit antenna array and an angle of φri (Ωri := cos φri) with the receive
antenna array. The channel matrix H is given by:

H =
∑

i

ab
ier (Ωri) et (Ωti)

∗ (7.56)

where, as in Section 7.2,

ab
i := ai

√
ntnr exp

(
−j2πd(i)

λc

)
,

er (Ω) :=
1√
nr




1
exp (−j2π∆rΩ)

·
·

exp (−j2π (nr − 1) ∆rΩ)




, (7.57)



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 367

et (Ω) :=
1√
nt




1
exp (−j2π∆tΩ)

·
·

exp (−j2π (nt − 1) ∆tΩ)




. (7.58)

Also, d(i) is the distance between transmit antenna 1 and receive antenna 1 along path
i. The vectors et (Ω) and er (Ω) are, respectively, the transmitted and received unit
spatial signatures along the direction Ω.

7.3.3 Angular Domain Representation of Signals

The first step is to define precisely the angular domain representation of the transmitted
and received signals. The signal arriving at a directional cosine Ω onto the receive
antenna array is along the unit spatial signature er (Ω), given by (7.57). Recall (c.f.
(7.35))

fr (Ω) := er(0)∗er (Ω) =
1

nr

exp (jπ∆rΩ (nr − 1))
sin (πLrΩ)

sin (πLrΩ/nr)
, (7.59)

analyzed in Section 7.2.4. In particular, we have

fr

(
k

Lr

)
= 0, and fr

(−k

Lr

)
= fr

(
nr − k

Lr

)
, k = 1, . . . , nr − 1 (7.60)

(Figure 7.6). Hence, the nr fixed vectors:

Sr :=

{
er(0), er

(
1

Lr

)
, . . . , er

(
nr − 1

Lr

)}
(7.61)

form an orthonormal basis for the received signal space Cnr . This basis provides the
representation of the received signals in the angular domain.

Why is this representation useful? Recall that associated with each vector er (Ω)
is its beamforming pattern (c.f. Figures 7.7 and 7.8 for examples). It has one or more
pair of main lobes of width 2/Lr and small side lobes. The different basis vectors
er (k/Lr)’s have different main lobes. This implies that the received signal along any
physical direction will have almost all of its energy along one particular er (k/Lr)
vector and very little along all the others. Thus, this orthonormal basis provides
a very simple (but approximate) decomposition of the total received signal into the
multipaths received along the different physical directions, up to a resolution of 1/Lr.

We can similarly define the angular domain representation of the transmitted signal.
The signal transmitted at a direction Ω is along the unit vector et (Ω), defined in (7.58).
The nt fixed vectors:

St :=

{
et(0), et

(
1

Lt

)
, . . . , et

(
nt − 1

Lt

)}
(7.62)
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form an orthonormal basis for the transmitted signal space Cnt . This basis provides
the representation of the transmitted signals in the angular domain. The transmitted
signal along any physical direction will have almost all its energy along one particular
et (k/Lt) vector and very little along all the others. Thus, this orthonormal basis
provides a very simple (again, approximate) decomposition of the overall transmitted
signal into the components transmitted along the different physical directions, up to a
resolution of 1/Lt.

Examples of Angular Bases

Examples of angular bases, represented by their beamforming patterns, are shown in
Figure 7.13. Three cases are distinguished:
• Antennas are critically spaced at half the wavelength (∆r = 1/2). In this case,

each of the basis vector er(k/Lr) has a single pair of main lobe around the angles
± arccos(k/Lr)

• Antennas are sparsely spaced (∆r > 1/2). In this case, some of the basis vectors
have more than one pair of main lobe

• Antennas are densely spaced (∆r < 1/2). In this case, some of the basis vectors
have no main lobes.

These statements can be understood from the fact that the function fr(Ωr) is
periodic with period 1/∆r. The beamforming pattern of the vector er(k/Lr) is the
polar plot (

φ,

∣∣∣∣fr

(
cos φ− k

Lr

)∣∣∣∣
)

(7.63)

and the main lobes are at all angles φ for which:

cos φ =
k

Lr

mod
1

∆r

(7.64)

In the critically-spaced case, 1/∆r = 2 and k/Lr is between 0 and 2; there is a unique
solution cos φ = k/Lr to (7.64). In the sparsely-spaced case, 1/∆r < 2 and for some
values of k, there are multiple solutions: cos φ = k/Lr + m/∆r for integers m. In
the densely-spaced case, 1/∆r > 2, and for k satisfying Lr < k < nr − Lr, there is
no solution to (7.64). These angular basis vectors do not correspond to any physical
directions.

Only in the critically-spaced antennas there is a one-to-one correspondence between
the angular windows and the angular basis vectors. This case is the simplest and we
will assume critically-spaced antennas in the subsequent discussions. The other cases
are discussed further in Section 7.3.7.
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(a) Lr = 2, nr = 4

(b) Lr = 2, nr = 2

(c) Lr = 2, nr = 8

Figure 7.13: Receive beamforming patterns of the angular basis vectors. Independent
of the antenna spacing, the beamforming patterns all have the same beam widths for
the main lobe, but the number of main lobes depends on the spacing. (a) Critically-
spaced case; (b) Sparsely-spaced case. (c) Densely-spaced case.
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Angular Domain Transformation as DFT

Actually the transformation between the spatial and angular domains is a familiar one!
Let Ut be the nt × nt unitary matrix the columns of which are the basis vectors in
St. If x and xa are the nt-dimensional vector of transmitted signals from the antenna
array and its angular domain representation respectively, then they are related by

x = Utx
a, xa = U∗

tx. (7.65)

Now the (k, l)th entry of Ut is

1√
nt

exp

(−j2πkl

nt

)
k, l = 0, . . . , nr − 1. (7.66)

Hence, the angular domain representation xa is nothing but the Inverse Discrete Fourier
Transform of x (c.f. (3.142)). One should however note that the fact that the specific
transformation for the angular domain representation is a DFT is because of the use of
uniform linear arrays. On the other hand, the representation of signals in the angular
domain is a more general concept and can be applied to other antenna array structures.
Exercise 7.8 gives another example.

7.3.4 Angular Domain Representation of MIMO Channels

We now represent the MIMO fading channel (7.55) in the angular domain. Ut and Ur

are respectively the nt× nt and nr × nr unitary matrices the columns of which are the
vectors in St and Sr respectively (IDFT matrices). The transformations

xa := U∗
tx, (7.67)

ya := U∗
ry (7.68)

are the changes of coordinates of the transmitted and received signals into the angular
domain. (Superscript ”a” denotes angular domain quantities.) Substituting this into
(7.55), we have an equivalent representation of the channel in the angular domain:

ya = U∗
rHUtx

a + U∗
rw

= Haxa + wa, (7.69)

where
Ha := U∗

rHUt (7.70)

is the channel matrix expressed in angular coordinates and

wa := U∗
rw ∼ CN (0, N0Inr) . (7.71)
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Figure 7.14: The bin Rk is the set of all paths that arrive roughly in the direction of
the main lobes of the beamforming pattern of er(k/L). Here Lr = 2 and nr = 4.

Now, recalling the representation of the channel matrix H in (7.56),

ha
kl = er (k/Lr)

∗ Het (l/Lt)

=
∑

i

ab
i [er (k/Lr)

∗ er (Ωri)] · [et (Ωti)
∗ et (l/Lt)]

(7.72)

Recall from Section 7.3.3 that the beamforming pattern of the basis vector er(k/Lr)
has a main lobe around k/Lr. The term er (k/Lr)

∗ er (Ωri) is significant for the ith

path if ∣∣∣∣Ωri − k

Lr

∣∣∣∣ <
1

Lr

(7.73)

Define then Rk as the set of all paths whose receive directional cosine is within a
window of width 1/Lr (Figure 7.14). The bin Rk can be interpreted as the set of all
physical paths which have most of its energy along the receive angular basis vector
er (k/Lr). Similarly, define Tl as the set of all paths whose transmit directional cosine
is within an window of width 1/Lt around l/Lt. The bin Tl can be interpreted as
the set of all physical paths which have most of its energy along the transmit angular
basis vector et (l/Lt). The entry ha

kl is then mainly a function of the gains ab
i ’s of the

physical paths that fall in Tl ∩ Rk, and can be interpreted as the channel gain from
the lth transmit angular bin to the kth receive angular bin.

The paths in Tl ∩ Rk are unresolvable in the angular domain. Due to the finite
antenna aperture sizes (Lt and Lr), multiple unresolvable physical paths can be ap-
propriately aggregated into one resolvable path with gain ha

kl. Note that

{Tl ∩Rk, l = 0, 1, . . . , nt − 1, k = 0, 1, . . . , nr − 1}
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forms a partition of the set of all physical paths. Hence, different physical paths
(approximately) contribute to different entries in the angular representation Ha of the
channel matrix.

The discussion in this section substantiates the intuitive picture in Figure 7.12.
Note the similarity between (7.72) and (2.34); the latter quantifies how the underlying
continuous-time channel is smoothed by the limited bandwidth of the system, while
the former quantifies how the underlying continuous-space channel is smoothed by the
limited antenna aperture. In the latter, the smoothing function is the sinc function,
while in the former, the smoothing functions are fr and ft.

To simplify notations, we focus on a fixed channel as above. But time-variation
can be easily incorporated: at time m, the ith time-varying path has attenuation ai[m],
length d(i)[m], transmit angle φti [m] and receive angle φri

[m]. At time m, the resulting
channel and its angular representation are time-varying: H[m] and Ha[m], respectively.

7.3.5 Statistical Modeling in the Angular Domain

The basis for the statistical modeling of the MIMO fading channel is the approximation
that the physical paths are partitioned into angularly resolvable bins and aggregated
to form resolvable paths whose gains are ha

kl[m]’s. Assuming that the gains ab
i [m]’s of

the physical paths are independent, we can model the resolvable path gains ha
kl[m]’s

as independent. Moreover, the angles {φri[m]}m and {φti[m]}m typically evolve at a
much slower time-scale than the gains {ab

i [m]}m; therefore, within the time-scale of
interest it is reasonable to assume that paths do not move from one angular bin to
another, and the processes {ha

kl[m]}m can be modelled as independent across k and l
(see Table 2.1 in Section 2.3). In an angular bin (k, l), where there are many physical
paths, one can invoke the Central Limit Theorem and approximate the aggregate gain
ha

kl[m] as a complex circular symmetric Gaussian process. On the other hand, in an
angular bin (k, l) which contains no paths, the entries ha

kl[m] can be approximated as
0. For a channel with limited angular spread at the receiver and/or the transmitter,
many entries of Ha[m] may be zero. Some examples are shown in Figure 7.15 and 7.16.

7.3.6 Degrees of Freedom and Diversity

Degrees of Freedom

Given the statistical model, one can quantify the spatial multiplexing capability of a
MIMO channel. With probability 1, the rank of the random matrix Ha is given by

rank(Ha) = min {no. of non-zero rows, no. of non-zero columns} (7.74)

(Exercise 7.6). This yields the number of degrees of freedom available in the MIMO
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Figure 7.15: Some examples of Ha. (a) Small angular spread at the transmitter, such
as the channel in Figure 7.11(a). (b) Small angular spread at the receiver, such as the
channel in Figure 7.11(b). (c) Small angular spreads at both the transmitter and the
receiver. (d) Full angular spreads at both the transmitter and the receiver.
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Figure 7.16: Some examples of Ha. (e) Two clusters of scatterers, with all paths going
through a single bounce. (f) Paths scattered via multiple bounces.
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channel. For example, the channel in Figure 7.16(e) provides min{4, 5} = 4 degrees of
freedom and the channel in Figure 7.16(f) provides min{4, 3} = 3 degrees of freedom.

The number of non-zero rows and columns depends in turn on two separate factors:
• the amount of scattering and reflection in the multipath environment. The more

scatterers and reflectors there are, the larger the number of non-zero entries in the
random matrix Ha, and the larger the number of degrees of freedom.

• the lengths Lt and Lr of the transmit and receive antenna arrays. With small
antenna array lengths, many distinct multipaths may all be lumped into a single
resolvable path. Increasing the array apertures allows the resolution of more paths,
resulting in more non-zero entries of Ha and an increased number of degrees of
freedom.

The number of degrees of freedom is explicitly calculated in terms of the multipath
environment and the array lengths in a clustered response model in Example 9.

Example 7.9: Degrees of Freedom in Clustered Response Models

Clarke’s Model
Let us start with Clarke’s model, which was considered in Example 2. In this

model, the signal arrives at the receiver along a continuum set of paths, uniformly
from all directions. With a receive antenna array of length Lr, the number of
receive angular bins is 2Lr and all of these bins are non-empty. Hence all of the
2Lr rows of Ha are non-zero. If the scatterers and reflectors are closer to the
receiver than to the transmitter (Figures 7.11(a) and 7.15(a)), then at the
transmitter the angular spread Ωt (measured in terms of directional cosines) is
less than the full span of 2. The number of non-empty rows in Ha is therefore
dLtΩte, such paths are resolved into bins of angular width 1/Lt . Hence, the
number of degrees of freedom in the MIMO channel is

min{dLtΩte, 2Lr}. (7.75)

If the scatterers and reflectors are located at all directions from the transmitter as
well, then Θt = 2 and the number of degrees of freedom in the MIMO channel is

min{2Lt, 2Lr}, (7.76)

the maximum possible given the antenna array lengths.

General Clustered Response Model
In a more general model, scatterers and reflectors are not located at all

directions from the transmitter or the receiver but are grouped into several
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clusters (Figure 7.17). Each cluster bounces off a continuum of paths. Table 7.1
summarizes several sets of indoor channel measurements which support such a
clustered response model. In an indoor environment, clustering can be the result
of reflections from walls and ceilings, scattering from furniture, diffraction from
door-way openings and transmission through soft partitions. It is a reasonable
model when the size of the channel objects is comparable to the distances from
the transmitter and from the receiver.

In such a model, the directional cosines Θr along which paths arrive are
partitioned into several disjoint intervals: Θr = ∪kΘrk. Similarly, on the transmit
side, Θt = ∪kΘtk. The number of degrees of freedom in the channel is

min

{∑

k

dLt|Θtk|e,
∑

k

dLr|Θtk|e
}

(7.77)

For Lt and Lr large, the number of degrees of freedom is approximately

min {LtΩt,total, LrΩr,total} , (7.78)

where
Ωt,total :=

∑

k

|Θtk| and Ωr,total :=
∑

k

|Θrk| (7.79)

are the total angular spreads of the clusters at the transmitter and at the receiver,
respectively. This formula shows explicitly the separate effects of the antenna
array and of the multipath environment on the number of degrees of freedom.
The larger the angular spreads the more the degrees of freedom there are. For
fixed angular spreads, increasing the antenna array lengths allows zooming into
and resolving the paths from each cluster, thus increasing the available degrees of
freedom (Figure 7.18).

One can draw an analogy between the formula (7.78) and the classic fact that
signals with bandwidth W and duration T have approximately 2WT degrees of
freedom (c.f. Discussion 1). Here, the antenna array lengths Lt and Lr play the
role of the bandwidth W , and the total angular spreads Ωt,total and Ωr,total play
the role of the signal duration T .

Effect of Carrier Frequency
As an application of the formula (7.78), consider the question of how the

available number of degrees of freedom in the MIMO channel depends on the
carrier frequency used. Recall that the array lengths Lt and Lr are quantities
normalized to the carrier wavelength. Hence, for a fixed physical length of the
antenna arrays, the normalized lengths Lt and Lr increase with the carrier
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Frequency (GHz) No. of Clusters Total Angular Spread (o)
USC UWB [23] 0 – 3 2 – 5 37
Intel UWB [75] 2 – 8 1 – 4 11 – 17

Spencer [88] 6.75 – 7.25 3 – 5 25.5
COST 259 [46] 24 3 – 5 18.5

Table 7.1: Examples of some indoor channel measurements. The Intel measurements
span a very wide bandwidth and the number of clusters and angular spread measured
is frequency dependent. This set of data is further elaborated in Figure 7.19.

frequency. Viewed in isolation, this fact would suggest an increase in the number
of degrees of freedom with the carrier frequency; this is consistent with the
intuition that at higher carrier frequencies, one can pack more antenna elements
in a given amount of area on the device. On the other hand, the angular spread of
the environment typically decreases with the carrier frequency. The reasons are
two-fold:

• signals at higher frequency attenuate more after passing through or bouncing off
channel objects, thus reducing the number of effective clusters;

• at higher frequency the wavelength is small relative to the feature size of typical
channel objects, so scattering appears to be more specular in nature and results
in smaller angular spread.

These factors combine to reduce Ωt,total and Ωr,total as the carrier frequency
increases. Thus the impact of carrier frequency on the overall degrees of freedom
is not necessarily monotonic. A set of indoor measurements is shown in Figure
7.19. The number of degrees of freedom increases and then decreases with the
carrier frequency, and there is in fact an optimal frequency at which the number
of degrees of freedom is maximized. This example shows the importance of taking
into account both the physical environment as well as the antenna arrays in
determining the available degrees of freedom in a MIMO channel.

Diversity

In this chapter, we have focused on the phenomenon of spatial multiplexing and the key
parameter is the number of degrees of freedom. In a slow fading environment, another
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Figure 7.17: The clustered response model for the multipath environment. Each cluster
bounces off a continuum of paths.

important parameter is the amount of diversity in the channel. This is the number of
independent channel gains that have to be in a deep fade for the entire channel to be
in deep fade. In the angular domain MIMO model, the amount of diversity is simply
the number of non-zero entries in Ha. Some examples are shown in Figure 7.20. Note
that channels that have the same degrees of freedom can have very different amount of
diversity. The number of degrees of freedom depends primarily on the angular spreads
of the scatters/reflectors at the transmitter and at the receiver, while the amount of
diversity depends also on the degree of connectivity between the transmit and receive
angles. In a channel with multiple-bounced paths, signals sent along one transmit
angle can arrive at several receive angles (c.f. Figure 7.16). Such a channel would have
more diversity than one with single-bounced paths with signal sent along one transmit
angle received at a unique angle, even though the angular spreads may be the same.

7.3.7 Dependency on Antenna Spacing

So far we have been primarily focusing on the case of critically-spaced antennas (i.e.,
antenna separations ∆t and ∆r are half the carrier wavelength). What is the im-
pact of changing the antenna separation on the channel statistics and the key channel
parameters such as the number of degrees of freedom?

To answer this question, we fix the antenna array lengths Lt and Lr and vary the
antenna separation, or equivalently the number of antenna elements. Let us just focus
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Figure 7.18: Increasing the antenna array apertures increases path resolvability in the
angular domain and the degrees of freedom.
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of degrees of freedom of the MIMO channel, proportional to Ωtotal/λc, first increases
and then decreases with the carrier frequency. The data is taken from [75].
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Figure 7.20: Angular domain representation of three MIMO channels. They all have
4 degrees of freedom but they have diversity 4, 8 and 16 respectively. They model
channels with increasing amount of bounces in the paths (c.f. Figure 7.16).
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Figure 7.21: An antenna array of length Lr partitions the receive directions into 2Lr

angular windows. Here, Lr = 3 and there are 6 angular windows. Note that because
of symmetry across the 0o − 180o axis, each angular window comes as a mirror image
pair, and each pair is only counted as one angular window.

on the receiver side; the transmitter side is analogous. Given the antenna array length
Lr, the beamforming patterns associated with the basis vectors {er(k/Lr)}k all have
beam widths of 2/Lr (Figure 7.13). This dictates the maximum possible resolution of
the antenna array: paths that arrive within an angular window of width 1/Lr cannot
be resolved no matter how many antenna elements there are. There are 2Lr such
angular windows, partitioning all the receive directions (Figure 7.21). Whether or not
this maximum resolution can actually be achieved depends on the number of antenna
elements.

Recall that the binsRk can be interpreted as the set of all physical paths which have
most of its energy along the basis vector et (k/Lr).) The bins dictate the resolvability of
the antenna array. In the critically-spaced case (∆r = 1/2), the beamforming patterns
of all the basis vectors have a single main lobe (together with its mirror image). There
is a one-to-one correspondence between the angular windows and the resolvable bins
Rk’s, and paths arriving in different windows can be resolved by the array (Figure
7.22). In the sparsely-spaced case (∆r > 1/2), the beamforming patterns of some
of the basis vectors have multiple main lobes. Thus, paths arriving in the different
angular windows corresponding to these lobes are all lumped into one bin and cannot
be resolved by the array (Figure 7.23). In the densely-spaced case (∆r < 1/2), the
beamforming patterns of 2Lr of the basis vectors have a single main lobe; they can
be used to resolve among the 2Lr angular windows. The beamforming patterns of the
remaining nr − 2Lr basis vectors have no main lobe and do not correspond to any
angular window. There is little received energy along these basis vectors and they do
not participate significantly in the communication process. See Figure 7.23.

The key conclusion from the above analysis is that, given the antenna array lengths
Lr and Lt, the maximum achievable angular resolution can be achieved by placing
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Figure 7.22: Antennas are critically spaced at half the wavelength. Each resolvable bin
corresponds to exactly one angular window. Here, there are 6 angular windows and 6
bins.
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multiple angular windows. (b) The antennas are very sparsely spaced. All bins contain
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Figure 7.24: Antennas are densely spaced. Some bins contain no physical paths.



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 385

10

20

30

40

50
5

10
15

20
25

30
35

40
45

50

1

2

3

4

5

k − Receiver bins

L = 16, n = 50

l − Transmitter bins

|h
kla

|

Figure 7.25: A typical Ha when the antennas are densely spaced.

antenna elements half a wavelength apart. Placing antennas more sparsely reduces
the resolution of the antenna array and can reduce the number of degrees of freedom
and the diversity of the channel. Placing the antennas more densely adds spurious
basis vectors which do not correspond to any physical directions and does not add
resolvability. In terms of the angular channel matrix Ha, this has the effect of adding
zero rows and columns; in terms of the spatial channel matrix H, this has the effect of
making the entries more correlated. In fact, the angular domain representation makes
it apparent that one can reduce the densely-spaced system to an equivalent 2Lt × 2Lr

critically-spaced system by just focusing on the basis vectors that do correspond to
physical directions (Figure 7.25).

Increasing the antenna separation within a given array length Lr does not increase
the number of degrees of freedom in the channel. What about increasing the antenna
separation while keeping the number of antenna elements nr the same? This question
makes sense if the system is hardware-limited rather than limited by the amount of
space to put the antenna array in. Increasing the antenna separation this way reduces
the beam width of the nr angular basis beamforming patterns but also increases the
number of main lobes in each (Figure 7.26). If the scattering environment is rich
enough such that the received signal arrives from all directions, the number of non-
zero rows of the channel matrix Ha is already nr, the largest possible, and increasing
the spacing does not increase the number of degrees of freedom in the channel. On
the other hand, if the scattering is clustered to within certain directions, increasing
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Figure 7.26: An example of a clustered response channel in which increasing the sepa-
ration between a fixed number of antennas increase the number of degrees of freedom.

the separation makes it possible for the scattered signal to be received in more bins,
thus increasing the number of degrees of freedom (Figure 7.26). In terms of the spatial
channel matrix H, this has the effect of making the entries look more random and
independent.

Sampling Interpretation

One can give a sampling interpretation to the above results. First, think of the dis-
crete antenna array as a sampling of an underlying continuous array [−Lr/2, Lr/2].
On this array, the received signal x(s) is a function of the continuous spatial location
s ∈ [−Lr/2, Lr/2]. Just like in the discrete case (c.f. Section 7.3.3), the spatial-domain
signal x(s) and its angular representation xa(Ω) form a Fourier transform pair. How-



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 387

ever, since only Ω ∈ [−1, 1] corresponds to directional cosines of actual physical direc-
tions, the angular representation xa(Ω) of the received signal is zero outside [−1, 1].
Hence, the spatial-domain signal x(s) is ”bandlimited” to [−W,W ], with ”bandwidth”
W = 1. By the sampling theorem, the signal x(s) can be uniquely specified by samples
spaced at distance 1/(2W ) = 1/2 apart, the Nyquist sampling rate. This is precise
when Lr →∞ and approximate when Lr is finite. Hence, placing the antenna elements
at the critical separation is sufficient to describe the received signal; a continuum of
antenna elements is not needed. Antenna spacing greater than 1/2 is not adequate:
this is under-sampling and the loss of resolution mentioned above is analogous to the
aliasing effect when one samples a bandlimited signal at below the Nyquist rate.

7.3.8 I.I.D. Rayleigh Fading Model

A very common MIMO fading model is the i.i.d. Rayleigh fading model: the entries
of the channel gain matrix H[m] are independent, identically distributed and circu-
lar symmetric complex Gaussian. Since the matrices H[m] and its angular domain
representation Ha[m] are related by

Ha[m] := U∗
rH[m]Ut, (7.80)

and Ur and Ut are fixed unitary matrices, this means that Ha should have the same
i.i.d. Gaussian distribution as H. Thus, using the modeling approach described here,
we can see clearly the physical basis of the i.i.d Rayleigh fading model, in terms of
both the multipath environment and the antenna arrays. There should be a significant
number of multipaths in each of the resolvable angular bins, and the energy should be
equally spread out across these bins. This is the so-called richly scattered environment.
If there are very few or no paths in some of the angular directions, then the entries in H
will be correlated. Moreover, the antennas should be either critically or sparsely spaced.
If the antennas are densely spaced, then some entries of Ha are approximately zero
and the entries in H itself are highly correlated. However, by a simple transformation,
the channel can be reduced to an equivalent channel with fewer number of antennas
which are critically spaced.

Compared to the critically-spaced case, having sparser spacing makes it easier for
the channel matrix to satisfy the i.i.d. Rayleigh assumption. This is because each
bin now spans more distinct angular windows and thus contains more paths, from
multiple transmit and receive directions. This substantiates the intuition that putting
the antennas farther apart makes the entries of H less dependent. On the other, if the
physical environment already provides scattering in all directions, then having critical
spacing of the antennas is enough to satisfy the i.i.d. Rayleigh assumption.

Due to the analytical tractability, we will use the i.i.d. Rayleigh fading model quite
often to evaluate performance of MIMO communication schemes, but it is important
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to keep in mind the assumptions on both the physical environment and the antenna
arrays for the model to be valid.
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Chapter 7: The Main Plot

The angular domain provides a natural representation of the MIMO channel,
highlighting the interaction between the antenna arrays and the physical
environment.

The angular resolution of a linear antenna array is dictated by its length: an array
of length L provides a resolution of 1/L. Critical spacing of antenna elements at
half the carrier wavelength captures the full angular resolution of 1/L. Sparser
spacing reduces the angular resolution due to aliasing. Denser spacing does not
increase the resolution beyond 1/L.

Transmit and receive antenna arrays of length Lt and Lr partitions the angular
domain into 2Lt × 2Lr bins of unresolvable multipaths. Paths that fall within the
same bin are aggregated to form one entry of the angular channel matrix Ha.

A statistical model of Ha is obtained by assuming independent Gaussian
distributed entries, of possibly different variances. Angular bins that contain no
paths correspond to zero entries.

The number of degrees of freedom in the MIMO channel is the minimum of the
number of non-zero rows and the number of non-zero columns of Ha. The amount
of diversity is the number of non-zero entries.

In a clustered-response model, the number of degrees of freedom is approximately:

min {2LtΩt,total, 2LrΩr,total} (7.81)

The multiplexing capability of a MIMO channel increases with the angular
spreads Ωt,total, Ωr,total of the scatterers/reflectors as well as with the antenna array
lengths.

The i.i.d. Rayleigh fading model is reasonable in a richly scattering environment
where the angular bins are fully populated with paths and there is rough equal
amount of energy in each bin. The antenna elements should be critically or
sparsely spaced.



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 390

Exercises

Exercise 7.1. 1. For the SIMO channel with uniform linear array in Section 7.2.1,
give an exact expression for the distance between the transmit antenna and the
ith receive antenna. Make precise in what sense is (7.19) an approximation.

2. Repeat the analysis for the approximation (7.27) in the MIMO case.

Exercise 7.2. Verify that the unit vector er(Ωr), defined in (7.21), is periodic with
period ∆r and within one period never repeats itself.

Exercise 7.3. Verify (7.35).

Exercise 7.4. In an earlier work on MIMO communication [?], it is stated that the
number of degrees of freedom in a MIMO channel with nt transmit, nr receive antennas
and K multipaths is given by:

min{nt, nr, K} (7.82)

and this is the key parameter that determines the multiplexing capability of the chan-
nel. What are the problems with this statement?

Exercise 7.5. In this question we study the role of antenna spacing in the angular
representation of the MIMO channel.

1. Consider the critically spaced antenna array in Figure 7.22; there are 6 bins, each
one corresponding to a specific physical angular window. Each of these angular
windows have the same width as measured in solid angle. Compute the angular
window width in radians for each of the bins Tl, with l = 0, . . . , 5. Argue that
the width in radians increases as we move from the line perpendicular to the
antenna array to one that is parallel to it.

2. Now consider the sparsely spaced antenna arrays in Figure 7.23. Justify the
depicted mapping from the angular windows to the bins Tl and evaluate the
angular window width in radians for each of the bins Tl (for l = 0, 1, . . . , nt− 1).
(The angular window width of a bin Tl is the sum of the widths of all the angular
windows that correspond to the bin Tl.)

3. Justify the depiction of the mapping from angular windows to the bins Tl in the
densely spaced antenna array of Figure 7.24. Also evaluate the angular width of
each bin in radians.

Exercise 7.6. The non-zero entries of the angular matrix Ha are distributed as inde-
pendent complex Gaussian random variables. Show that with probability 1, the rank
of the matrix is given by the formula (7.74).
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Exercise 7.7. In Chapter 2, we introduced Clarke’s flat fading model, where both the
transmitter and the receiver have a single antenna. Suppose now that the receiver has
nr antennas, each spaced by half a wavelength. The transmitter still has one antenna
(a SIMO channel). At time m

y[m] = h[m]x[m] + w[m], (7.83)

where y[m],h[m] are the nr-dimensional received vector and receive spatial signature
(induced by the channel), respectively.

1. Consider first the case when the receiver is stationary. Compute approximately
the joint statistics of the coefficients of h in the angular domain.

2. Now suppose the receiver is moving at a speed v. Compute the Doppler spread
and the Doppler spectrum of each of the angular domain coefficients of the chan-
nel.

3. What happens to the Doppler spread as nr → ∞? What can you say about
the difficulty of estimating and tracking the process {h[m]} as n grows? Easier,
harder, or the same? Explain.

Exercise 7.8. [?](Circular Array) Consider a circular array of radius R normalized
by the carrier wavelength with n elements uniformly spaced.

1. Compute the spatial signature in the direction φ.

2. Find the angle, f(φ1, φ2), between the two spatial signatures in the direction φ1

and φ2.

3. Does f(φ1, φ2) only depend on the difference φ1 − φ2? If not, explain why.

4. Plot f(φ1, 0) for R = 2 and different values of n, from n equal to dπR/2e, dπRe,
d2πRe, to d4πRe. Describe what you observed.

5. Deduce the angular resolution.

6. Linear arrays of length L have a resolution of 1/L along the cos φ-domain, that
is, they have non-uniform resolution along the φ-domain. Can you design a linear
array with uniform resolution along the φ-domain?

Exercise 7.9. (Spatial Sampling) Consider a MIMO system with Lt = Lr = 2 in a
channel with M = 10 multipaths. The ith multipath makes an angle of i∆φ with the
transmit array and an angle of i∆φ with the receive array where ∆φ = π/M .

1. Assuming there are nt transmit and nr receive antennas, compute the channel
matrix.
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2. Compute the channel eigenvalues for nt = nr varying from 4 to 8.

3. Describe the distribution of the eigenvalues and contrast it with the binning
interpretation in Section 7.3.4.

Exercise 7.10. In this exercise, we study the angular domain representation of frequency-
selective MIMO channels.

1. Starting with the representation of the frequency-selective MIMO channel in time
(c.f. (8.114)) describe how you would arrive at the angular domain equivalent (c.f.
(7.69)):

ya[m] =
L−1∑

`=0

Ha
` [m]xa[m− `] + wa[m]. (7.84)

2. Consider the equivalent (except for the overhead in using the cyclic prefix) par-
allel MIMO channel as in (8.115).

(a) Discuss the role played by the density of the scatterers and the delay spread
in the physical environment in arriving at an appropriate statistical model
for H̃n at the different OFDM tones n.

(b) Argue that the (marginal) distribution of the MIMO channel H̃n is the same
for each of the tones n = 0, . . . , N − 1.

Exercise 7.11. A MIMO channel has a single cluster with the directional cosine ranges
as Θt = Θr = [0, 1]. Compute the number of degrees of freedom of a n× n channel as
a function of the antenna separation ∆t = ∆r = ∆.
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Chapter 8

MIMO II: Capacity and
Multiplexing Architectures

In this chapter, we will look at the capacity of MIMO fading channels and discuss
transceiver architectures that extract the promised multiplexing gains from the chan-
nel. We particularly focus on the scenario when the transmitter does not know the
channel realization. In the fast fading MIMO channel, we show the following:
• At high SNR, the capacity of the i.i.d. Rayleigh fast fading channel scales like

nmin log SNR bits/s/Hz, where nmin is the minimum of the number of transmit
antennas nt and the number of receive antennas nr. This is a degree-of-freedom
gain.

• At low SNR, the capacity is approximately nrSNR log2 e bits/s/Hz. This is a
receive beamforming power gain.

• At all SNR, the capacity scales linearly with nmin. This is due to a combination
of a power gain and a degree-of-freedom gain.

Furthermore, there is a transmit beamforming gain together with an opportunistic
communication gain if the transmitter can track the channel as well.

Over a deterministic time-invariant MIMO channel, the capacity-achieving transceiver
architecture is simple (c.f. Section 7.1.1): independent data streams are multiplexed
in an appropriate coordinate system (c.f. Figure 7.2). The receiver transforms the
received vector into another appropriate coordinate system to separately decode the
different data streams. Without knowledge of the channel at the transmitter the choice
of the coordinate system in which the independent data streams are multiplexed has
to be fixed a priori. In conjunction with joint decoding, we see that this transmitter
architecture achieves the capacity of the fast fading channel. This architecture is also
called V-BLAST1 in the literature.

1Vertical Bell Labs Space Time Architecture. Note that there are several versions of V-BLAST
with different receiver structures but they all share the same transmitting architecture of multiplexing

393
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In Section 8.3, we discuss receiver architectures that are simpler than joint ML de-
coding of the independent streams. While there are several receiver architectures that
can support the full degrees of freedom of the channel, a particular architecture, the
MMSE-SIC, which uses a combination of minimum mean square estimation (MMSE)
and successive interference cancellation (SIC), achieves capacity.

The performance of the slow fading MIMO channel is characterized through the out-
age probability and the corresponding outage capacity. At low SNRs, the transmitter
effectively uses only one of the transmit antennas, and the performance is comparable
to that of a SIMO channel. At high SNR, the diversity gain is now significantly more
than that from just a SIMO or a MISO channel: the i.i.d. Rayleigh slow fading MIMO
channel offers a diversity gain equal to the product of nt and nr. The outage capacity
at high SNR, on the other hand, benefits from both the diversity gain and a degree
of freedom gain: this is more difficult to characterize succinctly and is relegated until
Chapter 9.

Although it achieves the capacity of the fast fading channel, the V-BLAST archi-
tecture is strictly sub-optimal for the slow fading channel. In fact, it does not even
achieve the full diversity gain promised by the MIMO channel. To see this, consider
transmitting independent data streams directly over the transmit antennas. In this
case, the diversity of each data stream is limited to just the receive diversity. To
extract the full diversity from the channel, one needs to code across the transmit an-
tennas. A modified architecture, D-BLAST2, combines transmit antenna coding with
MMSE-SIC not only extracts the full diversity from the channel but its performance
also comes close to the outage capacity.

8.1 The V-BLAST Architecture

We start with the time-invariant channel (c.f. (7.1))

y[m] = Hx[m] + w[m], m = 1, 2, . . . . (8.1)

When the channel matrix H is known to the transmitter, we have seen in Section
7.1.1 that the optimal strategy is to transmit independent streams in the directions
of the eigenvectors of H∗H, i.e., in the coordinate system defined by the matrix V,
where H = UΛV∗ is the singular value decomposition of H. This coordinate system is
channel-dependent. With an eye towards dealing with the case of fading channels where
the channel matrix is unknown to the transmitter, we generalize this to the architecture
in Figure 8.1, where the independent data streams, nt of them, are multiplexed in some
arbitrary coordinate system Q, not necessarily dependent on the channel matrix H.
This is the V-BLAST architecture. The data streams are decoded jointly. The kth data

independent streams, and we take this as its defining feature.
2Diagonal Bell Labs Space Time Architecture
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Figure 8.1: The V-BLAST architecture for communicating over the MIMO channel.

stream is allocated a power Pk (such that the sum of the powers, P1 + · · ·+Pnt , is equal
to P , the total transmit power constraint) and is encoded using a capacity-achieving
Gaussian code with rate Rk. The total rate is R =

∑nt

k=1 Rk.
As special cases:
• If Q = V and the powers are given by the waterfilling allocations, then we have

the capacity-achieving architecture in Figure 7.2.

• If Q = Inr , then independent data streams are sent on the different transmit
antennas.

Using a sphere-packing argument analogous to the ones used in Chapter 5, we will
argue an upper bound on the highest reliable rate of communication:

R < log det

(
Inr +

1

N0

HKxH
∗
)

bits/s/Hz. (8.2)

Here Kx is the covariance matrix of the transmitted signal x and is a function of the
multiplexing coordinate system and the power allocations:

Kx := Q diag {P1, . . . , Pnt}Q∗. (8.3)

Considering communication over a block of time symbols of length N , the received
vector, of length nrN , lies with high probability in an ellipsoid of volume proportional
to

det (N0Inr + HKxH
∗)N . (8.4)

This formula is a direct generalization of the corresponding volume formula (5.50) for
the parallel channel, and is justified in Exercise 8.2. Since we have to allow for non-
overlapping noise spheres (of radius

√
N0 and, hence, volume proportional to NnrN

0 )
around each codeword to ensure reliable communication, the maximum number of
codewords that can be packed is the ratio

det (N0Inr + HKxH
∗)N

NnrN
0

. (8.5)
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We can now conclude the upper bound on the rate of reliable communication in (8.2).
Is this upper bound actually achievable by the V-BLAST architecture? Observe

that independent data streams are multiplexed in V-BLAST ; perhaps coding across
the streams is required to achieve the upper bound (8.2)? To get some insight on this
question, consider the special case of a MISO channel (nr = 1) and set Q = Int in
the architecture, i.e., independent streams on each of the transmit antennas. This is
precisely an uplink channel, as considered in Section 6.1, drawing an analogy between
the transmit antennas and the users. We know from the development there that the
sum capacity of this uplink channel is

log

(
1 +

∑nt

k=1 |hk|2Pk

N0

)
. (8.6)

This is precisely the upper bound (8.2) in this special case. Thus, the V-BLAST archi-
tecture, with independent data streams, is sufficient to achieve the upper bound (8.2).
In the general case, an analogy can be drawn between the V-BLAST architecture and
an uplink channel with nr receive antennas and channel matrix HQ; just as in the
single receive antenna case, the upper bound (8.2) is the sum capacity of this uplink
channel and therefore achievable using the V-BLAST architecture. This uplink chan-
nel is considered in greater detail in Chapter 10 and its information theoretic analysis
is in Appendix B.9.

8.2 Fast Fading MIMO Channel

The fast fading MIMO channel is

y[m] = H[m]x[m] + w[m], m = 1, 2, . . . , (8.7)

where {H[m]} is a random fading process. To properly define a notion of capacity
(achieved by averaging of the channel fading over time), we make the technical as-
sumption (as in the earlier chapters) that {H[m]} is a stationary and ergodic process.
As a normalization, let us suppose that E[|hij|2] = 1. As in our study earlier, we con-
sider coherent communication: the receiver tracks the channel fading process exactly.
We first start with the situation when the transmitter has only a statistical character-
ization of the fading channel. Finally, we look at the case when the transmitter also
exactly tracks the fading channel (full CSI); this situation is very similar to that of the
time-invariant MIMO channel.

8.2.1 Capacity with CSI at Receiver

Consider using the V-BLAST architecture (Figure 8.1) with a channel-independent
multiplexing coordinate system Q and power allocations P1, . . . , Pnt . The covariance
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matrix of the transmit signal is Kx and is not dependent on the channel realization.
The rate achieved in a given channel state H is:

log det

(
Inr +

1

N0

HKxH
∗
)

(8.8)

As usual, by coding over many coherence time intervals of the channel, a long-term
rate of reliable communication equal to

EH

[
log det

(
Inr +

1

N0

HKxH
∗
)]

(8.9)

is achieved. We can now choose the covariance Kx as a function of the channel statistics
to achieve a reliable communication rate of

C = max
Kx:Tr[Kx]≤P

E
[
log det

(
Inr +

1

N0

HKxH
∗
)]

. (8.10)

Here the trace constraint corresponds to the total transmit power constraint. This
is indeed the capacity of the fast fading MIMO channel (a formal justification is in
Appendix B.7.2). We emphasize that the input covariance is chosen to match the
channel statistics rather than the channel realization, since the latter is not known at
the transmitter.

The optimal Kx in (8.10) obviously depends on the stationary distribution of the
channel process {H[m]}. For example, if there are only a few dominant paths (no
more than one in each of the angular bins) that are not time varying, then we can view
H as being deterministic. In this case, we know from Section 7.1.1 that the optimal
coordinate system to multiplex the data streams is in the eigen-directions of H∗H and,
further, to allocate powers in a waterfilling manner across the eigenmodes of H.

Let us now consider the other extreme: there are many paths (of approximately
equal energy) in each of the angular bins. Some insight can be obtained by looking at
the angular representation (c.f. (7.80)): Ha := U∗

rHUt. The key advantage of this view
point is in statistical modeling: the entries of Ha are generated by different physical
paths and can be modeled as being statistically independent (c.f. Section 7.3.5). Here
we are interested in the case when the entries of Ha have zero mean (no single dominant
path in any of the angular windows). Due to independence, it seems reasonable to
separately send information in each of the transmit angular windows (with powers
corresponding to the strength of the paths in the angular windows). That is, the
multiplexing is done in the coordinate system given by Ut (so Q = Ut in (8.3)). The
covariance matrix now has the form

Kx = UtΛU∗
t , (8.11)

where Λ is a diagonal matrix with nonnegative entries (representing the power trans-
mitted in each of the transmit angular windows, so that the sum of the entries is equal
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to P ). This is shown formally in Exercise 8.3, where we see that this observation holds
even if the entries of Ha are only uncorrelated.

If there is additional symmetry among the transmit antennas, such as when the
elements of Ha are i.i.d. CN (0, 1) (the i.i.d. Rayleigh fading model), then one can
further show that equal powers are allocated to each transmit angular window (see
Exercises 8.4 and 8.6) and thus, in this case, the optimal covariance matrix is simply

Kx =

(
P

nt

)
Int . (8.12)

More generally, the optimal powers (i.e., the diagonal entries of Λ) are chosen to be
the solution to the maximization problem (substituting the angular representation
H = UrH

aU∗
t and (8.11) in (8.10)):

C = max
Λ:Tr{Λ]≤P

E
[
log det

(
Inr +

1

N0

UrH
aΛHa∗U∗

r

)]
(8.13)

= max
Λ:Tr[Λ]≤P

E
[
log det

(
Inr +

1

N0

HaΛHa∗
)]

. (8.14)

With equal powers (i.e., the optimal Λ is equal to (P/nt) Int), the resulting capacity
is

C = E
[
log det

(
Inr +

SNR

nt

HH∗
)]

, (8.15)

where SNR := P/N0 is the common SNR at each receive antenna.
If λ1 ≥ λ2 ≥ · · · ≥ λnmin

are the (random) ordered singular values of H, then we
can rewrite (8.15) as

C = E

[
nmin∑
i=1

log

(
1 +

SNR

nt

λ2
i

)]

=

nmin∑
i=1

E
[
log

(
1 +

SNR

nt

λ2
i

)]
. (8.16)

Comparing this expression to the waterfilling capacity in (7.10), we see the contrast
between the situation when the transmitter knows the channel and when it does not.
When the transmitter knows the channel, it can allocate different amounts of power
in the different eigenmodes depending on their strengths. When the transmitter does
not know the channel but the channel is sufficiently random, the optimal covariance
matrix is identity, resulting in equal amounts of power across the eigenmodes.
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8.2.2 Performance Gains

The capacity, (8.16), of the MIMO fading channel is a function of the distribution of
the singular values λi’s of the random channel matrix H. By Jensen’s inequality, we
know that

nmin∑
i=1

log

(
1 +

SNR

nt

λ2
i

)
≤ nmin log

(
1 +

SNR

nt

[
1

nmin

nmin∑
i=1

λ2
i

])
, (8.17)

with equality if and only if the singular values are all equal. Hence, one would expect
a high capacity if the channel matrix H is sufficiently random and statistically well-
conditioned, with the overall channel gain well distributed across the singular values.
In particular, one would expect such a channel to attain the full degrees of freedom at
high SNR.

We plot the capacity for the i.i.d. Rayleigh fading model in Figure 8.2 for different
number of antennas. Indeed, we see that for such a random channel, the capacity of a
MIMO system can be very large. At moderate to high SNR, the capacity of an n by
n channel is about n times the capacity of a 1 by 1 system. The asymptotic slope of
capacity versus SNR in dB scale is proportional to n.

High SNR Regime

The performance gain can be seen most clearly in the high SNR regime. At high SNR,
the capacity for the i.i.d. Rayleigh channel is given by:

C ≈ nmin log
SNR

nt

+

nmin∑
i=1

E
[
log λ2

i

]
, (8.18)

and
E

[
log λ2

i

]
> −∞, (8.19)

for all i. Hence, the full nmin degrees of freedom is attained. In fact, further analysis
reveals that

nmin∑
i=1

E
[
log λ2

i

]
=

nmin∑

i=|nt−nr|+1

E
[
log χ2

2i

]
, (8.20)

where χ2
2i is a χ-square distributed random variable with 2i degrees of freedom.

Note that the number of degrees of freedom is limited by the minimum of the
number of transmit and the number of receive antennas, hence, to get a large capacity,
we need multiple transmit and multiple receive antennas. To emphasize this fact, we
also plot the capacity of a 1 by nr channel in Figure 8.2. This capacity is given by

C = E

[
log

(
1 + SNR

nr∑
i=1

|hi|2
)]

bits/s/Hz. (8.21)
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Figure 8.2: Capacity in an i.i.d. Rayleigh fading channel. Upper: 4 by 4 channel.
Lower: 8 by 8 channel.
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We see that the capacity of such a channel is significantly less than that of a nr by nr

system in the high SNR range, and this is due to the fact that there is only one degree
of freedom in a 1 by nr channel. The gain in going from a 1 by 1 system to a 1 by nr

system is a power gain, resulting in a parallel shift of the capacity versus SNR curves.
At high SNR, a power gain is much less impressive than a degree-of-freedom gain.

Low SNR Regime

Here we use the approximation log2(1 + x) ≈ x log2 e for x small in (8.15) to get

C =

nmin∑
i=1

E
[
log

(
1 +

SNR

nt

λ2
i

)]

≈
nmin∑
i=1

SNR

nt

E
[
λ2

i

]
log2 e

=
SNR

nt

E [Tr [HH∗]] log2 e

=
SNR

nt

E

[∑
i,j

|hij|2
]

log2 e

= nr SNR log2 e bits/s/Hz.

Thus at low SNR, an nt by nr system yields a power gain of nr over a single antenna
system. This is due to the fact that the multiple receive antennas can coherently
combine their received signals to get a power boost. Note that increasing the number
of transmit antennas does not increase the power gain since, unlike the case when
the channel is known at the transmitter, transmit beamforming cannot be done to
constructively add signals from the different antennas. Thus, at low SNR and without
channel knowledge at the transmitter, multiple transmit antennas are not very useful:
the performance of an nt by nr channel is comparable with that of a 1 by nr channel.
This is illustrated in Figure 8.3, which compares the capacity of an n by n channel
with that of a 1 by n channel, as a fraction of the capacity of a 1 by 1 channel. We
see that at an SNR of about −20 dB, the capacities of a 1 by 4 channel and a 4 by 4
channel are very similar.

Recall from Chapter 4 that the operating SINR of cellular systems with universal
frequency reuse is typically very low. For example, an IS-95 CDMA system may have
an SINR per chip of −15 to −17 dB. The above observation then suggests that just
simply overlaying point-to-point MIMO technology on such systems to boost up per
link capacity will not be very effective compared to just adding antennas at one end.
On the other hand, the story is different if the multiple antennas are used to perform
multiple access and interference management. This issue will be revisited in Chapter
10.
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Figure 8.3: Low SNR capacities. Upper: 1 by 4 and a 4 by 4 channel. Lower: 1 by 8
and a 8 by 8 channel. Capacity is a fraction of the 1 by 1 channel in each case.
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Another difference between the high and the low SNR regimes is that while channel
randomness is crucial in yielding a large capacity gain in the high SNR regime, it plays
little role in the low SNR regime. The low SNR result above does not depend on
whether the channel gains, {hij} are independent or correlated.

Large Antenna Array Regime

We saw that in the high SNR regime, the capacity increases linearly with the minimum
of the number of transmit and the number of receive antennas. This is a degree-of-
freedom gain. In the low SNR regime, the capacity increases linearly with the number
of receive antennas. This is a power gain. Will the combined effect of the two types
of gain yield a linear growth in capacity at any SNR, as we scale up both nt and nr?
Indeed, this turns out to be true. Let us focus on the square channel nt = nr = n to
demonstrate this.

With i.i.d. Rayleigh fading, the capacity of this channel is (c.f. (8.15)):

Cnn(SNR) = E

[
n∑

i=1

log

(
1 + SNR

λ2
i

n

)]
, (8.22)

where we emphasize the dependence on n and SNR in the notation. The λi/
√

n’s are
the singular values of the random matrix H/

√
n. By a random matrix result due to

Marc̆enko and Pastur, the empirical distribution of the singular values of H/
√

n con-
verges to a deterministic limiting distribution for almost all realizations of H. Figure
8.4 demonstrates the convergence. The limiting distribution is the so-called quarter
circle law3. The corresponding limiting density of the squared singular values is given
by

f ∗(x) =

{
1
π

√
1
x
− 1

4
0 ≤ x ≤ 4

0 else.
(8.23)

Hence, we can conclude that, for increasing n,

1

n

n∑
i=1

log

(
1 + SNR

λ2
i

n

)
→

∫ 4

0

log (1 + SNRx) f ∗(x)dx. (8.24)

If we denote

c∗(SNR) :=

∫ 4

0

log (1 + SNRx) f ∗(x)dx, (8.25)

we can solve the integral for the density in (8.23) to arrive at (see Exercise 8.17)

c∗(SNR) = 2 log

(
1 + SNR− 1

4
F (SNR)

)
− log e

4SNR
F (SNR), (8.26)

3Note that although the singular values are unbounded, in the limit they lie in the interval [0, 2]
with probability 1.
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where

F (SNR) :=
(√

4SNR + 1− 1
)2

. (8.27)

The significance of c∗(SNR) is that

lim
n→∞

Cnn(SNR)

n
= c∗(SNR). (8.28)

So capacity grows linearly in n at any SNR and the constant c∗(SNR) is the rate of
the growth.

We compare the large-n approximation

Cnn(SNR) ≈ n c∗(SNR), (8.29)

with the actual value of the capacity for n = 2, 4 in Figure 8.5. We see the approxi-
mation is very good, even for such small values of n. In Exercise 8.7, we see statistical
models other than i.i.d. Rayleigh which also have a linear increase in capacity with an
increase in n.

Linear Scaling: A More In-Depth Look

To better understand why the capacity scales linearly with the number of antennas, it
is useful to contrast the MIMO scenario here with three other scenarios:
• MISO channel with a large transmit antenna array: Specializing (8.15) to

the n by 1 MISO channel yields the capacity

Cn1 = E

[
log

(
1 +

SNR

n

n∑
i=1

|hi|2
)]

bits/s/Hz. (8.30)

As n →∞, by the law of large numbers,

Cn1 → log(1 + SNR) = Cawgn. (8.31)

For n = 1, the 1 by 1 fading channel (with only receiver CSI) has lower capacity
than the AWGN channel; this is due to the “Jensen’s loss” (Section 5.4.5). But
recall from Figure 5.21 that this loss is not large for the entire range of SNR. In-
creasing the number of transmit antennas has the effect of reducing the fluctuation
of the instantaneous SNR

1

n

n∑
i=1

|hi|2 · SNR, (8.32)

and hence reducing the Jensen’s loss, but the loss was not big to start with, hence
the gain is minimal. Since the total transmit power is fixed, the multiple transmit
antennas provide neither a power gain nor a gain in spatial degrees of freedom.
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Figure 8.4: Convergence of the empirical singular value distribution of H/
√

n. For each
n, a single random realization of H/

√
n is generated and the empirical distribution

(histogram) of the singular values are plotted. We see that as n grows, the histogram
converges to the quarter circle law.
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Figure 8.5: Comparison between the large-n approximation and the actual capacity
for n = 2, 4.

• SIMO channel with a large receive antenna array: A 1 by n SIMO channel
has capacity

C1n = E

[
log

(
1 + SNR

n∑
i=1

|hi|2
)]

. (8.33)

For large n
C1n ≈ log(nSNR) = log n + log SNR, (8.34)

i.e., the receive antennas provide a power gain (which increases linearly with the
number of receive antennas) and the capacity increases logarithmically with the
number of receive antennas. This is quite in contrast to the MISO case: the
difference is due to the fact that now there is a linear increase in total received
power due to a larger receive antenna array. However, the increase in rate is only
logarithmic in n; the increase in total received power is all accumulated in the
single degree of freedom of the channel. There is power gain but no gain in the
spatial degrees of freedom.
The capacities, as a function of n, are plotted for the SIMO, MISO and MIMO
channels in Figure 8.6.

• AWGN channel with infinite bandwidth: Given a power constraint of P̄ and
AWGN noise spectral density N0/2, the infinite bandwidth limit is (c.f. 5.18)

C∞ = lim
W→∞

W log

(
1 +

P̄

N0W

)
=

P̄

N0

bits/s. (8.35)
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Figure 8.6: Capacities of the n by 1 MISO channel, 1 by n SIMO channel and the n
by n MIMO channel as a function of n, for SNR = 0 dB.

Here, although the number of degrees of freedom increases, the capacity remains
bounded. This is because the total received power is fixed and hence the SNR per
degree of freedom vanishes. There is a gain in the degrees of freedom, but since
there is no power gain the received power has to be spread across the many degrees
of freedom.

In contrast to all of these scenarios, the capacity of an n by n MIMO channel
increases linearly with n, because simultaneously:
• there is a linear increase in the total received power, and

• there is a linear increase in the degrees of freedom, due to the substantial random-
ness and consequent well-conditionedness of the channel matrix H.

Note that the well-conditionedness of the matrix depends on maintaining the un-
correlated nature of the channel gains, {hij}, while increasing the number of antennas.
This can be achieved in a rich scattering environment by keeping the antenna spacing
fixed at half the wavelength and increasing the aperture, L, of the antenna array. On
the other hand, if we just pack more and more antenna elements in a fixed aperture, L,
then the channel gains will become more and more correlated. In fact, we know from
Section 7.3.7 that in the angular domain a MIMO channel with densely spaced anten-
nas and aperture L can be reduced to an equivalent 2L by 2L channel with antennas
spaced at half the wavelength. Thus, the number of degrees of freedom is ultimately
limited by the antenna array aperture rather than the number of antenna elements.
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8.2.3 Full CSI

We have considered the scenario when only the receiver can track the channel. This is
the most interesting case in practice. In a TDD system or in a FDD system where the
fading is very slow, it may be possible to track the channel matrix at the transmitter.
We shall now discuss how channel capacity can be achieved in this scenario. Although
channel knowledge at the transmitter does not help in extracting an additional degree-
of-freedom gain, extra power gain is possible.

Capacity

The derivation of the channel capacity in the full CSI scenario is only a slight twist
on the time-invariant case discussed in Section 7.1.1. At each time m, we decompose
the channel matrix as H[m] = U[m]Λ[m]V[m]∗, so that the MIMO channel can be
represented as a parallel channel

ỹi[m] = λi[m]x̃i[m] + w̃i[m], i = 1, . . . , nmin, (8.36)

where λ1[m] ≥ λ2[m] ≥ . . . ≥ λnmin
[m] are the ordered singular values of H[m] and

x̃[m] = V∗[m]x[m]

ỹ[m] = U∗[m]y[m]

w̃[m] = U∗[m]w[m].

We have encountered the fast fading parallel channel in our study of the single antenna
fast fading channel (c.f. Section 5.4.6). We allocate powers to the sub-channels based
on their strength according to the waterfilling policy

P ∗ (λ) =

(
µ− N0

λ2

)+

, (8.37)

with µ chosen so that the total transmit power constraint is satisfied:

nmin∑
i=1

E

[(
µ− N0

λ2
i

)+
]

= P. (8.38)

Note that this is waterfilling over time and space (the eigenmodes). The capacity is
given by

C =

nmin∑
i=1

E
[
log

(
1 +

P ∗ (λi) λ2
i

N0

)]
. (8.39)
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Transceiver Architecture

The transceiver architecture that achieves the capacity follows naturally from the SVD-
based architecture depicted in Figure 7.2. Information bits are split into nmin parallel
streams, each coded separately, and then augmented by nt − nmin streams of zeros.
The symbols across the streams at time m form the vector x̃[m]. This vector is pre-
multiplied by the matrix V[m] before being sent through the channel, where H[m] =
U[m]Λ[m]V∗[m] is the singular value decomposition of the channel matrix at time
m. The output is post-multiplied by the matrix U∗[m] to extract the independent
streams, which are then separately decoded. The power allocated to each stream
is time-dependent and is given by the waterfilling formula (8.37), and the rates are
dynamically allocated accordingly. If an AWGN capacity-achieving code is used for
each stream, then the entire system will be capacity-achieving for the MIMO channel.

Performance Analysis

Let us focus on the i.i.d. Rayleigh fading model. Since with probability 1, the random
matrix HH∗ has full rank (see Exercise 8.12), and is, in fact, well-conditioned (see
Exercise 8.14), it can be shown that at high SNR, the waterfilling strategy allocates
equal amount of power P/nmin to all the spatial modes, as well as equal amount of
power over time. Thus,

C ≈
nmin∑
i=1

E
[
log

(
1 +

SNR

nmin

λ2
i

)]
, (8.40)

where SNR = P/N0. If we compare this to the capacity (8.16) with only receiver CSI,
we see that the number of degrees of freedom is the same (nmin) but there is a power
gain of a factor of nt/nmin when the transmitter can track the channel. Thus, whenever
there are more transmit antennas then receive antennas, there is a power boost of nt/nr

from having transmitter CSI. The reason is simple. Without channel knowledge at the
transmitter, the transmit energy is spread out equally across all directions in Cnt . With
transmitter CSI, the energy can now be focused on only the nr non-zero eigenmodes,
which forms a subspace of dimension nr inside Cnt . For example, with nr = 1, the
capacity with only receiver CSI is

E

[
log

(
1 + SNR/nt

nt∑
i=1

|hi|2
)]

,

while the high SNR capacity when there is full CSI is

E

[
log

(
1 + SNR

nt∑
i=1

|hi|2
)]

.
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Thus a power gain of a factor of nt is achieved by transmit beamforming. With dual
transmit antennas, this is a gain of 3 dB.

At low SNR, there is a further gain from transmitter CSI due to dynamic allo-
cation of power across the eigenmodes: at any given time, more power is given to
stronger eigenmodes. This gain is of the same nature as the one from opportunistic
communication discussed in Chapter 6.

What happens in the large antenna array regime? Applying the random matrix
result of Marc̆enko-Pastur from Section 8.2.2, we conclude that the random singular
values λi[m]/

√
n of the channel matrix H[m]/

√
n converge to the same deterministic

limiting distribution f ∗ across all times m. This means that in the waterfilling strategy,
there is no dynamic power allocation over time, only over space. This is sometimes
known as a channel hardening effect.

Summary 8.1 Performance Gains in a MIMO Channel

The capacity of an nt × nr i.i.d. Rayleigh fading MIMO channel H with receiver
CSI is

Cnn(SNR) = E
[
log det

(
Inr +

SNR

nt

HH∗
)]

. (8.41)

At high SNR, the capacity is approximately equal (up to an additive constant) to
nmin log SNR bits/s/Hz.

At low SNR, the capacity is approximately equal to nr SNR log2 e bits/s/Hz, so
only a receive beamforming gain is realized.

With nt = nr = n, the capacity can be approximated by n c∗(SNR) where c∗(SNR)
is the constant in (8.26).

Conclusion: In a n× n MIMO channel, the capacity increases linearly with n over
the entire SNR range.

With channel knowledge at the transmitter, an additional nt/nr-fold transmit
beamforming gain can be realized with an additional power gain from
temporal-spatial waterfilling at low SNR.
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8.3 Receiver Architectures

The transceiver architecture of Figure 8.1 achieves the capacity of the fast fading
MIMO channel with receiver CSI. The capacity is achieved by joint ML decoding of
the data streams at the receiver, but the complexity grows exponentially with the
number of data streams. Simpler decoding rules that provide soft information to feed
to the decoders of the individual data streams is an active area of research; some of
the approaches are reviewed in Exercise 8.15. In this section, we consider receiver
architectures that use linear operations to convert the problem of joint decoding of the
data streams into one of individual decoding of the data streams. These architectures
extract the spatial degree of freedom gains characterized in the previous section. In
conjunction with an appropriate nonlinear operation (successive cancellation of data
streams), we can achieve the capacity of the fast fading MIMO channel. To be able to
focus on the receiver design, we start with transmitting the independent data streams
directly over the antenna array (i.e., Q = Int in Figure 8.1).

8.3.1 Linear Decorrelator

Geometric Derivation

Is it surprising that the full degrees of freedom of H can be attained even when the
transmitter does not track the channel matrix? When the transmitter does know the
channel, the SVD architecture enables the transmitter to send parallel data streams
through the channel so that they arrive orthogonally at the receiver without inter-
ference between the streams. This is achieved by pre-rotating the data so that the
parallel streams can be sent along the eigenmodes of the channel. When the transmit-
ter does not know the channel, this is not possible. For example, if the transmitter
sends independent data on each of the transmit antennas (a parallel data stream),
then after passing through the MIMO channel of (7.1), they all arrive cross-coupled
at the receiver. It is a priori not clear that the receiver can separate the data streams
efficiently enough so that the resulting performance has full degrees of freedom. But
in fact we have already seen such a receiver: the channel inversion receiver in the 2× 2
example discussed in Section 3.3.3. We develop the structure of this receiver in full
generality here.

To simplify notations, let us first focus on the time-invariant case, where the channel
matrix is fixed. We can write the received vector at symbol time m as

y[m] =
nt∑
i=1

hixi[m] + w[m], (8.42)

where h1, . . . ,hnt are the columns of H and the data streams transmitted on the
antennas, {xi[m]} on the ith antenna, are all independent. Focusing on the kth data
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h1

h2

y

Figure 8.7: A schematic representation of the projection operation: y is projected onto
the subspace orthogonal to h1.

stream, we can rewrite (8.42):

y[m] = hkxk[m] +
∑

i6=k

hixi[m] + w, (8.43)

Compared to the SIMO point-to-point channel from Section 7.2.1, we see that the kth

data stream faces an extra source of interference, that from the other data streams.
One idea that can be used to remove this inter-stream interference is to project the
received signal y onto the subspace orthogonal to the one spanned by the vectors
h1, . . . ,hk−1,hk+1, . . . ,hnt (denoted henceforth by Vk). Suppose that the dimension of
Vk is dk. Projection is a linear operation and we can represent it by a dk by nr matrix
Qk, the rows of which form an orthonormal basis of Vk; they are all orthogonal to
h1, . . . ,hk−1,hk+1, . . . ,hnt . The vector Qkv should be interpreted as the projection of
the vector v onto Vk, but expressed in terms of the coordinates defined by the basis of
Vk formed by the rows of Qk. A pictorial depiction of this projection operation is in
Figure 8.7.

Now, the inter-stream interference “nulling” is successful (that is, the resulting
projection of hk is a non-zero vector) if the kth data stream “spatial signature” hk
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is not a linear combination of the spatial signatures of the other data streams. In
other words, if there are more data streams than the dimension of the received signal
(i.e., nt > nr), then the decorrelator operation will not be successful, even for a full
rank H. Hence, we should choose the number of data streams to be no more than nr.
Physically, this corresponds to using only a subset of the transmit antennas and for
notational convenience we will count only the transmit antennas that are used, by just
making the assumption nt ≤ nr in the decorrelator discussion henceforth. The output
of this matched-filter (or maximal ratio combiner) has SNR

Pk‖Qkhk‖2

N0

, (8.44)

where Pk is the power allocated to stream k.
The combination of the projection operation followed by the matched filter is called

the decorrelator (also known as interference nulling or zero-forcing receiver). Since
projection and matched filtering are both linear operations, the decorrelator is a linear
filter. The filter ck is given by

c∗k = (Qkhk)
∗Qk, (8.45)

or
ck = (Q∗

kQk)hk, (8.46)

which is the projection of hk onto the subspace Vk, expressed in terms of the original
coordinates. Since the matched filter maximizes the output SNR, the decorrelator can
also be interpreted as the linear filter that maximizes the output SNR subject to the
constraint that the filter null out the interference from all other streams. Intuitively,
we are projecting the received signal in the direction within Vk that is closest to hk.

Only the kth stream has been in focus so far. We can now decorrelate each of the
streams separately, as illustrated in Figure 8.8. We have described the decorrelator
geometrically; however there is a simple explicit formula for the entire bank of decor-
relators: the decorrelator for the kth stream is the kth column of the pseudoinverse H†

of the matrix H, defined by
H† := (H∗H)−1H∗. (8.47)

The validity of this formula is verified in Exercise 8.11. In the special case when H is
square and invertible, H† = H−1 and the decorrelator is precisely the channel inversion
receiver we already discussed in Section 3.3.3.

Performance for a Deterministic H

The channel from the kth stream to the output of the corresponding decorrelator is a
Gaussian channel with SNR given by (8.44). A Gaussian code achieves the maximum
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Figure 8.8: A bank of decorrelators, each estimating the parallel data streams.

data rate, given by

Ck := log

(
1 +

Pk‖Qkhk‖2

N0

)
. (8.48)

To get a better feel for this performance, let us compare it with the ideal situation of no
inter-stream interference in (8.43). As we observed above, if there were no inter-stream
interference in (8.43), the situation is exactly the SIMO channel of Section 7.2.1; the
filter would be matched to hk and the achieved SNR would be

Pk‖hk‖2

N0

. (8.49)

Since the inter-stream interference only hampers the recovery of the kth stream, the
performance of the decorrelator (in terms of the SNR in (8.44)) must in general be
less than that achieved by a matched-filter with no inter-stream interference. We can
also see this explicitly: the projection operation cannot increase the length of a vector
and hence ‖Qkhk‖ ≤ ‖hk‖. We can further say that the projection operation always
reduces the length of hk unless hk is already orthogonal to the spatial signatures of
the other data streams.

Let us return to the bank of decorrelators in Figure 8.8. The total rate of commu-
nication supported here with efficient coding in each of the data streams is the sum of
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the individual rates in (8.48) and is given by

nt∑

k=1

Ck.

Performance in Fading Channels

So far our analysis focused on a deterministic channel H. As usual, in the time-varying
fast fading scenario, coding should be done over time across the different fades, possibly
via interleaving. The maximum achievable rate can be computed by simply averaging
over the stationary distribution of the channel process {H[m]}m, yielding

Rdecorr =
nt∑

k=1

C̄k, (8.50)

where

C̄k = E
[
log

(
1 +

Pk‖Qkhk‖2

N0

)]
. (8.51)

The achievable rate in (8.50) is in general less than or equal to the capacity of the
MIMO fading channel with CSI at the receiver (c.f. (8.10)) since transmission using
independent data streams and receiving using the bank of decorrelators is only one of
several possible communication strategies. To get some further insight, let us look at a
specific statistical model, that of i.i.d. Rayleigh fading. Motivated by the fact that the
optimal covariance matrix is of the form of scaled identity (c.f. (8.12)), let us choose
equal powers for each of the data streams (i.e., Pk = P/nt). Continuing from (8.50),
the decorrelator bank performance specialized to i.i.d. Rayleigh fading is (recall that
for successful decorrelation nmin = nt)

Rdecorr = E

[
nmin∑

k=1

log

(
1 +

SNR

nt

‖Qkhk‖2

)]
. (8.52)

Since hk ∼ CN (0, Inr), we know that ‖hk‖2 ∼ χ2
2nr

, where χ2
2i is a χ-squared random

variable with 2i degrees of freedom (c.f. (3.36)). Here Qkhk ∼ CN (0, IdimVk
) (since

QkQ
∗
k = IdimVk

). It can be shown that the channel H is full rank with probability 1
(see Exercise 8.12), and this means that dimVk = nr − nt + 1 (see Exercise 8.13). This
provides us with an explicit example for our earlier observation that the projection
operation reduces the length. In the special case of a square system, dimVk = 1, and
Qkhk is a scalar distributed as circular symmetric Gaussian; we have already seen this
in the 2× 2 example of Section 3.3.3.

Rdecorr is plotted in Figure 8.9 for different number of antennas. We see that the
asymptotic slope of the rate obtained by the decorrelator bank as a function of SNR
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Figure 8.9: Rate achieved (in bits/s/Hz) by the decorrelator bank.

in dB is proportional to nmin; the same slope in the capacity of the MIMO channel.
More specifically, we can approximate the rate in (8.52) at high SNR as

Rdecorr ≈ nmin log
SNR

nt

+ E

[
nt∑

k=1

log
(‖Qkhk‖2

)
]

, (8.53)

= nmin log

(
SNR

nt

)
+ ntE

[
log χ2

2(nr−nt+1)

]
. (8.54)

Comparing (8.53) and (8.54) with the corresponding high SNR expansion of the ca-
pacity of this MIMO channel (c.f. (8.18) and (8.20)), we can make the following obser-
vations.

• The first order term (in the high SNR expansion) is the same for both the rate
achieved by the decorrelator bank and the capacity of the MIMO channel. Thus,
the decorrelator bank is able to fully harness the spatial degrees of freedom of
the MIMO channel.

• The next term in the high SNR expansion (constant term) shows the performance
degradation, in rate, of using the decorrelator bank as compared to the capacity
of the channel. Figure 8.10 highlights this difference in the special case of nt =
nr = n.
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Figure 8.10: Plot of rate achievable with the decorrelator bank for the nt = nr = 8 i.i.d.
Rayleigh fading channel. The capacity of the channel is also plotted for comparison.

The above analysis is for the high SNR regime. At any fixed SNR, it is also straight-
forward to show that, just like the capacity, the total achievable rate by the bank of
decorrelators scales linearly with the number of antennas (see Exercise 8.21).

8.3.2 Successive Cancellation

We have just considered a bank of separate filters to estimate the data streams. How-
ever, the result of one of the filters could be used to aid the operation of the others.
Indeed, we can use the successive cancellation strategy described in the uplink ca-
pacity analysis (in Section 6.1): once a data stream is successfully recovered, we can
subtract it off from the received vector and reduce the burden on the receivers of the
remaining data streams. With this motivation, consider the following modification to
the bank of separate receiver structures in Figure 8.8. We use the first decorrelator
to decode the data stream x1[m] and then subtract off this decoded stream from the
received vector. If the first stream is successfully decoded, then the second decorrelator
has to deal only with streams x3, . . . , xnt as interference, since x1 has been correctly
subtracted off. Thus, the second decorrelator projects onto the subspace orthogonal
to that spanned by h3, . . . ,hnt . This process is continued until the final decorrelator
does not have to deal with any interference from the other data streams (assuming
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Figure 8.11: Decorrelator-SIC: A bank of decorrelators with successive cancellation of
streams.

successful subtraction in each preceding stage). This decorrelator-SIC (decorrelator
with successive interference cancellation) architecture is illustrated in Figure 8.11.

One problem with this receiver structure is error propagation: an error in decod-
ing the kth data stream means that the subtracted signal is incorrect and this error
propagates to all the streams further down, k + 1, . . . , nt. A careful analysis of the
performance of this scheme is complicated, but can be made easier if we take the data
streams to be well coded and the block length to be very large, so that streams are
successfully cancelled with very high probability. With this assumption the kth data
stream sees only down-stream interference, i.e., from the streams k + 1, . . . , nt. Thus,
the corresponding projection operation (denoted by Q̃k) is onto a higher dimensional
subspace (one orthogonal to that spanned by hk+1, . . . ,hnt , as opposed to being orthog-
onal to the span of h1, . . . ,hk−1,hk+1, . . . ,hnt). As in the calculation of the previous
section, the SNR of the kth data stream is (c.f. (8.44))

Pk‖Q̃khk‖2

N0

. (8.55)

While we clearly expect this to be an improvement over the simple bank of decor-
relators, let us again turn to the i.i.d. Rayleigh fading model to see this concretely.
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Analogous to the high SNR expansion of (8.52) in (8.53) for the simple decorrelator
bank, with SIC and equal power allocation to each stream, we have

Rdec−sic ≈ nmin log
SNR

nt

+ E

[
nt∑
i=1

log
(
‖Q̃khk‖2

)]
. (8.56)

Similar to our analysis of the basic decorrelator bank, we can argue that ‖Q̃khk‖2 ∼
χ2

2(nr−nt+k) with probability one (c.f. Exercise 8.13), thus arriving at

E
[
log

(
‖Q̃khk‖2

)]
= E

[
log χ2

2(nr−nt+k)

]
. (8.57)

Comparing this rate at high SNR with both the simple decorrelator bank and the
capacity of the channel (c.f. (8.53) and (8.18)), we observe the following.

• The first order term in the high SNR expansion is the same as that in the rate
of the decorrelator bank and in the capacity: successive cancellation does not
provide additional degrees of freedom.

• Moving to the next (constant) term, we see the performance boost in using the
decorrelator-SIC over the simple decorrelator bank: the improved constant term
is now equal to that in the capacity expansion. This boost in performance can
be viewed as a power gain: by decoding and subtracting instead of linear nulling,
the effective SNR at each stage is improved.

8.3.3 Linear MMSE Receiver

Limitation of the Decorrelator

We have seen the performance of the basic decorrelator bank and the decorrelator-
SIC. At high SNR, for i.i.d. Rayleigh fading, the basic decorrelator bank achieves the
full degrees of freedom in the channel. With SIC even the constant term in the high
SNR capacity expansion is achieved. What about low SNR? The performance of the
decorrelator bank (both, with and without the modification of successive cancellation)
as compared to the capacity of the MIMO channel is plotted in Figure 8.12.

The main observation is that while the decorrelator bank performs so well at high
SNR, it is really far away from the capacity at low SNRs. What is going on here?
To get some more insight, let us plot the performance of a bank of matched filters,
the kth filter being matched to the spatial signature hk of transmit antenna k. From
Figure 8.13 we see the performance of the bank of matched filters is far superior to the
decorrelator bank at low SNR (although far inferior at high SNR).
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Figure 8.12: Performance of the decorrelator bank, with and without successive can-
cellation at low SNR. Here nt = nr = 8.

Derivation of the MMSE Receiver

The decorrelator was motivated by the fact that it completely nulls out inter-stream
interference; in fact it maximizes the output SNR among all linear receivers that com-
pletely null out the interference. On the other hand, matched filtering (maximal ratio
combining) is the optimal strategy for SIMO channels without any inter-stream in-
terference. We called this receive beamforming in Example 1 in Section 7.2.1. Thus,
we see a tradeoff between completely eliminating inter-stream interference (without
any regard to how much energy of the stream of interest is lost in this process) and
preserving as much energy content of the stream of interest as possible (at the cost
of possibly facing high inter-stream interference). The decorrelator and the matched
filter operate at two extreme ends of this tradeoff. At high SNR, the inter-stream in-
terference is dominant over the additive Gaussian noise and the decorrelator performs
well. On the other hand, at low SNR the inter-stream interference is not as much of
an issue and receive beamforming (matched filter) is the superior strategy. In fact, the
bank of matched filters achieves capacity at low SNR (Exercise 8.20).

We can ask for a linear receiver that optimally trades off fighting inter-stream
interference and the background Gaussian noise, i.e., the receiver that maximizes the
output signal-to-interference-plus-noise ratio (SINR) for any value of SNR. Such a
receiver looks like the decorrelator when the inter-stream interference is large (i.e.,
when SNR is large) and like the match filter when the interference is small (i.e., when
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Figure 8.13: Performance (ratio of the rate to the capacity) of the matched filter bank
as compared to that of the decorrelator bank. At low SNR, the matched filter is
superior. The opposite is true for the decorrelator. The channel is i.i.d. Rayleigh with
nt = nr = 8.
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Figure 8.14: The optimal filter goes from being the decorrelator at high SNR to the
matched filter at low SNR.

SNR is small) (Figure 8.14). This can be thought of as the natural generalization of
receive beamforming to the case when there is interference as well as noise.

To formulate this tradeoff precisely, let us first look at the following generic vector
channel:

y = hx + z, (8.58)

where z is complex circular symmetric colored noise with an invertible covariance
matrix Kz, h is a deterministic vector and x is the unknown scalar symbol to be
estimated. z and x are assumed to be uncorrelated. We would like to choose a filter
with maximum output SNR. If the noise is white, we know that it is optimal to project y
onto the direction along h. This observation suggests a natural strategy for the colored
noise situation: first whiten the noise, and then follow the strategy used with white
additive noise. That is, we first pass y through the invertible4 linear transformation

K
− 1

2
z such that the noise z̃ := K

− 1
2

z z becomes white:

K
− 1

2
z y = K

− 1
2

z hx + z̃. (8.59)

Next, we project the output in the direction of K
− 1

2
z h to get an effective scalar channel

(K
− 1

2
z h)∗K

− 1
2

z y = h∗K−1
z y = h∗K−1

z hx + h∗K−1
z z. (8.60)

Thus the linear receiver in (8.60), represented by the vector

4Kz is an invertible covariance matrix and so it can be written as UΛU∗ for rotation matrix U
and diagonal matrix Λ with positive diagonal elements. Now K

1
2
z is defined as UΛ

1
2 U∗, with Λ

1
2

defined as a diagonal matrix with diagonal elements equal to the square root of the diagonal elements
of Λ.
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vmmse := K−1
z h, (8.61)

maximizes the SNR. It can also be shown that this receiver, with an appropriate scaling,
minimizes the mean square error in estimating x (see Exercise 8.18), and hence it is also
called the linear MMSE (minimum mean squared error) receiver. The corresponding
SINR achieved is

σ2
x h∗K−1

z h. (8.62)

We can now upgrade the receiver structure in Section 8.3.1 by replacing the decor-
relator for each stream by the linear MMSE receiver. Again, let us first consider the
case where the channel H is fixed. The effective channel for the kth stream is

y[m] = hkxk[m] + zk[m], (8.63)

where zk represents the noise plus interference faced by data stream k:

zk[m] :=
∑

i 6=k

hixi[m] + w[m]. (8.64)

With power Pi associated with the data stream i, we can explicitly calculate the
covariance of zk

Kzk
:= N0Inr +

nt∑

i6=k

Pihih
∗
i , (8.65)

and also note that the covariance is invertible. Substituting this expression for the
covariance matrix into (8.61) and (8.62), we see that the linear receiver in the kth stage
is given by (

N0Inr +
nt∑

i6=k

Pihih
∗
i

)−1

hk, (8.66)

and the corresponding output SINR is

Pkh
∗
k

(
N0Inr +

nt∑

i6=k

Pihih
∗
i

)−1

hk. (8.67)

Performance

We had motivated the design of the linear MMSE receiver as something in between
the decorrelator and receiver beamforming. Let us now see this explicitly. At very low
SNR (i.e., P1, . . . , Pnt are very small compared to N0) we see that

Kzk
≈ N0Inr , (8.68)
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and the linear MMSE receiver in (8.66) reduces to the matched filter. On the other

hand, at high SNR, the K
− 1

2
zk operation reduces to the projection of y onto the sub-

space orthogonal to that spanned by h1, . . . ,hk−1,hk+1, . . . ,hnt and the linear MMSE
receiver reduces to the decorrelator.

Assuming the use of capacity-achieving codes for each stream, the maximum data
rate that stream k can reliably carry is

Ck = log
(
1 + Pkh

∗
kK

−1
zk

hk

)
. (8.69)

As usual, the analysis directly carries over to the time-varying fading scenario, with
data rate of the kth stream being

C̄k = E
[
log

(
1 + Pkh

∗
kK

−1
zk

hk

)]
, (8.70)

where the average is over the stationary distribution of H.
The performance of a bank of MMSE filters with equal power allocation over an

i.i.d. Rayleigh fading channel is plotted in Figure 8.15. We see that the MMSE receiver
performs strictly better than both the decorrelator and the matched filter over the
entire range of SNRs.

MMSE-SIC

Analogous to what we did in Section 8.3.2 for the decorrelator, we can now upgrade
the basic bank of linear MMSE receivers by allowing successive cancellation of streams
as well, as depicted in Figure 8.16. What is the performance improvement in using the
MMSE-SIC receiver? Figure 8.17 plots the performance as compared to the capacity
of the channel (with nt = nr = 8) for i.i.d. Rayleigh fading. We observe a startling
fact: the bank of linear MMSE receivers with successive cancellation and equal power
allocation achieves the capacity of the i.i.d. Rayleigh fading channel.

In fact, the MMSE-SIC receiver is optimal in a much stronger sense: it achieves
the best possible sum rate (8.2) of the transceiver architecture in Section 8.1 for any
given H. That is, if the MMSE-SIC receiver is used for demodulating the streams and
the SINR and rate for stream k are SINRk and log(1 + SINRk) respectively, then the
rates sum up to

nt∑

k=1

log (1 + SINRk) = log det (Inr + HKxH
∗) , (8.71)

which is the best possible sum rate. While this result can be verified directly by matrix
manipulations (see Exercise 8.22), the following section gives a deeper explanation in
terms of the underlying information theory. Understanding at this level will be very
useful as we adapt the MMSE-SIC architecture to the analysis of the uplink with
multiple antennas (Chapter 10).
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Figure 8.15: Performance (the ratio of rate to the capacity) of a basic bank of MMSE
receivers as compared to the matched filter bank and to the decorrelator bank. MMSE
performs better than both, over the entire range of SNRs. The channel is i.i.d. Rayleigh
with nt = nr = 8.
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Figure 8.16: MMSE-SIC: A bank of linear MMSE receivers, each estimating one of the
parallel data streams, with streams successively cancelled from the received vector at
each stage.
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Figure 8.17: The MMSE-SIC receiver achieves the capacity of the MIMO channel when
fading is i.i.d. Rayleigh.

8.3.4 *Information Theoretic Optimality

MMSE is information lossless

As a key step to understanding why the MMSE-SIC receiver is optimal, let us go back
to the generic vector channel with additive colored noise (8.58):

y = hx + z, (8.72)

but now with the further assumption that x and z are Gaussian. In this case, it can be
seen that the linear MMSE filter (vmmse := K−1

z h, c.f. (8.61)) not only maximizes the
SNR, but also provides a sufficient statistic to detect x, i.e., it is information lossless.
Thus,

I(x;y) = I (x;v∗mmsey) . (8.73)

The justification for this step is carried out in Exercise 8.19.

A Time-Invariant Channel

Consider again the MIMO channel with a time-invariant channel matrix H:

y[m] = Hx[m] + w[m].
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We choose the input x to be CN (0, diag {P1, . . . , Pnt}). We can rewrite the mutual
information between the input and the output as

I(x;y) = I(x1, x2, . . . xnt ;y)

= I(x1;y) + I(x2;y|x1) + . . . + I(xnt ;y|x1, . . . , xnt−1), (8.74)

where the last equality is a consequence of the chain rule of mutual information (c.f.
(B.18) in Chapter 5). Let us look at the kth term in the chain rule expansion:
I(xk;y|x1, . . . , xk−1). Conditional on x1, . . . , xk−1, we can subtract their effect from
the output and obtain

y′ := y −
k−1∑
i=1

hixi = hkxk +
∑

i>k

hixi + w.

Thus,
I(xk;y|x1, . . . , xk−1) = I(xk;y

′) = I(xk;v
∗
mmsey

′), (8.75)

where vmmse is the MMSE filter for estimating xk from y′ and the last equality follows
directly from the fact that the MMSE receiver is information-lossless. Hence, the rate
achieved in kth stage of the MMSE-SIC receiver is precisely I(xk;y|x1, . . . , xk−1), and
the total rate achieved by this receiver is precisely the overall mutual information
between the input x and the output y of the MIMO channel.

We now see why the MMSE filter is special: its scalar output preserves the infor-
mation in the received vector about xk. This property does not hold for other filters
such as the decorrelator or the matched filter.

In the special case of a MISO channel with a scalar output

y[m] =
nt∑

k=1

hkxk[m] + w[m], (8.76)

the MMSE receiver at the kth stage is reduced to simple scalar multiplication followed
by decoding; thus it is equivalent to decoding xk while treating signals from antennas
k+1, k +2, . . . , nt as Gaussian interference. If we interpret (8.76) as an uplink channel
with nt users, the MMSE-SIC receiver thus reduces to the SIC receiver introduced in
Section 6.1. Here we see another explanation on why the SIC receiver is optimal in
the sense of achieving the sum rate I(x1, x2, . . . , xK ; y) of the K-user uplink channel:
it “implements” the chain rule of mutual information.

Fading Channel

Now consider communicating using the transceiver architecture in Figure 8.1 but with
the MMSE-SIC receiver on a time-varying fading MIMO channel with receiver CSI. If
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Q = Int , the MMSE-SIC receiver allows reliable communication at a sum of the rates
of the data streams equal to the mutual information of the channel under inputs of the
form

CN (0, diag {P1, . . . , Pnt}) . (8.77)

In the case of i.i.d. Rayleigh fading, the optimal input is precisely CN (0, Int), and so
the MMSE-SIC receiver achieves the capacity as well.

More generally, we have seen that if a MIMO channel, viewed in the angular do-
main, can be modeled by a matrix H having zero mean, uncorrelated entries, then the
optimal input distribution is always of the form in (8.77) (c.f. Section 8.2.1 and Exer-
cise 8.3). Independent data streams decoded using the MMSE-SIC receiver still achieve
the capacity of such MIMO channels, but the data streams are now transmitted over
the transmit angular windows (instead of directly on the antennas themselves). This
means that the transceiver architecture of Figure 8.1 with Q = Ut and the MMSE-SIC
receiver, achieves the capacity of the fast fading MIMO channel.

Discussion 8.10: Connections with CDMA Multiuser Detection
and ISI Equalization

Consider the situation where independent data streams are sent out from each
antenna (c.f. (8.42)). Here the received vector is a combination of the streams
arriving in different receive spatial signatures, with stream k having a receive
spatial signature of hk. If we make the analogy between space and bandwidth,
then (8.42) serves as a model for the uplink of a CDMA system: the streams are
replaced by the users (since the users cannot cooperate, the independence between
them is justified naturally) and hk now represents the received signature sequence
of user k. Due to the fading channel, this can be time varying though the
transmit signature sequence is constant. The number of receive antennas is
replaced by the number of chips in the CDMA signal. The base station has access
to the received signal and decodes the information simultaneously communicated
by the different users. The base station could use a bank of linear filters with or
without successive cancellation. The study of the receiver design at the base
station, its complexities and performance, is called multiuser detection. The
progress of multiuser detection is well chronicled in [107].

Another connection can be drawn to point-to-point communication over
frequency-selective channels. In our study of the OFDM approach to
communicating over frequency-selective channels in Section 3.4.4, we expressed
the effect of the ISI in a matrix form (c.f. (3.139)). This representation suggests
the following interpretation: communicating over a block length of Nc on the
L-tap time-invariant frequency-selective channel (c.f. (3.129)) is equivalent to
communicating over a Nc×Nc MIMO channel in one time sample. The equivalent
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ISI Equalization MIMO Communication
OFDM SVD

linear zero-forcing equalizer decorrelator/interference nuller
linear MMSE equalizer linear MMSE receiver

decision feedback equalizer (DFE) successive interference cancellation (SIC)
ISI precoding Costa precoding

Table 8.1: Analogies between ISI equalization and MIMO communication techniques.
We have covered all of these except the last one, which will be discussed in Chapter
10.

MIMO channel H is related to the taps of the frequency-selective channel, with
the `th tap denoted by h` (for ` ≥ L, the tap h` = 0), is

Hij =

{
hj−i for i ≤ j
0 otherwise.

(8.78)

Due to the nature of the frequency-selective channel, previously transmitted
symbols act as interference to the current symbol. The study of appropriate
techniques to recover the transmit symbols in a frequency-selective channel is part
of classical communication theory under the rubric of equalization. In our analogy,
the transmitted symbols at different times in the frequency-selective channel are
the data streams sent over the transmit antennas. Thus, there is a natural
analogy between equalization for frequency-selective channels and transceiver
design for MIMO channels (Table 8.1).

8.4 Slow Fading MIMO Channel

We now turn our attention to the slow fading MIMO channel,

y[m] = Hx[m] + w[m], (8.79)

where H is fixed over time but random. The receiver is aware of the channel realization
but the transmitter only has access to its statistical characterization. As usual, there
is a total transmit power constraint P . Suppose we want to communicate at a target
rate R bits/s/Hz. If the transmitter was aware of the channel realization, then we
could use the transceiver architecture in Figure 8.1 with an appropriate allocation of
rates to the data streams to achieve reliable communication as long as

log det

(
Inr +

1

N0

HKxH
∗
)

> R, (8.80)
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where the total transmit power constraint implies a condition on the covariance ma-
trix: Tr [Kx] ≤ P . However, remarkably, information theory guarantees the existence
of a channel-state independent coding scheme that achieves reliable communication
whenever the condition in (8.80) is met. Such a code is universal, in the sense that
it achieves reliable communication on every MIMO channel satisfying (8.80). This is
similar to the universality of the code achieving the outage performance on the slow
fading parallel channel (c.f. Section 5.4.4). When the MIMO channel does not satisfy
the condition in (8.80), then we are in outage. We can choose the transmit strategy
(parameterized by the covariance) to minimize the probability of the outage event:

pmimo
out (R) = min

Kx:Tr[Kx]≤P
P

{
log det

(
Inr +

1

N0

HKxH
∗
)

< R

}
. (8.81)

An information theoretic justification to this discussion is in Appendix B.8.
The solution to this optimization problem depends, of course, on the statistics of

channel H. For example, if H is deterministic, the optimal solution is to perform
a singular value decomposition of H and waterfill over the eigenmodes. When H
is random, then one cannot tailor the covariance matrix to one particular channel
realization but should instead seek a covariance matrix that works well statistically
over the ensemble of the channel realizations.

It is instructive to compare the outage optimization problem (8.81) with that of
computing the fast fading capacity with receiver CSI (c.f. (8.10)). If we think of

f(Kx,H) := log det

(
Inr +

1

N0

HKxH
∗
)

, (8.82)

as the rate of information flow over the channel H when using a coding strategy
parameterized by the covariance matrix Kx, then the fast fading capacity is

C = max
Kx:Tr[Kx]≤P

EH [f(Kx,H)] , (8.83)

while the outage probability is

pout(R) = min
Kx:Tr[Kx]≤P

P {f(Kx,H) < R} . (8.84)

In the fast fading scenario, one codes over the fades through time and the relevant
performance metric is the long term average rate of information flow that is permissible
through the channel. In the slow fading scenario, one is only provided with a single
realization of the channel and the objective is to minimize the probability that the
rate of information flow falls below the target rate. Thus, the former is concerned
with maximizing the expected value of the random variable f(Kx,H) and the latter
with minimizing the tail probability that the same random variable is less than the
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Figure 8.18: A plot of the distribution of the information rate f(Kx,H). The outage
probability depends not only on the mean but also the spread of the distribution around
the mean.

target rate (see Figure 8.18). While maximizing the expected value typically helps to
reduce this tail probability, in general there is no one-to-one correspondence between
these two quantities: the tail probability depends on higher order moments such as the
variance.

We can consider the i.i.d. Rayleigh fading model to get more insight into the nature
of the optimizing covariance matrix. The optimal covariance matrix over the fast fading
i.i.d. Rayleigh MIMO channel is K∗

x = P/nt · Int . This covariance matrix transmits
isotropically (in all directions), and thus one would expect that it is also good in terms
of reducing the variance of the information rate f(Kx,H) and, indirectly, the tail
probability. Indeed, we have seen (c.f. Section 5.4.3 and Exercise 5.16) that this is the
optimal covariance in terms of outage performance for the MISO channel, i.e., nr = 1,
at high SNR. In general, [95] conjectures that this is the optimal covariance matrix
for the i.i.d. Rayleigh slow fading MIMO channel at high SNRs. Hence, the resulting
outage probability

piid
out(R) = P

{
log det

(
Inr +

SNR

nt

HH∗
)

< R

}
, (8.85)

is often taken as a good upper bound to the actual outage probability at high SNR.
More generally, the conjecture is that it is optimal to restrict to a subset of the

antennas and then transmit isotropically among the antennas used. The number of
antennas used depends on the SNR level: the lower the SNR level relative to the
target rate, the smaller the number of antennas used. In particular, at very low SNR
relative to the target rate, it is optimal to use just one transmit antenna. We have
already seen the validity of this conjecture in the context of a single receive antenna
(c.f. Section 5.4.3) and we are considering a natural extension to the MIMO situation.
However, at typical outage probability levels, the SNR is high relative to the target
rate and it is expected that using all the antennas is a good strategy.

High SNR

What outage performance can we expect at high SNR? First, we see that the MIMO
channel provides increased diversity. We know that with nr = 1 (the MISO channel)
and i.i.d. Rayleigh fading, we get a diversity gain equal to nt. On the other hand, we
also know that with nt = 1 (the SIMO channel) and i.i.d. Rayleigh fading, the diversity
gain is equal to nr. In the i.i.d. Rayleigh fading MIMO channel, we can achieve a
diversity gain of nt · nr, which is the number of independent random variables in the
channel. A simple repetition scheme of using one transmit antenna at a time to send
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the same symbol x successively on the different nt antennas over nt consecutive symbol
periods, yields an equivalent scalar channel

ỹ =
nr∑
i=1

nt∑
j=1

|hij|2x + w, (8.86)

whose outage probability decays like 1/SNRntnr . Exercise 8.23 shows the un-surprising
fact that the outage probability of the i.i.d. Rayleigh fading MIMO channel decays no
faster than this.

Thus, a MIMO channel yields a diversity gain of exactly nt ·nr. The corresponding
ε-outage capacity of the MIMO channel benefits from both the diversity gain and
the spatial degrees of freedom. We will explore the high SNR characterization of the
combined effect of these two gains in Chapter 9.

8.5 D-BLAST: An Outage-Optimal Architecture

We have mentioned that information theory guarantees the existence of coding schemes
(parameterized by the covariance matrix) that ensure reliable communication at rate
R on every MIMO channel that satisfies the condition (8.80). In this section, we will
derive a transceiver architecture that achieves the outage performance. We begin with
considering the performance of the transceiver architecture in Figure 8.1 on the slow
fading MIMO channel.

8.5.1 Sub-optimality of V-BLAST

Consider the V-BLAST architecture in Figure 8.1 with the MMSE-SIC receiver struc-
ture (c.f. Figure 8.16) that we have shown to achieve the capacity of the fast fading
MIMO channel. This architecture has two main features:
• Independently coded data streams are multiplexed in an appropriate coordinate

system and transmitted over the antenna array. Stream k is allocated an appro-
priate power Pk and an appropriate rate Rk.

• A bank of linear MMSE receivers, in conjunction with successive cancellation, is
used to demodulate the streams (the MMSE-SIC receiver).

The MMSE-SIC receiver demodulates the stream from transmit antenna 1 using
a MMSE filter, decodes the data, subtracts its contribution from the stream, and
proceeds to stream 2, and so on. Each stream is thought of as a layer.

Can this same architecture achieve the optimal outage performance in the slow
fading channel? In general, the answer is no. To see this concretely, consider the
i.i.d. Rayleigh fading model. Here the data streams are directly transmitted over the
antenna array and it is easy to see that each stream has a diversity of at most nr: if
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the channel gains from the kth transmit antenna to all the nr receive antennas are in
deep fade, then the data in the kth stream will be lost. On the other hand, the MIMO
channel itself provides a diversity gain of nt · nr. Thus, V-BLAST does not exploit
the full diversity available in the channel and therefore cannot be outage-optimal. The
basic problem is that there is no coding across the streams so that if the channel gains
from one transmit antenna are bad, the corresponding stream will be decoded in error.

We have said that under the i.i.d. Rayleigh fading model, the diversity of each
stream in V-BLAST is at most nr. The diversity would have been exactly nr if it
were the only stream being transmitted; with simultaneous transmission of streams,
the diversity is even lower due to inter-stream interference. This can be seen most
clearly if we replace the bank of linear MMSE receivers in V-BLAST with a bank of
decorrelator and consider the case nt ≤ nr. In this case, the distribution of the output
SNR’s at each stage can be explicitly computed; this was actually already done in
Section 8.3.2:

SINRk ∼ Pk

N0

· χ2
2[nr−(nt−k)]. (8.87)

The diversity of the kth stream is therefore nr− (nt−k). Since nt−k is the number of
uncancelled interfering streams at the kth stage, one can interpret this as saying that
the loss of diversity due to interference is precisely the number of interferers needed to
be nulled out. The first stream has the worst diversity of nr − nt + 1; this is also the
bottleneck of the whole system because the correct decoding of subsequent streams
depends on the correct decoding and cancellation of this stream. In the case of a
square system, the first stream has a diversity of only 1, i.e., no diversity gain. We
have already seen this result in the special case of the 2× 2 example in Section 3.3.3.
Though this analysis is for the decorrelator, it turns out that the MMSE receiver yields
exactly the same diversity gain (see Exercise 8.24).

There are proposed improvements to the basic V-BLAST architecture. For in-
stance, adapting the cancellation order as a function of the channel, and allocating
different rates to different streams depending on their position in the cancellation or-
der. However, none of these variations can provide a diversity larger than nr, as long
as we are sending independently coded streams on the transmit antennas.

A More Careful Look

Here is a more precise understanding of why V-BLAST is sub-optimal and it will
suggest how V-BLAST can be improved. For a given H, (8.71) yields the following
decomposition:

log det

(
Inr +

SNR

nt

HH∗
)

=
nt∑

k=1

log (1 + SINRk) . (8.88)
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SINRk is the output signal-to-interference-plus-noise ratio of the MMSE demodulator
at the kth stage of the cancellation, given by the formula (c.f. (8.62)),

SINRk = Pkh
∗
k

(
N0Inr +

∑

i>k

Pihih
∗
i

)−1

hk. (8.89)

The output SINR’s are random since they are a function of the columns, hi’s, of the
channel matrix H. Suppose we have a target rate of R and we split this into rates
R1, . . . , Rnt allocated to the individual streams. Note that the channel is in outage if

log det

(
Inr +

SNR

nt

HH∗
)

< R, (8.90)

or equivalently,
nt∑

k=1

log (1 + SINRk) <

nt∑

k=1

Rk. (8.91)

However, V-BLAST is in outage as long as the random SINR in any stream cannot
support the rate allocated to that stream, i.e.,

log (1 + SINRk) < Rk, (8.92)

for any k. Clearly, this can occur even when the channel is not in outage. Hence, V-
BLAST cannot be universal and is not outage-optimal. This problem did not appear
in the fast fading channel because, there we code over the temporal channel variations
and thus kth stream gets a deterministic rate of

E [log (1 + SINRk)] bits/s/Hz. (8.93)

8.5.2 Coding Across Transmit Antennas: D-BLAST

Significant improvement of V-BLAST has to come from coding across the transmit
antennas. How do we improve the architecture to allow that? To see more clearly how
to proceed, one can draw an analogy between V-BLAST and the parallel fading channel.
In V-BLAST, the kth stream effectively sees a channel with a (random) signal-to-noise
ratio SINRk; this can therefore be viewed as a parallel channel with nt sub-channels.
In V-BLAST, there is no coding across these sub-channels: outage therefore occurs
whenever one of these sub-channels is in a deep fade and cannot support the rate of
the stream using that sub-channel. On the other hand, by coding across the sub-
channels, we can average over the randomness of the individual sub-channels and get
better outage performance. From our discussion on parallel channels in Section 5.4.4,
we know reliable communication is possible whenever

nt∑

k=1

log (1 + SINRk) > R. (8.94)
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From the decomposition (8.88), we see that this is exactly the no-outage condition
of the original MIMO channel as well. Therefore, it seems that universal codes for
the parallel channel can be transformed directly into universal codes for the original
MIMO channel.

However, there is a problem here. To obtain the second sub-channel (with SINR2),
we are assuming that the first stream is already decoded and its received signal is
cancelled off. However, to code across the sub-channels, the two streams should be
jointly decoded. There seems to be a chicken-and-egg problem: without decoding
the first stream, one cannot cancel its signal and get the second stream in the first
place. The key idea to solve this problem is to stagger multiple codewords so that each
codeword spans multiple transmit antennas but the symbols sent simultaneously by
the different transmit antennas belong to different codewords.

Let us go through a simple example with 2 transmit antennas (Figure 8.19). The

ith codeword x(i) is made up of two blocks, x
(i)
A and x

(i)
B , each of length N . In the first

N symbol times, the first antenna sends nothing. The second antenna sends x
(1)
A , block

A of the first codeword. The receiver performs maximal ratio combining to estimate
x

(1)
A ; this yields an equivalent sub-channel with signal-to-noise ratio SINR2, since the

other antenna is sending nothing.
In the second N symbol times, the first antenna sends x

(1)
B (block B of the first

codeword), while the second antenna sends x
(2)
A ( block A of the second codeword).

The receiver does a linear MMSE estimation of x
(1)
B , treating x

(2)
A as interference to

be suppressed. This produces an equivalent sub-channel of signal-to-noise ratio SINR1.
Thus, the first codeword as a whole now sees the parallel channel described above
(see Exercise 8.25), and, assuming the use of a universal parallel channel code, can be
decoded provided that

log (1 + SINR1) + log (1 + SINR2) > R. (8.95)

Once codeword 1 is decoded, x
(1)
B can be subtracted off the received signal in the second

N symbol times. This leaves x
(2)
A alone in the received signal, and the process can be

repeated. Exercise 8.26 generalizes this architecture to arbitrary number of transmit
antennas.

In V-BLAST, each coded stream, or layer, extends horizontally in the space-time
grid and is placed vertically above each other. In the improved architecture above, each
layer is striped diagonally across the space-time grid. This architecture is naturally
called Diagonal BLAST, or D-BLAST for short. See Figure 8.20.

The D-BLAST scheme suffers from a rate loss because in the initialization phase
some of the antennas have to be kept silent. For example, in the two transmit an-
tenna architecture illustrated in Figure 8.19 (with N = 1 and 5 layers), two symbols
are set to zero among the total of 10; this reduces the rate by a factor of 4/5 (Exer-
cise 8.27 generalizes this calculation). So for finite number of layers, D-BLAST does
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Antenna 2:

Antenna 1:

Receive

Antenna 2:

Antenna 1:

Receive

Suppress

Antenna 2:

Antenna 1:

Antenna 2:

Antenna 1:

Receive

Cancel

Figure 8.19: How D-BLAST works. (a) A soft estimate of Block A of the first codeword
(layer) obtained without interference. (b) A soft MMSE estimate of Block B is obtained
by suppressing the interference from antenna 2. (c) The soft estimates are combined to
decode the first codeword (layer). (d) The first codeword is cancelled and the process
restarts with the second codeword (layer).
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Figure 8.20: D-BLAST versus V-BLAST

Figure 8.21: Performance loss of D-BLAST with finite number of layers.

not achieve the outage performance of the MIMO channel. As the number of layers
grows, the rate loss gets amortized and the MIMO outage performance is approached.
In practice, D-BLAST suffers from error propagation: if one layer is decoded incor-
rectly, all subsequent layers are affected. This puts a practical limit on the number of
layers which can be transmitted consecutively before re-initialization (see Figure 8.21).
In this case, the rate loss due to initialization and termination is not negligible.

8.5.3 Discussion

D-BLAST should really be viewed as a transceiver architecture rather than a space-
time code: through signal processing and interleaving of the codewords across the
antennas, it converts the MIMO channel into a parallel channel. As such, it allows the
leveraging of any good parallel-channel code for the MIMO channel. In particular, a
universal code for the parallel channel, when used in conjunction with D-BLAST, is a
universal space-time code for the MIMO channel.

It is interesting to compare D-BLAST with the Alamouti scheme discussed in Chap-
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ters 3 and 5. The Alamouti scheme can also be considered as a transceiver architecture:
it converts the 2× 1 MISO slow fading channel into a SISO slow fading channel. Any
universal code for the SISO channel when used in conjunction with the Alamouti
scheme yields a universal code for the MISO channel. Compared to D-BLAST, the
signal processing is much simpler, and there is no rate loss or error propagation issues.
On the other hand, D-BLAST works for an arbitrary number of transmit and receive
antennas. As we have seen, the Alamouti scheme does not generalize to arbitrary num-
ber of transmit antennas (c.f. Exercise 3.16). Further, we will see in Chapter 9 that
the Alamouti scheme is strictly sub-optimal in MIMO channels with multiple transmit
and receive antennas. This is because, unlike D-BLAST, the Alamouti scheme does
not exploit all the available degrees of freedom in the channel.
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Chapter 8: The Main Plot

Capacity of Fast Fading MIMO Channels
In a rich scattering environment with receiver CSI, the capacity is approximately

• min(nt, nr) log SNR at high SNR: a gain in spatial degrees of freedom.

• nr SNR at low SNR: a receive beamforming gain.

With nt = nr = n, the capacity is approximately n c∗(SNR) for all SNR. Here
c∗(SNR) is a constant.

Transceiver Architectures

• With Full CSI: Convert the MIMO channel into nmin parallel channels by an ap-
propriate change in the basis of the transmit and receive signals. This transceiver
structure is motivated by the singular value decomposition of any linear trans-
formation: a composition of a rotation, a scaling operation, followed by another
rotation.

• With receiver CSI: send independent data streams over each of the transmit
antennas. The ML receiver decodes the streams jointly and achieves capacity.
This is called the V-BLAST architecture.

Reciever Structures

• Simple receiver structure: decode the data streams separately. Three main struc-
tures:
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– matched filter: use the receive antenna array to beamform to the receive
spatial signature of the stream. Performance close to capacity at low SNR.

– decorrelator: project the received signal onto the subspace orthogonal to the
receive spatial signatures of all the other streams.

∗ to be able to do the projection operation, need nr ≥ nt.

∗ For nr ≥ nt, the decorrelator bank captures all the spatial degrees of
freedom and hence close to optimal performance at high SNR.

– MMSE: linear receiver that optimally trades-off capturing the energy of the
data stream of interest and nulling the inter-stream interference. Close to
optimal performance at both low and high SNRs.

• Successive Cancellation: Decode the data streams sequentially, using the results
of the decoding operation to cancel the effect of the decoded data streams on the
received signal.

Bank of linear MMSE receivers with successive cancellation achieves the capacity
of the fast fading MIMO channel at all SNRs.

Outage Performance of Slow Fading MIMO Channels

The i.i.d. Rayleigh slow fading MIMO channel provides a diversity gain equal
to the product of nt and nr. Since the V-BLAST architecture does not code across
the transmit antennas, it can achieve a diversity gain of at most nr. Staggered
interleaving of the streams of V-BLAST among the transmit antennas achieves the
full outage performance of the MIMO channel. This is the D-BLAST architecture.
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8.6 Bibliographical Notes

An early work characterizing the ergodic capacity of MIMO channels was done by
Telatar [95] who observed the optimality of spatial waterfilling over the eigenmodes of
the matrix channel. Telatar also studied the CSI at the receiver case and showed that
for the i.i.d. Rayleigh fading model the optimal input covariance is identity. A survey
of the information theoretic study of fading channels is in [8].

The study of the linear receivers, decorrelator and MMSE, was initiated in the
context of multiuser detection of CDMA signals. The research in multiuser detection
is very well exposited and summarized in a book by Verdú [107], who was one of the
pioneers in this field. In particular, decorrelators were introduced by Lupas and Verdú
[62] and the MMSE receiver by Honig and Madhow [64]. The optimality of the MMSE
receiver in conjunction with successive cancellation was shown by Varanasi and Guess
[105].

Add reference to random matrix literature, [63], and Verdu-Shamai [108]

for the closed form expression in (8.26).
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Exercises

Exercise 8.1. (reciprocity) Show that the capacity of a time-invariant MIMO channel
with nt transmit, nr receive antennas and channel matrix H is the same as that of
the channel with nr transmit, nt receive antennas, matrix H∗, and same total power
constraint.

Exercise 8.2. Consider coding over a block of length N on the data streams in the
transceiver architecture in Figure 8.1 to communicate over the time-invariant MIMO
channel in (8.1).

1. Fix ε > 0 and consider the ellipsoid E(ε) defined as

{
a : a∗ (HKxH

∗ ⊗ IN + N0InrN)−1 a ≤ N (nr + ε)
}

. (8.96)

Here we have denoted the tensor product (or Kronecker product) between ma-
trices by the symbol ⊗. Show that, for every ε, the received vector yN (of length
nrN) lies with high probability in the ellipsoid E(ε), i.e.,

P
{
yN ∈ E(ε)

} → 1, as N →∞. (8.97)

2. Show that the volume of the ellipsoid E(0) is equal to

det (N0Inr + HKxH
∗)N (8.98)

times the volume of a 2nrN -dimensional real sphere with radius
√

nrN . This
justifies the expression in (8.4).

3. Show that the noise vector wN of length nrN satisfies

P
{‖wN‖2 ≤ N0N (nr + ε)

} → 1, as N →∞. (8.99)

Thus wN lives, with high probability, in a 2nrN -dimensional real sphere of radius√
N0nrN . Compare the volume of this sphere to the volume of the ellipsoid in

(8.98) to justify the expression in (8.5).

Exercise 8.3. [106, 102]
Consider the angular representation Ha of the MIMO channel H. We statistically

model the entries of Ha as zero mean and jointly uncorrelated.

1. Starting with the expression in (8.10) for the capacity of the MIMO channel with
receiver CSI and substituting H := UrH

aU∗
t , show that

C = max
Kx:TrKx≤P

E
[
log det

(
Inr +

1

N0

HaU∗
tKxUtH

a∗
)]

. (8.100)
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2. Show that we can restrict the input covariance in (8.100), without changing the
maximal value, to be of the following special structure:

Kx = UtΛU∗
t , (8.101)

where Λ is a diagonal matrix with nonnegative entries that sum to P . Hint: We
can always consider covariance matrix of the form

Kx = UtK̃xU
∗
t , (8.102)

with K̃x also a covariance matrix satisfying the total power constraint. To show
that K̃x can be restricted to be diagonal, consider the following decomposition:

K̃x = Λ + Koff , (8.103)

where Λ is a diagonal matrix and Koff has zero diagonal elements (and thus
contains all the off-diagonal elements of K̃x). Validate the following sequence of
inequalities:

E
[
log det

(
Inr +

1

N0

HaKoffH
a∗

)]
≤ logE

[
det

(
Inr +

1

N0

HaKoffH
a∗

)]
,(8.104)

= log det

(
E

[
Inr +

1

N0

HaKoffH
a∗

])
,(8.105)

= 0. (8.106)

You can use Jensen’s inequality (c.f. Exercise B.2) to get (8.104). In (8.105), we
have denoted E [X] to be the matrix with (i, j)th entry equal to E [Xij]. Now
use the property that the elements of Ha are uncorrelated in arriving at (8.105)
and (8.106). Finally, using the decomposition in (8.103), conclude (8.101), i.e.,
it suffices to consider covariance matrices K̃x in (8.102) to be diagonal.

Exercise 8.4. Consider i.i.d. Rayleigh fading, i.e., the entries of H are i.i.d. CN (0, 1),
and the capacity of the fast fading channel with only receiver CSI (c.f. (8.10)).

1. For i.i.d. Rayleigh fading, show that the distribution of H and that of HU are
identical for every unitary matrix U. This is a generalization of the rotational
invariance of an i.i.d. complex Gaussian vector (c.f. (A.22) in Appendix A).

2. Show directly for i.i.d. Rayleigh fading that the input covariance Kx in (8.10)
can be restricted to be diagonal (without resorting to Exercise 8.3(2)).

3. Show further that among the diagonal matrices, the optimal input covariance
is (P/nt)Int . Hint: For diagonal input covariance (with diagonal entries equal
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p1, . . . , pnt , summing to P ), the mutual information between the input and output
can be written as (directly from (8.10)):

E
[
log det

(
Inr +

1

N0

H diag {p1, . . . , pnt}H∗
)]

. (8.107)

Now show that the map

(p1, . . . , pK) 7→ E
[
log det

(
Inr +

1

N0

H diag {p1, . . . , pnt}H∗
)]

, (8.108)

is jointly concave. Further show that the map is symmetric, i.e., reordering the
argument p1, . . . , pnt does not change the value. Observe that a jointly concave,
symmetric function is maximized, subject to a sum constraint, exactly when
all the function arguments are the same and conclude the desired result. This
problem is adapted from [95].

Exercise 8.5. Consider the uplink of the cellular systems studied in Chapter 4: the
narrowband system (GSM), the wideband CDMA system (IS-95), and the wideband
OFDM system (Flash-OFDM).

1. Suppose that the base station is equipped with an array of multiple receive an-
tennas. Discuss the impact of the receive antenna array on the performance of
the three systems discussed in Chapter 4. Which system benefits the most?

2. Now consider the MIMO uplink, i.e., the mobiles are also equipped with multiple
(transmit) antennas. Discuss the impact on the performance of the three cellular
systems. Which system benefits the most?

Exercise 8.6. In Exercise 8.3 we have seen that the optimal input covariance is of
the form Kx = UtΛU∗

t with Λ a diagonal matrix. In this exercise, we study the
situations under which Λ is (P/nt) Int , making the optimal input covariance also equal
to (P/nt) Int . (We have already seen one instance when this is true in Exercise 8.4:
the i.i.d. Rayleigh fading scenario.) Intuitively, this should be true whenever there is
complete symmetry among the transmit angular windows. This heuristic idea is made
precise below.

1. The symmetry condition formally corresponds to the following assumption on the
columns (there are nt of them, one for each of the transmit angular windows) of
the angular representation Ha = UtHU∗

r: the nt column vectors are independent,
and further, the vectors are identically distributed. We do not specify the joint
distribution of the entries within any of the columns other than requiring that
they have zero mean. With this symmetry condition, show that the optimal
input covariance is (P/nt) Int .
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2. Using the previous part, or directly, strengthen the result of Exercise 8.4 by
showing that the optimal input covariance is (P/nt) Int whenever

H := [h1 · · ·hnt ] , (8.109)

where h1, . . . ,hnt are i.i.d. CN (0,Kh) for some covariance matrix Kh.

Exercise 8.7. In Section 8.2.2, we showed that with receiver CSI the capacity of
the i.i.d. Rayleigh fading n × n MIMO channel grows linearly with n at all SNR. In
this reading exercise, we consider other statistical channel models which also lead to a
linear increase of the capacity with n.

1. The capacity of the MIMO channel with i.i.d. entries (not necessarily Rayleigh),
grows linearly with n. This result is derived in [18].

2. In [18], the authors also consider a correlated channel model: the entries of the
MIMO channel are jointly complex Gaussian (with invertible covariance matrix).
The authors show that the capacity still increases linearly with the number of
antennas.

3. In [60], the authors show linear increase in capacity for a MIMO channel with
the number of i.i.d. entries growing quadratically in n (i.e., the number of i.i.d.
entries is proportional to n2, with the rest of the entries equal to zero).

Exercise 8.8. Consider the block fading MIMO channel (an extension of the single
antenna model in Exercise 5.28):

y[m + nTc] = H[n]x[m + nTc] + w[m + nTc], m = 1, . . . , Tc, n ≥ 1, (8.110)

where Tc is the coherence time of the channel (measured in terms of the number of
samples). The channel variations across the blocks H[n] are i.i.d. Rayleigh. A pilot
based communication scheme transmits known symbols for k time samples at the
beginning of each coherence time interval: the known symbol is sent over one of the
transmit antennas, with the other transmit antennas silent. At high SNR, the k pilot
symbols allow the receiver to partially estimate the channel: over the nth block, k of
the nt columns of H[n] are estimated with a high degree of accuracy. This allows us
to reliably communicate on the k × nr MIMO channel with receiver CSI.

1. Argue that the rate of reliable communication using this scheme at high SNR is
approximately

(
Tc − k

Tc

)
min (k, nr) log SNR bits/s/Hz. (8.111)
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2. Show that the optimal training time (and the corresponding number of transmit
antennas to use) is

k∗ := min

(
nt, nr,

Tc

2

)
. (8.112)

Substituting this in (8.111) we see that the number of spatial degrees of freedom
using the pilot scheme is equal to

(
Tc − k∗

Tc

)
k∗. (8.113)

3. A reading exercise is to study [126] which shows that the capacity of the non-
coherent block fading channel at high SNR also has the same number of spatial
degrees freedom as in (8.113).

Exercise 8.9. Consider the time-invariant frequency-selective MIMO channel:

y[m] =
L−1∑

`=0

H`x[m− `] + w[m]. (8.114)

Construct an appropriate OFDM transmission and reception scheme to transform the
original channel to the following parallel MIMO channel:

ỹn = H̃nx̃n + w̃n, n = 0, . . . , N − 1. (8.115)

Here N is the number of OFDM tones. Identify H̃n, n = 0, . . . , N − 1 in terms of
H`, ` = 0, . . . , L− 1.

Exercise 8.10. Consider a fixed physical environment and a corresponding MIMO
channel. Now suppose we double the transmit power constraint and the bandwidth.
Argue that the capacity of the MIMO channel with receiver CSI exactly doubles. This
scaling is consistent with that in the single antenna AWGN channel.

Exercise 8.11. Consider (8.42) where independent data streams {xi[m]} are trans-
mitted on each of the transmit antennas (i = 1 . . . , nt):

y[m] =
nt∑
i=1

hixi[m] + w[m]. (8.116)

1. We would like to study the operation of the decorrelator in some detail here. So
we make the assumption that hi cannot be generated by any linear combination
of the other vectors h1, . . . ,hi−1,hi+1, . . . ,hnt for every i = 1 . . . nt. Denoting
H = [h1 · · ·hnt ], show that this assumption is equivalent to the following: H∗H
is invertible.
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2. Consider the following operation on the received vector in (8.116):

x̂[m] := (H∗H)−1 H∗y[m], (8.117)

= x[m] + (H∗H)−1 H∗w[m]. (8.118)

Thus x̂i[m] = xi[m]+w̃i[m] where w̃[m] := (H∗H)−1 H∗w[m] is colored Gaussian
noise. This means that the ith data stream sees no interference from any of the
other streams in the received signal x̂i[m]. Show that x̂i[m] must be the output
of the decorrelator (up to a scaling constant) for the ith data stream and hence
conclude the validity of (8.47).

Exercise 8.12. Suppose H (with nt < nr) has i.i.d. CN (0, 1) entries and denote
h1, . . . ,hnt as the columns of H. Show that the probability that the columns are
linearly dependent is zero. Hence, conclude that the probability that the rank of H is
strictly smaller than nt is zero.

Exercise 8.13. Suppose H (with nt < nr) has i.i.d. CN (0, 1) entries and denote
the columns of H as h1, . . . ,hnt . Use the result of Exercise 8.12 to show that the
dimension of the subspace spanned by the vectors h1, . . . ,hk−1,hk+1, . . . ,hnt is nt − 1
with probability 1. Hence conclude that the dimension of the subspace Vk orthogonal
to this one, has dimension nr − nt + 1 with probability 1.

Exercise 8.14. Consider the Rayleigh fading n × n MIMO channel H with i.i.d.
CN (0, 1) entries. In the text we have discussed a random matrix result about the
convergence of the empirical distribution of the singular values of H/

√
n. It turns out

that the condition number of H/
√

n converges to a deterministic limiting distribution.
This means that the random matrix H is well-conditioned. The corresponding limiting
density is given by

f(x) :=
4

x3
e−2/x2

. (8.119)

A reading exercise is to study the derivation of this result proved in Theorem 7.2 of
[25].

Exercise 8.15. Consider communicating over the time-invariant nt×nr MIMO chan-
nel:

y[m] = Hx[m] + w[m]. (8.120)

The information bits are encoded using, say, a capacity-achieving Gaussian code such
as an LDPC code. The encoded bits are then modulated into the transmit signal x[m];
typically the components of the transmit vector belong to a regular constellation such as
QAM. The receiver, typically, operates in two stages. The first stage is demodulation:
at each time, soft information (a posteriori probabilities of the bits that modulated
the transmit vector) about the transmitted QAM symbol is evaluated. In the second
stage, the soft information about the bits is fed to a channel decoder.
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In this reading exercise, we study the first stage of the receiver. At time m, the
demodulation problem is to find the QAM points composing the vector x[m] such
that ‖y[m]−Hx[m]‖2 is the smallest possible. This problem is one of classical “least
squares”, but with the domain restricted to a finite set of points. When the modulation
is QAM, the domain is a finite subset of the integer lattice. Integer least squares is
known to be a computationally hard problem and several heuristic solutions, with lesser
complexity, have been proposed. One among them is the sphere decoding algorithm.
A reading exercise is to use [109] to understand the algorithm and an analysis of the
average (over the fading channel) complexity of decoding.

Exercise 8.16. In Section 8.2.2 we showed two facts for the i.i.d. Rayleigh fading
channel: (i) for fixed n and at low SNR, the capacity of a 1 by n channel approaches
that of an n by n channel; (ii) for fixed SNR but large n, the capacity of a 1 by
n channel grows only logarithmically with n while that of an n by n channel grows
linearly with n. Resolve the apparent paradox.

Exercise 8.17. Verify (8.26). This result is derived in [108].

Exercise 8.18. Consider the channel (8.58):

y = hx + z, (8.121)

where z is CN (0,Kz), h is a (complex) deterministic vector and x is the zero mean
unknown (complex) random variable to be estimated. The noise z and the data symbol
x are assumed to be uncorrelated.

1. Consider the following estimate of x from y using the vector c (normalized so
that ‖c‖ = 1):

x̂ := a c∗y = a c∗hx + a c∗z. (8.122)

Show that the constant a that minimizes the mean square error (E [|x− x̂|2]) is
equal to

E [|x|2] |c∗h|2
E [|x|2] |c∗h|2 + c∗Kzc

h∗c
|h∗c| . (8.123)

2. Calculate the minimal mean square error (denoted by MMSE) of the linear esti-
mate in (8.122) (by using the value of a in (8.123)). Show that

E [|x|2]
MMSE

= 1 + SNR := 1 +
E [|x|2] |c∗h|2

c∗Kzc
. (8.124)

3. Since we have shown that c = K−1
z h maximizes the SNR (c.f. (8.61)) among all

linear estimators, conclude that this linear estimate (along with an appropriate
choice of the scaling a, as in (8.123)), minimizes the mean square error in the
linear estimation of x from (8.121).
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Exercise 8.19. Consider detection on the generic vector channel with additive colored
Gaussian noise (c.f. (8.72)).

1. Show that the output of the linear MMSE receiver:

v∗mmsey (8.125)

is a sufficient statistic to detect x from y. This is a generalization of the scalar
sufficient statistic extracted from the vector detection problem in Appendix A
(c.f. (A.55)).

2. From the previous part, we know that the random variables y and x are inde-
pendent conditioned on v∗mmsey. Use this to verify (8.73).

Exercise 8.20. We have seen in Figure 8.13 that, at low SNR, the bank of linear
matched filter achieves capacity of the 8 by 8 i.i.d. Rayleigh fading channel, in the
sense that the ratio of the total achievable rate to the capacity approaches 1. Show
that this is true for general nt and nr.

Exercise 8.21. Consider the square n by n i.i.d. flat Rayleigh fading channel. Show
that the total achievable rate of the following receiver architectures scales linearly
with n: (a) bank of linear decorrelators; (b) bank of matched filters; (c) bank of linear
MMSE receivers. You can assume that independent information streams are coded and
sent out of each of the transmit antennas and the power allocation across antennas
is uniform. Hint: The calculation involving the linear MMSE receivers is tricky. You
have to show that the linear MMSE receiver performance depends on the covariance
matrix of the interference faced by each stream only through its empirical eigenvalue
distribution, and then apply the large-n random matrix result used in Section 8.2.2.

Exercise 8.22. Consider (8.42) where independent data streams {xi[m]} are trans-
mitted on each of the transmit antennas (i = 1 . . . , nt):

y[m] =
nt∑
i=1

hixi[m] + w[m]. (8.126)

Let us order the data streams as 1, . . . , nt and consider a sequence of linear MMSE
receivers followed by successive cancellation to decode the data streams (c.f. Sec-
tion 8.3.3). The maximum rate at which stream k can reliably carry information
is (c.f. (8.69)):

Ck = log


1 + Pkh

∗
k

(
N0Inr +

nt∑

i=k+1

Pihih
∗
i

)−1

hk


 . (8.127)
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1. With xi[m] i.i.d. CN (0, Pi) in time m and independent over the different data
streams i, calculate the average mutual information between all the data streams
and the output of the channel in (8.126) to be

C = log det

(
Inr +

1

N0

nt∑
i=1

Pihih
∗
i

)
. (8.128)

2. Show that

C =
nt∑

k=1

Ck, (8.129)

i.e., the sum of the data rates of the streams using linear MMSE receivers (c.f.
(8.127)) followed by successive cancellation is equal to the average mutual infor-
mation between independent Gaussian input and the channel output. Hint: You
might find useful the following matrix inversion lemma (for invertible A),

(A + xx∗)−1 = A−1 − A−1xx∗A−1

1 + x∗A−1x
. (8.130)

3. Now consider i.i.d. Rayleigh fading in (8.126) (i.e., hi is time varying as i.i.d.
CN (0, 1)). Setting Pi = P/nt for each data stream i, observe that E [C] (c.f.
(8.128)) is the capacity of the MIMO channel with receiver CSI alone. Further,
C̄k := E [Ck] is the data rate of the kth data stream with the linear MMSE receiver
followed by successive cancellation (c.f. (8.70)). Now conclude that linear MMSE
followed by successive cancellation of independent equal power data streams, one
on each of the transmit antennas, achieves the capacity of the MIMO Rayleigh
fading channel with receiver CSI.

Exercise 8.23. Consider the outage probability of a i.i.d. Rayleigh MIMO channel
(c.f. (8.81)). Show that its decay rate in SNR (equal to P/N0) is no faster than nt · nr

by justifying each of the following steps.

pout(R) ≤ P {log det (Inr + SNRHH∗) < R} (8.131)

≤ P {SNR Tr [HH∗] < R} (8.132)

≤ (
P

{
SNR |h11|2 < R

})ntnr
(8.133)

=
(
1− e−

R
SNR

)ntnr

(8.134)

≈ Rntnr

SNRntnr
. (8.135)

Exercise 8.24. Calculate the maximum diversity gains for each of the streams in the
V-BLAST architecture using the MMSE-SIC receiver. Hint: At high SNR, interference
seen by each stream is very high and the SINR of the linear MMSE receiver is very
close to that of the decorrelator in this regime.
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Exercise 8.25. Consider communicating over a 2 × 2 MIMO channel using the D-
BLAST architecture with N = 1 and equal power allocation P1 = P2 = P for both
the layers. In this exercise, we will derive some properties of the parallel channel (with
L = 2 diversity branches) created by the MMSE-SIC operation. We denote the MIMO
channel by H = [h1,h2] and the projections

h1‖2 :=
h∗1h2

‖h2‖2
h2, h1⊥2 := h1 − h1‖2. (8.136)

Let us denote the induced parallel channel as

y` = g` x` + w`, ` = 1, 2. (8.137)

1. Show that

|g1|2 = ‖h1⊥2‖2 +
‖h1‖2‖2

SNR‖h2‖2 + 1
, |g2|2 = ‖h2‖2, (8.138)

where SNR = P/N0.

2. What is the marginal distribution of |g1|2 at high SNR? Are |g1|2 and |g2|2 posi-
tively correlated or negatively correlated?

3. What is the maximum diversity gain offered by this parallel channel?

4. Now suppose |g1|2 and |g2|2 in the parallel channel in (8.137) are independent,
while still having the same marginal distribution as before. What is the maximum
diversity gain offered by this parallel channel?

Exercise 8.26. Generalize the staggered stream structure (discussed in the context
of a 2 × nr MIMO channel in Section 8.5) of the D-BLAST architecture to a MIMO
channel with nt > 2 transmit antennas.

Exercise 8.27. Consider a block length N D-BLAST architecture on a MIMO channel
with nt transmit antennas. Determine the rate loss due to the initialization phase as
a function of N and nt.
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Chapter 9

MIMO III: Diversity-Multiplexing
Tradeoff and Universal Space-Time
Codes

In the previous chapter, we analyzed the performance benefits of MIMO communica-
tion and discussed architectures that are designed to reap those benefits. The focus
was on the fast fading scenario. The story on slow fading MIMO channels is more com-
plex. While the communication capability of a fast fading channel can be described by
a single number, its capacity, that of a slow fading channel has to be described by the
outage probability curve pout(R). This curve is in essence a tradeoff between the data
rate and error probability. Moreover, in addition to the power and degree-of-freedom
gains in the fast fading scenario, multiple antennas provide a diversity gain in the slow
fading scenario as well. A clear characterization of the performance benefits of multiple
antennas in the slow fading scenario nd the design of good space-time coding schemes
that reap those benefits are the subjects of this chapter.

The outage probability curve pout(R) is the natural benchmark for evaluating the
performance of space-time codes. However, it is difficult to characterize analytically
the outage probability curves for MIMO channels. We develop an approximation which
captures the dual benefits of MIMO communication in the high SNR regime: increased
data rate (via an increase in the spatial degrees of freedom or, equivalently, the multi-
plexing gain) and increased reliability (via an increase in the diversity gain). The dual
benefits are captured as a fundamental tradeoff between these two types of gains.1 We
use the optimal diversity-multiplexing tradeoff as a benchmark to compare the various
space-time schemes discussed previously in the book. The tradeoff curve also suggests
how optimal space-time coding schemes should look like. A powerful idea for the design
of tradeoff-optimal schemes is universality.

1The careful reader will note that we had seen an inkling of the tension between these two types
of gains in our study of the 2× 2 MIMO Rayleigh fading channel in Chapter 3.

453
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We have studied an approach towards space-time code design in Chapter 3. Codes
designed using that approach have small error probability, averaged over the distribu-
tion of the fading channel gains. The drawback of the approach is that the performance
of the codes designed may be sensitive to the supposed fading distribution. This is prob-
lematic, since as we mentioned in Chapter 2, accurate statistical modeling of wireless
channels is difficult. The outage formulation, however, suggests a different approach.
The operational interpretation to the outage performance guarantees the existence of
universal codes: codes that simultaneously achieves reliable communication over every
MIMO channel that is not in outage. Such codes are robust from an engineering point
of view: they achieve the best possible outage performance no matter what the fading
distribution is. This result motivates a universal code design criterion: instead of using
the pairwise error probability averaged over the fading distribution of the channel, we
consider the worst-case pairwise error probability over all channels that are not in out-
age. Somewhat surprisingly, the universal code-design criterion is closely related to the
product distance, which is obtained by averaging over the Rayleigh distribution. Thus,
the product distance criterion, while seemingly tailored for the Rayleigh distribution,
is actually more fundamental. Using universal code design ideas, we construct codes
that achieve the optimal diversity-multiplexing tradeoff.

9.1 Diversity-Multiplexing Tradeoff

In this section, we use the outage formulation to characterize the performance ca-
pability of slow fading MIMO channels in terms of a tradeoff between diversity and
multiplexing gains. This tradeoff is then used as a unified framework to compare the
various space-time coding schemes described in this book.

9.1.1 Formulation

When we analyzed the performance of communication schemes in the slow fading
scenario in Chapters 3 and 5, the emphasis has been on the diversity gain. In this light,
a key measure of the performance capability of a slow fading channel is the maximum
diversity gain that can be extracted from it. For example, a slow i.i.d. Rayleigh faded
MIMO channel with nt transmit and nr receive antenna has a maximum diversity gain
of nt · nr: i.e., for a fixed target rate R, the outage probability pout(R) decays like
1/SNRntnr at high SNR.

On the other hand, we know from Chapter 7 that the key performance benefit of
a fast fading MIMO channel is the spatial multiplexing capability it provides through
the additional degrees of freedom. For example, an i.i.d. Rayleigh fading channel has
a capacity that scales like nmin log SNR, where nmin := min (nt, nr) is the number of
spatial degrees of freedom in the channel. This fast fading (ergodic) capacity is achieved
by averaging over the variation of the channel over time. In the slow fading scenario, no
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such averaging is possible and one cannot communicate at this rate reliably. To cater
for the randomness of the channel, one has to communicate at rates smaller than the
capacity. Nevertheless, one would still expect to be able to benefit from the increased
degrees of freedom even in the slow fading scenario. Yet the maximum diversity gain
provides no such indication; for example, both a nt×nr channel and a ntnr×1 channel
would have the same maximum diversity gain and yet one would expect the former to
allow better spatial multiplexing than the latter. One needs something more than the
maximum diversity gain to capture the spatial multiplexing benefit.

Observe that to achieve the maximum diversity gain, one needs to communicate at
a fixed rate R, which becomes vanishingly small compared to the fast fading capacity
at high SNR (which grows like nmin log SNR). Thus, one is actually sacrificing all
the spatial multiplexing benefit of the MIMO channel to maximize the reliability.
To reclaim some of that benefit, one would instead want to communicate at a rate
R = r log SNR which is a fraction of the fast fading capacity. Thus, it makes sense to
formulate the following diversity-multiplexing tradeoff for a slow fading channel.

A diversity gain d∗(r) is achieved at multiplexing gain r if

R = r log SNR (9.1)

and
pout(R) ≈ SNR−d∗(r), (9.2)

or more precisely,

lim
SNR→∞

log pout(r log SNR)

log SNR
= −d∗(r) (9.3)

The curve d∗(·) is the diversity-multiplexing tradeoff of the slow fading
channel.

The above tradeoff characterizes the slow fading performance limit of the channel.
Similarly, we can formulate a diversity-multiplexing tradeoff for any space-time coding
scheme, with outage probabilities replaced by error probabilities.
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A space-time coding scheme is a family of codes, indexed by the signal-
to-noise ratio SNR. It attains a multiplexing gain r and a diversity
gain d if the data rate scales as

R = r log SNR (9.4)

and the error probability scales as

pe ∼ SNR−d, (9.5)

i.e.,

lim
SNR→∞

log pe

log SNR
= −d (9.6)

We will now go through a few examples on the diversity-multiplexing performance
of specific coding schemes we have already studied and see how they perform compared
to each other and to the optimal diversity-multiplexing tradeoff. For concreteness, we
use the i.i.d. Rayleigh fading model. In Section 9.2, we will describe a general approach
towards tradeoff-optimal space-time code based on universal coding ideas.

9.1.2 Scalar Rayleigh Channel

PAM and QAM

Consider the scalar slow fading Rayleigh channel

y[m] = hx[m] + w[m], (9.7)

with the additive noise i.i.d. CN (0, 1) and the power constraint equal to SNR. Suppose
h is CN (0, 1) and consider uncoded communication using PAM with a data rate of
R bits/s/Hz. We have done the error probability analysis in Section 3.1.2 for R =
1; for general R, the analysis is similar. The average error probability is governed
by the minimum distance between the PAM points. The constellation ranges from
approximately −

√
SNR to +

√
SNR, and since there are 2R constellation points, the

minimum distance is approximately

Dmin ≈
√

SNR

2R
, (9.8)

and the error probability at high SNR is approximately (c.f. (3.28)),

pe ≈ 1

2

(
1−

√
D2

min

4 + D2
min

)
≈ 1

D2
min

≈ 22R

SNR
. (9.9)
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By setting the data rate R = r log SNR, we get:

pe ≈ 1

SNR−(1−2r)
, (9.10)

yielding a diversity-multiplexing tradeoff of:

dpam(r) = 1− 2r, r ∈
[
0,

1

2

]
. (9.11)

Note that in the approximate analysis of the error probability above, we focus on the
scaling of the error probability with the SNR and the data rate but are somewhat care-
less with constant multipliers: they do not matter as far as the diversity-multiplexing
tradeoff is concerned.

We can repeat the analysis for QAM with data rate R. There are now 2R/2 constel-
lation points in each of the real and imaginary dimensions, and hence the minimum
distance is approximately

Dmin ≈
√

SNR

2R/2
, (9.12)

and the error probability at high SNR is approximately

pe ≈ 2R

SNR
, (9.13)

yielding a diversity-multiplexing tradeoff of

dqam(r) = 1− r, r ∈ [0, 1] (9.14)

The tradeoff curves are plotted in Figure 9.1.
Let us relate the two endpoints of a tradeoff curve to notions that we are already

familiar with. The value dmax := d(0) can be interpreted as the SNR exponent that
describes how fast the error probability can be decreased with the SNR for a fixed data
rate; this is the classical diversity gain of a scheme. It is 1 for both PAM and QAM.
The decrease in error probability is due to an increase in Dmin. This is illustrated in
Figure 9.2.

In a dual way, the value rmax for which d(rmax) = 0 describes how fast the data
rate can be increased with the SNR for a fixed error probability. This number can be
interpreted as the number of (complex) degrees of freedom that is exploited by the
scheme. It is 1 for QAM but only 1/2 for PAM. This is consistent with our observation
in Section 3.1.3 that PAM uses only half the degrees of freedom as QAM. The increase
in data rate is due to the packing of more constellation points for a given Dmin. This
is illustrated in Figure 9.3
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Figure 9.1: Tradeoff curves for the single antenna slow fading Rayleigh channel.
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Figure 9.2: Increasing the SNR by 6dB decreases the error probability by 1/4 for both
PAM and QAM due to a doubling of the minimum distance.
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1

Figure 9.3: Increasing the SNR by 6dB increases the data rate for QAM by 2 bits/s/Hz
but only increases the data rate of PAM by 1 bits/s/Hz.

The two endpoints represent two extreme ways of using the increase in the resource
(SNR): increasing the reliability for a fixed data rate, or increasing the data rate for a
fixed reliability. More generally, we can simultaneously increase the data rate (positive
multiplexing gain r) and increase the reliability (positive diversity gain d > 0) but
there is a tradeoff between how much of each types of gains one can get. The diversity-
multiplexing curve describes this tradeoff. Note that the classical diversity gain only
describes the rate of decay of the error probability for a fixed data rate, but does
not provide any information on how well a scheme exploits the available degrees of
freedom. For example, PAM and QAM have the same classical diversity gain, even
though clearly QAM is more efficient in exploiting the available degrees of freedom. The
tradeoff curve, by treating error probability and data rate in a symmetrical manner,
provides a more complete picture. We see that in terms of their tradeoff curves, QAM
is indeed superior to PAM (see Figure 9.1).

Optimal Tradeoff

So far, we have considered the tradeoff between diversity and multiplexing in the
context of two specific schemes: uncoded PAM and QAM. What is the diversity-
multiplexing tradeoff of the scalar channel itself? For the slow fading Rayleigh channel,
the outage probability at a target data rate R = r log SNR is

pout = P
{
log

(
1 + |h|2SNR

)
< r log SNR

}

= P
{
|h|2 <

SNRr − 1

SNR

}

≈ 1

SNR1−r , (9.15)
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at high SNR. In the last step, we used the fact that for Rayleigh fading, P {|h|2 < ε} ≈ ε
for small ε. Thus

d∗(r) = 1− r, r ∈ [0, 1]. (9.16)

Hence, the uncoded QAM scheme trades off diversity and multiplexing gains optimally.
The tradeoff between diversity and multiplexing gains can be viewed as a coarser

way of capturing the fundamental tradeoff between error probability and data rate
over a fading channel at high SNR. Even very simple, low-complexity schemes can
tradeoff optimally in this coarser context (the uncoded QAM achieved the tradeoff
for the Rayleigh slow fading channel). To achieve the exact tradeoff between outage
probability and data rate, we need to code over long block lengths, at the expense of
higher complexity.

9.1.3 Parallel Rayleigh Channel

Consider the slow fading parallel channel with i.i.d. Rayleigh fading on each sub-
channel:

y`[m] = h`x`[m] + w`[m], ` = 1, . . . , L. (9.17)

Here, the w`’s are i.i.d. CN (0, 1) additive noise and the transmit power per sub-channel
is constrained by SNR. We have seen that L Rayleigh faded sub-channels provide a
(classical) diversity gain equal to L (c.f. Section 3.2 and Section 5.4.4): this is an L-fold
improvement over the basic single antenna slow fading channel. In the parlance we
introduced in the previous section, this says that d∗(0) = L. How about the diversity
gain at any positive multiplexing rate?

Suppose the target data rate is R = r log SNR bits/s/Hz per sub-channel. The
optimal diversity d∗(r) can be calculated from the rate of decay of the outage proba-
bility with increasing SNR. For the i.i.d. Rayleigh fading parallel channel, the outage
probability at rate per sub-channel R = r log SNR is (c.f. (5.83))

pout = P

{
L∑

`=1

log
(
1 + |h`|2SNR

)
< Lr log SNR

}
. (9.18)

A typical way in which outage occurs is when each of the sub-channels cannot support
the rate R (see Exercise 9.1): so we can write

pout ≈
(
P

{
log

(
1 + |h1|2SNR

)
< r log SNR

})L ≈ 1

SNRL(1−r)
. (9.19)

So, the optimal diversity-multiplexing tradeoff for the parallel channel with L diversity
branches is
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Figure 9.4: The diversity-multiplexing tradeoff of the i.i.d. Rayleigh fading parallel
channel with L sub-channels together with that of the repetition scheme.

d∗(r) = L(1− r), r ∈ [0, 1], (9.20)

an L-fold gain over the scalar single antenna performance (c.f. (9.16)) at every multi-
plexing gain r; this performance is illustrated in Figure 9.4.

One particular scheme is to transmit the same QAM symbol over the L sub-
channels; the repetition converts the parallel channel into a scalar channel with gain∑

` |h`|2 but with 1/Lth the rate. The diversity-multiplexing tradeoff achieved by this
scheme can be computed to be

drep(r) = L(1− Lr), r ∈
[
0,

1

L

]
, (9.21)

(Exercise 9.2). The classical diversity gain drep(0) is L, the full diversity of the parallel
channel, but the number of degrees of freedom per sub-channel is only 1/L, due to the
repetition.

9.1.4 MISO Rayleigh Channel

Consider the nt transmit and single receive antenna MISO channel with i.i.d. Rayleigh
coefficients:

y[m] = h∗x[m] + w[m]. (9.22)
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As usual, the additive noise w[m] is i.i.d. CN (0, 1) and there is an overall transmit
power constraint of SNR. We have seen that the Rayleigh fading MISO channel with
nt transmit antennas increases the (classical) diversity gain by a factor of nt (c.f.
Section 3.3.2 and Section 5.4.3). By how much is the diversity gain at a positive
multiplexing rate of r increased?

We can answer this question by looking at the outage probability at target data
rate R = r log SNR bits/s/Hz:

pout = P
{

log

(
1 + ‖h‖2 SNR

nt

)
< r log SNR

}
. (9.23)

Now |h‖2 is a χ2 random variable with 2nt degrees of freedom and we have seen that
P {‖h‖2 < ε} ≈ εL (c.f. (3.44)). Thus, pout decays as SNR−nt(1−r) with increased SNR
and the optimal diversity-multiplexing tradeoff for the i.i.d. Rayleigh fading MISO
channel is

d∗(r) = nt(1− r), r ∈ [0, 1]. (9.24)

Thus the MISO channel provides an nt-fold increase in diversity at all multiplexing
gains.

In the case of nt = 2, we know that the Alamouti scheme converts the MISO
channel into a scalar channel with the same outage behavior as the original MISO
channel. Hence, if we use QAM symbols in conjunction with the Alamouti scheme,
we achieve the diversity-multiplexing tradeoff of the MISO channel. In contrast, the
repetition scheme which transmits the same QAM symbol from each of the two transmit
antennas in turn achieves a diversity-multiplexing tradeoff curve of

drep(r) = 2(1− 2r), r ∈
[
0,

1

2

]
. (9.25)

The tradeoff curves of these schemes as well as that of the 2 × 1 MISO channel are
shown in Figure 9.5.

9.1.5 2× 2 MIMO Rayleigh Channel

Four Schemes Revisited

In Section 3.3.3, we analyzed the (classical) diversity gains and degrees of freedom
utilized by four schemes for the 2 × 2 i.i.d. Rayleigh fading MIMO channel (with the
results were summarized in Summary 2). The diversity-multiplexing tradeoffs of these
schemes when used in conjunction with uncoded QAM can be computed as well; they
are summarized in Table 9.1 and plotted in Figure 9.6. The classical diversity gains
and degrees of freedom utilized correspond to endpoints of these curves.
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Figure 9.5: The diversity-multiplexing tradeoffs of the 2×1 i.i.d. Rayleigh fading MISO
channel together with those of two schemes.

The repetition, Alamouti and V-BLAST with nulling schemes all convert the MIMO
channel into scalar channels for which the diversity-multiplexing tradeoffs can be com-
puted in a straightforward manner (see Exercises 9.3, 9.4, and 9.5). The diversity-
multiplexing tradeoff of V-BLAST with ML can be analyzed starting from the pair-
wise error probability between two codewords xA and xB (with average transmit energy
normalized to 1) :

P {xA → xB} ≤ 16

SNR2 ‖xA − xB‖4
, (9.26)

(c.f. 3.92). Each codeword is a pair of QAM symbols transmitted on the two antennas,
and hence the distance between the two closest codewords is that between two adjacent
constellation points in one of the QAM constellation, i.e., xA and xB differ only in one
of the two QAM symbols. With a total data rate of R bits/s/Hz, each QAM symbol
carries R/2 bits, and hence each of the I and Q channels carries R/4 bits. The distance
between two adjacent constellation points is of the order of 1/2R/4. Thus, the worst-
case pairwise error probability is of the order

16 · 2R

SNR2 = 16 · SNR−(2−r), (9.27)

where the data rate R = r log SNR. This is the worst-case pairwise error probability,
but Exercise 9.6 shows that the overall error probability is of the same order. Hence,



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 464

Classical Degrees of freedom D-M tradeoff
Diversity Gain Utilized

Repetition 4 1/2 4− 8r, r ∈ [0, 1/2]
Alamouti 4 1 4− 4r, r ∈ [0, 1]

V-BLAST (ML) 2 2 2− r, r ∈ [0, 2]
V-BLAST (nulling) 1 2 1− r/2, r ∈ [0, 2]

channel itself 4 2 4− 3r, r ∈ [0, 1]
2− r, r ∈ [1, 2]

Table 9.1: A summary of the performance of the four schemes for the 2× 2 channel

the diversity-multiplexing tradeoff of V-BLAST with ML decoding is

d(r) = 2− r r ∈ [0, 2]. (9.28)

As already remarked in Section 3.3.3, the (classical) diversity gain and the degrees
of freedom utilized are not always sufficient to say which scheme is better. For example,
the Alamouti scheme has a higher (classical) diversity gain than V-BLAST but utilizes
fewer degrees of freedom. The tradeoff curves, in contrast, provide a clear basis for
the comparison. We see that which scheme is better depends on the target diversity
gain (error probability) of the operating point: for smaller target diversity gains, V-
BLAST is better than the Alamouti scheme, while the situation reverses for higher
target diversity gains.

Optimal Tradeoff

Does any of the four schemes actually achieve the optimal tradeoff of the 2×2 channel?
The tradeoff curve of the 2 × 2 i.i.d. Rayleigh fading MIMO channel turns out to be
piecewise linear joining the points (0, 4), (1, 1) and (2, 0) (also shown in Figure 9.6).
Thus, all of the schemes are tradeoff-suboptimal, except for V-BLAST with ML, which
is optimal but only for r > 1.

The endpoints of the optimal tradeoff curve are (0, 4) and (2, 0), consistent with
the fact that the 2 × 2 MIMO channel has a maximum diversity gain of 4 and two
degrees of freedom. More interestingly, unlike all the tradeoff curves we have computed
before, this curve is not a straight line but piecewise linear, consisting of two linear
segments. V-BLAST with ML decoding sends two symbols per symbol time with
(classical) diversity of 2 for each symbol, and achieves the gentle part, 2 − r, of this
curve. But what about the steep part, 4 − 3r? Intuitively, there should be a scheme
that sends 4 symbols over 3 symbol times (with a rate of 4/3 symbols/s/Hz ) and
achieves the full diversity gain of 4. We will see such a scheme in Section 9.2.4.



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 465

Spatial Multiplexing Gain:   r=R/log SNR

D
iv

er
si

ty
 G

ai
n:

   
 d

* (r
)

(1/2,0) (1,0) 

(0,4) 

(1,1) 

(2,0) 

Optimal Tradeoff 

Alamouti 

(0,1) 

Repetition

V−BLAST(Nulling)

V−BLAST(ML)

(0,2) 

Figure 9.6: The diversity-multiplexing tradeoffs of the 2×2 i.i.d. Rayleigh fading MISO
channel together with those of four schemes.

9.1.6 nt × nr MIMO i.i.d. Rayleigh Channel

Optimal Tradeoff

Consider the nt×nr MIMO channel with i.i.d. Raleigh faded gains. The optimal diver-
sity gain at a data rate r log SNR bits/s/Hz is the rate at which the outage probability
(c.f. (8.81)) decays with SNR:

pmimo
out (r) = min

Kx:Tr[Kx]≤SNR
P {log det (Inr + HKxH

∗) < r log SNR} . (9.29)

While the optimal covariance matrix Kx depends on the SNR and the data rate, we
argued in Section 8.4 that the choice of Kx = SNR/nt Int is often used as a good
approximation to the actual outage probability. In the coarser scaling of the tradeoff
curve formulation, that argument can be made precise: the decay rate of the outage
probability in (9.29) is the same as when the covariance matrix is the scaled identity.
(See Exercise 9.8.) Thus, for the purpose of identifying the optimal diversity gain at a
multiplexing rate r it suffices to consider the expression in (8.85):

piid
out(r) = P

{
log det

(
Inr +

SNR

nt

HH∗
)

< r log SNR

}
. (9.30)

By analyzing this expression, the diversity-multiplexing tradeoff of the nt × nr i.i.d.
Rayleigh fading channel can be computed. It is the piecewise linear curve joining the



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 466

Spatial Multiplexing Gain:   r=R/log SNR

D
iv

er
si

ty
 G

ai
n:

   
 d

* (r
)

(min{n_t,n_r},0) 

(0,n_t n_r) 

(r, (n_t−r)(n_r−r)) 

(2, (n_t−2)(n_r−2)) 

(1,(n_t−1)(n_r−1)) 

Figure 9.7: Diversity-multiplexing tradeoff, d∗(r) for the i.i.d. Rayleigh fading channel.

points:
(k, (nt − k)(nr − k)) , k = 0, . . . , nmin, (9.31)

as shown in Figure 9.7.
The tradeoff curve summarizes succinctly the performance capability of the slow

fading MIMO channel. At one extreme where r → 0, the maximal diversity gain
nt · nr is achieved, at the expense of very low multiplexing gain. At the other extreme
where r → nmin, the full degrees of freedom is attained. However, the system is now
operating very close to the fast fading capacity and there is little protection against the
randomness of the slow fading channel; the diversity gain is approaching 0. The tradeoff
curve bridges between the two extremes and provides a more complete picture of the
slow fading performance capability than the two extreme points. For example, adding
one transmit and one receive antenna to the system increases the degrees of freedom
min (nt, nr) by 1; this corresponds to increasing the maximum possible multiplexing
gain by 1. The tradeoff curve, on the other hand, gives a more refined picture of the
system benefit: for any diversity requirement d, the supported multiplexing gain is
increased by 1. This is because the entire tradeoff curve is shifted by 1 to the right;
see Figure 9.8.
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Figure 9.8: Adding one transmit and one receive antenna increases spatial multiplexing
gain by 1 at each diversity level.

Geometric Interpretation

To provide more intuition let us consider the geometric picture behind the optimal
tradeoff for integer values of r. The outage probability is given by

pout(r log SNR) = P
{

log det

(
Inr +

SNR

nt

HH∗
)

< r log SNR

}

= P

{
nmin∑
i=1

log

(
1 +

SNR

nt

λ2
i

)
< r log SNR

}
, (9.32)

where λi’s are the (random) singular values of the matrix H. There are nmin possible
modes for communication but the effectiveness of mode i depends on how large the
received signal strength SNRλ2

i /nt is for that mode; we can think of a mode as fully
effective if SNRλi/nt is of order SNR and not effective at all when SNRλ2

i /nt is of order
1 or smaller.

At low multiplexing gains (r → 0), outage occurs when none of the modes are effec-
tive at all; i.e., all the singular values are small, of the order of 1/SNR. Geometrically,
this event happens when the channel matrix H is close to the zero matrix; see Figure
9.9 and 9.10. Since

∑
i λ

2
i =

∑
i,j |hij|2, this event occurs only when all of the ntnr

squared magnitude channel gains |hij|2’s are small, each of the order of 1/SNR. As
the channel gains are independent and P {|hij|2 < 1/SNR} ≈ 1/SNR, the probability
of this event is of the order of 1/SNRntnr .
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Figure 9.9: Geometric picture for the 1 × 1 channel. Outage occurs when |h| is close
to 0.
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Figure 9.10: Geometric picture for the 1× 2 channel. Outage occurs when |h1|2 + |h2|2
is close to 0



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 469

Now consider the case when r is a positive integer. The situation is more compli-
cated. For the outage event in (9.32) to occur, there are now many possible combina-
tions of values that the singular values λ2

i ’s can take on, with modes taking on different
shades of effectiveness. However, at high SNR, it can be shown that the typical way
for outage to occur is when precisely r of the modes are fully effective and the rest
completely ineffective. This means the largest r singular values of H are of order 1,
while the rest are of the order 1/SNR or smaller; geometrically, H is close to a rank r
matrix. What is the probability of this event?

In the case of r = 0, the outage event is when the channel matrix H is close to a
rank 0 matrix. The channel matrix lies in the ntnr dimensional space Cnr×nt , so for this
to occur, there is a collapse in all ntnr dimensions. This leads to an outage probability
of 1/SNRntnr . At general multiplexing gain r (r positive integer), outage occurs already
when H is close to Vr, the space of all rank r matrices. This requires a collapse in the
component of H “orthogonal” to Vr. One would expect the probability of this event to
therefore be approximately 1/SNRd, where d is the number of such dimensions.2 See
Figure 9.11. It is easy to compute d. A nr × nt matrix H of rank r is described by
rnt+(nr−r)r parameters: rnt parameters to specify r linearly independent row vectors
of H and (nr − r)r parameters to specify the remaining nr − r rows in terms of linear
combinations of the first r row vectors. Hence Vr is ntr+(nr−r)r-dimensional and the
number of dimensions orthogonal to Vr in Cntnr is simply ntnr − (ntr + (nr − r)r) =
(nt−r)(nr−r). This is precisely the SNR exponent of the outage probability in (9.32).

9.2 Universal Code Design for Optimal Diversity-

Multiplexing Tradeoff

The operational interpretation of the outage formulation is based on the existence of
universal codes that can achieve arbitrarily small error whenever the channel is not
in outage. To achieve such performance, arbitrarily long block lengths and powerful
codes are required. In the high SNR regime, we have seen in Chapter 3 that in a fading
channel, errors occur mainly due to a typical error event of the channel in a deep fade,
where the deep-fade event depends on the channel as well as the scheme. This leads
to a natural high SNR relaxation of the universality concept:

A scheme is approximately universal if it is in deep fade only when
the channel itself is in outage.

2Vr is actually not a linearly subspace so strictly speaking we cannot talk about the concept of
orthogonal dimensions. However, Vr is a manifold, which means that the neighborhood of every point
looks like an Euclidean space of the same dimension. So the notion of orthogonal dimensions (called
“co-dimension” of Vr) still makes sense.
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Figure 9.11: Geometric picture for the nt× nr channel at multiplexing gain r. Outage
occurs when the channel matrix H is close to a rank r matrix.

Being approximately universal is sufficient for a scheme to achieve the diversity-
multiplexing tradeoff of the channel. Moreover, one can explicitly construct approxi-
mately universal schemes of short block lengths. We describe this approach towards
optimal diversity-multiplexing tradeoff code design in this section. We start with the
scalar channel and progress towards more complex models, culminating in the general
nt × nr MIMO channel.

9.2.1 QAM is Approximately Universal for Scalar Channels

In Section 9.1.2 we have seen that uncoded QAM achieves the optimal diversity-
multiplexing tradeoff of the scalar Rayleigh fading channel. One can obtain a deeper
understanding of why this is so via a typical error event analysis. Conditional on the
channel gain h, the probability of error of uncoded QAM at data rate R is approxi-
mately:

Q

(√
SNR

2
|h|2D2

min

)
(9.33)

where Dmin is the minimum distance between two normalized constellation points,
given by

Dmin ≈
√

1

2R/2
. (9.34)

When
√

SNR|h|Dmin À 1, i.e., the separation of the constellation points at the
receiver is much larger than the standard deviation of the additive Gaussian noise, and
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errors occur very rarely due to the very rapid drop off of the Gaussian tail probability.
Thus, as an order-of-magnitude approximation, errors typically occur due to:

Deep-fade event: |h|2 <
2R

SNR
. (9.35)

This deep-fade event is analogous to that for BPSK in Section 3.1.2. On the other
hand, the channel outage condition is given by:

log
(
1 + |h|2SNR

)
< R (9.36)

or equivalently

|h|2 <
2R − 1

SNR
. (9.37)

At high SNR and high rate, the channel outage condition (9.37) and the deep-fade
event of QAM (9.35) coincide. Thus, typically errors occur for QAM only when the
channel is in outage. Since the optimal diversity-multiplexing tradeoff is determined
by the outage probability of the channel, this explains why QAM achieves the optimal
tradeoff. (A rigorous proof of the tradeoff optimality of QAM based solely on this
typical error event view is carried out in Exercise 9.9, which is the generalization of
Exercise 3.3 where we used the typical error event to analyze classical diversity gain.)

In Section 9.1.2, the diversity-multiplexing tradeoff of QAM is computed by av-
eraging the error probability over the Rayleigh fading and it happens to be equal to
the optimal tradeoff. The present explanation based on relating the deep-fade event of
QAM and the outage condition is more insightful. For one thing, this explanation is
in terms of conditions on the channel gain h and has nothing to do with the distribu-
tion of h. This means that QAM achieves the optimal diversity-multiplexing tradeoff
not only under Rayleigh fading but in fact under any channel statistics. This is the
true meaning of universality. For example, for a channel with the near-zero behavior
of P {|h|2 < ε} ≈ εk, the optimal diversity-multiplexing tradeoff curve follows directly
from (9.15): d∗(r) = k(1− r). Uncoded QAM on this channel can achieve this tradeoff
as well.

Note that the approximate universality of QAM depends only on a condition on its
normalized minimum distance:

D2
min >

1

2R
. (9.38)

Any other constellation with this property is also approximately universal (see Exer-
cise 9.9).
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Summary 9.1 Approximate Universality
A scheme is approximately universal if it is in deep fade only when the channel

itself is in outage.

Being approximately universal is sufficient for a scheme to achieve the
diversity-multiplexing tradeoff of the channel.

9.2.2 Universal Code Design for Parallel Channels

In Section 3.2.2 we derived design criteria for codes that have a good coding gain while
extracting the maximum diversity from the parallel channel. The criterion was derived
based on averaging the error probability over the statistics of the fading channel. For
example, the i.i.d. Rayleigh fading parallel channel yielded the product distance crite-
rion (c.f. Summary 1). In this section, we consider instead a universal design criterion
based on considering the performance of the code over the worst-case channel that is
not in outage. Somewhat surprisingly, this universal code design criterion reduces to
the product distance criterion at high SNR. Using this universal design criterion, we
can characterize codes that are approximately universal using the idea of typical error
event used in the last section.

Universal Code Design Criterion

We begin with the parallel channel with L diversity branches, focusing on just one
time symbol (and dropping the time index):

y` = h`x` + w` (9.39)

for ` = 1, . . . , L. Here, as before, the w`’s are i.i.d. CN (0, 1) noise. Suppose the rate of
communication is R bits/s/Hz per sub-channel. Each codeword is a vector of length
L. The `th component of any codeword is transmitted over the `th sub-channel in
(9.39). Here, a codeword consists of one symbol from each of the L sub-channels; more
generally, we can consider coding over multiple symbols in each of the sub-channels
as well as coding across the different sub-channels. The derivation of a code design
criterion for the more general case is done in Exercise 9.10.

The channels that are not in outage are those whose gains satisfy

L∑

`=1

log
(
1 + |h`|2SNR

) ≥ LR. (9.40)

As before, SNR is the transmit power constraint per sub-channel.
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For a fixed pair of codewords xA,xB, the probability that xB is more likely than
xA when xA is transmitted, conditional on the channel gains h, is (c.f. (3.51))

P {xA → xB|h} = Q




√√√√SNR

2

L∑

`=1

|h`|2|d`|2

 , (9.41)

where d` is the `th component of the normalized codeword difference (c.f. (3.52)):

d` :=
1√
SNR

(xA` − xB`) . (9.42)

The worst-case pairwise error probability over the channels that are not in outage is
the solution to the optimization problem

min
h1,...,hL

SNR

2

L∑

`=1

|h`|2|d`|2 (9.43)

subject to the constraint (9.40). If we define Q` := SNR·|h`|2|d`|2, then the optimization
problem can be rewritten as

min
Q1≥0,...,QL≥0

1

2

L∑

`=1

Q` (9.44)

subject to the constraint
L∑

`=1

log

(
1 +

Q`

|d`|2
)
≥ LR. (9.45)

This is analogous to the problem of minimizing the total power required to support a
target rate R bits/s/Hz per sub-channel over a parallel Gaussian channel; the solution
is just standard waterfilling, and the worst-case channel is

|h∗` |2 =
1

SNR
·
(

1

λ|d`|2 − 1

)+

, ` = 1, . . . , L. (9.46)

Here λ is the Lagrange multiplier chosen such that the channel in (9.46) satisfies (9.40)
with equality. The worst-case pairwise error probability is

Q




√√√√1

2

L∑

`=1

(
1

λ
− |d`|2

)+

 , (9.47)

where λ satisfies:
L∑

`=1

[
log

(
1

λ|d`|2
)]+

= LR. (9.48)
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Figure 9.12: A repetition code for the 2-parallel channel with rate R = 2 bits/s/Hz
per sub-channel.

Examples

We look at some simple coding schemes to better understand the universal design

criterion, the argument of the Q
(√

·/2
)

function in (9.47):

L∑

`=1

(
1

λ
− |d`|2

)+

, (9.49)

where λ satisfies the constraint in (9.48).

1. No Coding: Here symbols from L independent constellations (say, QAM), with
2R points each, are transmitted separately on each of the sub-channels. This has
very poor product distance since all but one of the |d`|2’s can be simultaneously
zero. Thus the design criterion in (9.49) evaluates to zero.

2. Repetition Coding: Suppose the symbol is drawn from a QAM constellation
(with 2RL points) but the same symbol is repeated over each of the sub-channels.
For the 2-parallel channel with R = 2 bits/s/Hz per sub-channel, the repetition
code is illustrated in Figure 9.12. The smallest value of |d`|2 is 4/9. Due to
repetition, for any pair of codewords, the differences in the sub-channels are
equal. With the choice of the worst pairwise differences, the universal criterion
in (9.49) evaluates to 8/3 (see Exercise 9.12).

3. Permutation Coding: Consider the 2-parallel channel where the symbol on
each of the sub-channels is drawn from a separate QAM constellation. This is
similar to the repetition code (Figure 9.12), but we consider different mappings
of the QAM points in the sub-channels. In particular, we map the points such
that if two points are close to each other in one QAM constellation, their images
in the other QAM constellation are far apart. One such choice is illustrated in
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Figure 9.13: A permutation code for the 2-parallel channel with rate R = 2 bits/s/Hz
per sub-channel.

Figure 9.13, for R = 2 bits/s/Hz per sub-channel where two points that are
nearest neighbors in one QAM constellation have their images in the other QAM
constellation separated by at least double the nearest distance. With the choice
of the worst pairwise differences for this code, the universal design criterion in
(9.49) can be explicitly evaluated to be 44/9 (see Exercise 9.13).

This code involves a one-to-one map between the two QAM constellations and
can be parameterized by a permutation of the QAM points. The repetition code
is a special case of this class of codes: it corresponds to the identity permutation.

Universal Code Design Criterion at High SNR

Although the universal criterion (9.49) can be computed given the codewords, the
expression is quite complicated (see Exercise 9.11) and is not amenable to use as a
criterion for code design. We can however find a simpler upper bound by relaxing the
non-negativity constraint in the optimization problem (9.44). This allows the water
depth to go negative, resulting in the following upper bound on (9.49):

L2R|d1d2 · · · dL|2/L −
L∑

`=1

|d`|2. (9.50)

When the rate of communication per sub-channel R is large, the water level in the
waterfilling problem (9.44) is deep at every sub-channel, and this upper bound is tight.
Moreover, the second term is small compared to the first term, and so in this regime
the universal criterion is approximately

L2R|d1d2 · · · dL|2/L. (9.51)
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Thus, the universal code design problem is to choose the codewords maximizing the
pairwise product distance. Thus, in this regime, the criterion coincides with that for
the i.i.d. Rayleigh parallel fading channel (c.f. Section 3.2.2).

Property of an Approximately Universal Code

We can use the universal code design criterion developed above to characterize the
property of a code that makes it approximately universal over the parallel channel at
high SNR. Following the approach in Section 9.2.1, we first define a pairwise typical
error event: this is when the argument of the Q(

√
·/2) in (9.41) is less than 1:

SNR ·
L∑

`=1

|h`|2|d`|2 < 1. (9.52)

For a code to be approximately universal, we want this event to occur only when the
channel is in outage; equivalently, this event should not occur whenever the channel
is not in outage. This translates to saying that the worst-case code design criterion
derived above should be greater than 1. At high SNR, using (9.51), the condition
becomes

|d1d2 · · · dL|2/L >
1

L2R
. (9.53)

Moreover, this condition should hold for any pair of codewords. It is verified in Exercise
9.14 that this is sufficient to guarantee that a coding scheme achieves the optimal
diversity-multiplexing tradeoff of the parallel channel.

We saw the permutation code in Figure 9.13 as an example of a code with good
universal design criterion value. This class of codes contains approximately universal
codes. To see this, we first need to generalize the essential structure in the permutation
code example in Figure 9.13 to higher rates and to more than two sub-channels. We
consider codes of just a single block length to carry out the following generalization.

We fix the constellation from which the codeword is chosen in each sub-channel to
be a QAM. Each of these QAM constellations contains the entire information to be
transmitted: so, the total number of points in the QAM constellation is 2LR if R is
the data rate per sub-channel. The overall code is specified by the maps between the
QAM points for each of the sub-channels. Since the maps are one-to-one, they can be
represented by permutations of the QAM points. In particular, the code is specified by
L− 1 permutations π2, . . . , πL: for each message, say m, we identify one of the QAM
points, say q, in the QAM constellation for the first sub-channel. Then, to convey the
message m, the transmit codeword is

(q, π2(q), . . . , πL(q)) ,
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Figure 9.14: A permutation code for a parallel channel with 3 sub-channels. The entire
information (4 bits) is contained in each of the QAM constellations.

i.e., the QAM point transmitted over the `th sub-channel is π`(q) with π1 defined to
be the identity permutation. An example of a permutation code with a rate of 4/3
bits/s/Hz per sub-channel for L = 3 (so the QAM constellation has 24 points) is
illustrated in Figure 9.14.

Given the physical constraints (the operating SNR, the data rate, and the number
of sub-channels), the engineer can now choose appropriate permutations to maximize
the universal code design criterion. Thus permutation codes provide a framework
within which specific codes can be designed based on the requirements. This frame-
work is quite rich: Exercise 9.15 shows that even randomly chosen permutations are
approximately universal with high probability.

Bit-Reversal Scheme: An Operational Interpretation of the Outage Condi-
tion

We can use the concept of approximately universal codes to give an operational in-
terpretation of the outage condition for the parallel channel. To be able to focus on
the essential issues, we restrict our attention to just two sub-channels, so L = 2. If
we communicate at a total rate 2R bits/s/Hz over the parallel channel, the no-outage
condition is

log(1 + |h1|2SNR) + log(1 + |h2|2SNR) > 2R (9.54)

One way of interpreting this condition is as though the first sub-channel provides
log(1 + |h1|2SNR) bits of information and the second sub-channel provides log(1 +
|h2|2SNR) bits of information, and as long as the total number of bits provided exceed
the target rate, then reliable communication is possible. In the high SNR regime, we
exhibit below a permutation code that makes the outage condition concrete.

Suppose we independently code over the I and Q channels of the two sub-channels.
So we can focus on only one of them, say, the I channel. We wish to communicate
R bits over two uses of the I-channel. Analogous to the typical event analysis for
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the scalar channel, we can exactly recover all the R information bits from the first I
sub-channel alone if

|h1|2 >
22R

SNR
, (9.55)

or
|h1|2SNR > 22R. (9.56)

However, we do not need to use just the first I sub-channel to recover all the
information bits: the second I sub-channel also contains the same information and can
be used in the recovery process. Indeed, if we create xI

1 by treating the ordered R bits
as the binary representation of the points xI

1, then one would intuitively expect that if

|h1|2SNR > 22R1 , (9.57)

then one should be able to recover at least R1 of the most significant bits of information.
Now, if create xI

2 by treating the reversal of the R bits as its binary representation,
then one should be able to recover at least R2 of the most significant bits, if

|h2|2SNR > 22R2 . (9.58)

But due to the reversal, the most significant bits in the representation in the second I
sub-channel are the least significant bits in the representation in the first I sub-channel.
Hence, as long as R1 + R2 ≥ R, then we can recover all R bits. This translates to the
condition

log(|h1|2SNR) + log(|h2|2SNR) > 2R, (9.59)

which is precisely the no-outage condition (9.54) at high SNR.
The bit-reversal scheme described here with some slight modifications can be shown

to be approximately universal (see Exercise 9.16). A scheme that reverses the bits and
flips every alternate bit is also approximately universal (see Exercise 9.17).

Summary 9.2 Universal Codes for the Parallel Channel

A universal code design criterion between two codewords can be computed by
finding the channel not in outage that yields the worst-case pairwise error
probability.

At high SNR and high rate, the universal code design criterion becomes
proportional to the product distance:

|d1 . . . dL|2/L (9.60)

where L is the number of sub-channels and d` is the difference between the `th

components of the codewords.
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A code is approximately universal for the parallel channel if its product
distance is large enough: for a code at a data rate of R bits/s/Hz per sub-channel,
we require

|d1d2 · · · dL|2 >
1

(L2R)L
. (9.61)

Simple bit-reversal schemes are approximately universal for the 2-parallel
channel. Random permutation codes are approximately universal for the
L-parallel channel with high probability.

9.2.3 Universal Code Design for MISO Channels

The outage event for the nt × 1 MISO channel (9.22) is

log

(
1 + ‖h‖2 SNR

nt

)
< R. (9.62)

In the case when nt = 2, the Alamouti scheme converts the MISO channel to a scalar
channel with gain ‖h‖ and SNR reduced by a factor of 2. Hence, the outage behavior is
exactly the same as in the original MISO channel, and the Alamouti scheme provides a
universal conversion of the 2×1 MISO channel to a scalar channel. Any approximately
universal scheme for the scalar channel, such as QAM, when used in conjunction with
the Alamouti scheme is also approximately optimal for the MISO channel and achieves
its diversity-multiplexing tradeoff.

In the general case when the number of transmit antennas is greater than 2, there
is no equivalence of the Alamouti scheme. Here we explore two approaches to con-
structing universal schemes for the general MISO channel.

MISO channel viewed as a Parallel Channel

Using one transmit antenna at a time converts the MISO channel into a parallel chan-
nel. We have used this conversion in conjunction with repetition coding to argue the
classical diversity gain of the MISO channel (c.f. Section 3.3.2). Replacing the repeti-
tion code with an appropriate parallel channel code (such as the bit-reversal scheme
from Section 9.2.2), we will see that converting the MISO channel into a parallel chan-
nel is actually tradeoff-optimal for the i.i.d. Rayleigh fading channel.

Suppose we want to communicate at rate R = r log SNR bits/s/Hz on the MISO
channel. By using one transmit antenna at a time, we arrive at a parallel channel
with nt diversity branches and the data rate of communication is R bits/s/Hz per sub-
channel. The optimal diversity gain for the i.i.d. Rayleigh parallel fading channel is
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Figure 9.15: The error probability of uncoded QAM with the Alamouti scheme and
that of a permutation code over one antenna at a time for the Rayleigh fading MISO
channel with two transmit antennas: the permutation code is about 1.5 dB worse than
the Alamouti scheme over the plotted error probability range.

nt(1−r) (c.f. (9.20)); thus, using one antenna at a time in conjunction with a tradeoff-
optimal parallel channel code achieves the largest diversity gain over the i.i.d. Rayleigh
fading MISO channel (c.f. (9.24)).

For the 2-antenna MISO channel, we have remarked that the Alamouti scheme ex-
actly achieves the outage performance. To understand how much coarser the tradeoff
formulation is as compared to the exact outage performance, we plot the error proba-
bilities of the two schemes with the same rate (R = 2 bits/s/Hz): uncoded QAM over
the Alamouti scheme and the permutation code in Figure 9.13. This performance is
plotted in Figure 9.15 where we see that the conversion of the MISO channel into a
parallel channel entails a loss of about 1.5 dB in SNR for the same error probability
performance.

Universality of conversion to parallel channel

We have seen that the conversion of the MISO channel into a parallel channel is
tradeoff-optimal for the i.i.d. Rayleigh fading channel. Is this conversion universal? In
other words, will a tradeoff-optimal scheme for the parallel channel be also tradeoff-
optimal for the MISO channel, under any channel statistics? In general, the answer is
no. To see this, consider the following (worst-case) MISO channel model: suppose the
channels from all but the first transmit antenna are very poor. To make this example
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concrete, suppose h` = 0, ` = 2, . . . , nt. The tradeoff curve depends on the outage
probability (which depends only on the statistics of the first channel)

pout = P
{
log

(
1 + SNR|h1|2

)
< R

}
. (9.63)

Using one transmit antenna at a time is a waste of degrees of freedom: since the
channel from the all but the first antenna are zero, there is no point in transmitting
any signal on them. This loss in degrees of freedom is explicit in the outage probability
of the parallel channel formed by transmitting from one antenna at a time:

pparallel
out = P

{
log

(
1 + SNR|h1|2

)
< ntR

}
. (9.64)

Comparing (9.64) with (9.63), we see clearly that the conversion to the parallel channel
is not tradeoff-optimal for this channel model.

Essentially, using one antenna at a time equates temporal degrees of freedom with
the spatial ones. All temporal degrees of freedom are the same, but the spatial ones
need not be the same: in the extreme example above, the spatial channels from all but
the first transmit antenna are zero. Thus, it seems reasonable that when all the spatial
channels are symmetric then the parallel channel conversion of the MIMO channel is
a reasonable one. This sentiment is justified in Exercise 9.18 which shows that the
parallel channel conversion is universal over the class of MISO channels with i.i.d.
spatial channel coefficients.

Universal Code Design Criterion

Instead of converting to a parallel channel, one can design universal schemes directly for
the MISO channel. What is an appropriate code design criterion? In the context of the
i.i.d. Rayleigh fading channel, we derived the determinant criterion for the codeword
difference matrices in Section 3.3.2. What is the corresponding criterion for universal
MISO schemes? We can answer this question by considering the worst-case pairwise
error probability over all MISO channels that are not in outage.

The pairwise error probability (of confusing the transmit codeword matrix XA with
XB) conditioned on a specific MISO channel realization is (c.f. (3.82))

P {XA → XB |h} = Q

(‖h∗(XA −XB)‖√
2

)
. (9.65)

In Section 3.3.2 we averaged this quantity over the statistics of the MISO channel (c.f.
(3.83)). Here we consider the worst-case over all channels not in outage:

max
h : ‖h‖2>

nt(2R−1)
SNR

Q

(‖h∗(XA −XB)‖√
2

)
. (9.66)
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From a basic result in linear algebra, the worst-case pairwise error probability in (9.66)
can be explicitly written as (see Exercise 9.19)

Q

(√
1

2
λ2

1nt (2R − 1)

)
, (9.67)

where λ1 is the smallest singular value of the normalized codeword difference matrix

1√
SNR

(XA −XB) . (9.68)

Essentially, the worst-case channel aligns itself in the direction of the weakest singular
value of the codeword difference matrix. So, the universal code design criterion for the
MISO channel is to ensure that no singular value is too small; equivalently

maximize the minimum singular value of the codeword difference matrices.
(9.69)

There is an intuitive explanation for this design criterion: a universal code has
to protect itself against the worst channel that is not in outage. The condition of
no-outage only puts a constraint on the norm of the channel vector h but not its
direction. So, the worst channel aligns itself to the “weakest direction” of the codeword
difference matrix to create the most havoc. The corresponding worst-case pairwise
error probability is therefore governed by the smallest singular value of the codeword
difference matrix. On the other hand, the i.i.d. Rayleigh channel does not prefer any
specific direction: thus the design criterion tailored to its’ statistics required that the
average direction be well protected and this translated to the determinant criterion.
While the two criteria are different, codes with large determinant tend to also have a
large value for the smallest singular value; the two criteria (based on worst-case and
average-case) are related in this aspect.

As for the parallel channel, we can use the universal code design criterion to derive
a property that makes a code universally achieve the tradeoff curve. We want the
typical error event to occur only when the channel is in outage. This corresponds to
the argument of Q(

√
(·)/2) in the worst-case error probability (9.67) to be greater

than 1, i.e.,

λ2
1 >

1

nt(2R − 1)
≈ 1

nt2R
. (9.70)

for every pair of codewords. We can explicitly verify that the Alamouti scheme with
independent uncoded QAMs on the two data streams satisfies the approximate uni-
versality property in (9.70). This is done in Exercise 9.20.



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 483

Summary 9.3 Universal Codes for the MISO channel

The MISO channel can be converted into a parallel channel by using one
transmit antenna at a time. This conversion is universal for the class of MISO
channels with i.i.d. fading coefficients.

The universal code design criterion is to maximize the minimum singular value
of the codeword difference matrices.

9.2.4 Universal Code Design for MIMO Channels

We finally arrive at the multiple transmit and multiple receive antenna slow fading
channel:

y[m] = Hx[m] + w[m]. (9.71)

The outage event of this channel is3

log det

(
Inr +

SNR

nt

HH∗
)

< R. (9.72)

Universality of D-BLAST

In Section 8.5, we have seen that the D-BLAST architecture with the MMSE-SIC
receiver converts the MIMO channel into a parallel channel with nt sub-channels. The
important property of this conversion is the conservation expressed in (8.88): denoting
the effective SNR of the kth sub-channel of the parallel channel by SINRk,

log det

(
Inr +

SNR

nt

HH∗
)

=
nt∑

k=1

log (1 + SINRk) . (9.73)

However, SINR1, . . . , SINRnt , across the sub-channels are correlated. On the other hand,
we have seen codes with just block length 1 that universally achieve the tradeoff curve
for any parallel channel in Section 9.2.2. This means that using universal parallel
channel codes for each of the interleaved streams, the D-BLAST architecture with the
MMSE-SIC receiver at a rate of R = r log SNR bits/s/Hz per stream, has a diversity
gain determined by the decay rate of

P

{
nt∑

k=1

log (1 + SINRk) < R

}
, (9.74)

3This is only an approximation to the outage event. However, we have seen that this approximation
is tight in the coarser scaling of multiplexing and diversity gains (c.f. Exercise 9.8).
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with increasing SNR. With n interleaved streams with each having block length 1 (i.e.,
N = 1 in the notation of Section 8.5.2), the initialization loss in D-BLAST reduces
a data rate of R bits/s/Hz per stream into a data rate of nR/(n + nt − 1) bits/s/Hz
on the MIMO channel (see Exercise 8.27). So, if we use the D-BLAST architecture in
conjunction with a block length 1 universal parallel channel code for the n interleaved
streams to operate at a multiplexing rate r, the diversity gain obtained is (substituting
for the rate in (9.74) and comparing with (9.73)) we can achieve reliable communication
universally with an error probability of

P
{

log det

(
Inr +

SNR

nt

HH∗
)

<
r (n + nt − 1)

n
log SNR

}
. (9.75)

Comparing this with the actual decay behavior of the outage probability (c.f. (9.30)),
we see that the D-BLAST with n interleaved streams at a multiplexing rate of r and
using the MMSE-SIC receiver universally achieves reliable communication with an
error probability of

pmimo
out

(
r (n + nt − 1)

n

)
. (9.76)

Thus, with a large number n of interleaved streams, the D-BLAST architecture with the
MMSE-SIC receiver achieves universally the outage probability of the MIMO channel.

The D- BLAST/MMSE-SIC architecture is optimal only for large number of inter-
leaved streams. With finite number of streams, it is strictly tradeoff-suboptimal. In
fact, the tradeoff performance can be improved by replacing the MMSE-SIC receiver
with joint ML decoding of all the streams. To see this concretely, let us consider the
2×2 MIMO Rayleigh fading channel (so nt = nr = 2) with just two interleaved streams
(so n = 2). The transmit signal lasts 3 time symbols long:

[
0 x

(1)
B x

(2)
B

x
(1)
A x

(2)
A 0

]
. (9.77)

With the MMSE-SIC receiver, the diversity gain obtained at the multiplexing rate of
r is the optimal diversity gain at the multiplexing rate of 3r/2. The scaled version
of the optimal tradeoff curve is depicted in Figure 9.16. On the other hand, with the
ML receiver the performance is significantly improved, also depicted in Figure 9.16.
This achieves the optimal diversity performance for multiplexing rates between 0 and
1, and in fact is the scheme that sends 4 symbols over 3 symbol times we were seeking
in Section 9.1.5! The performance analysis of the D-BLAST architecture with the joint
ML receiver is rather intricate and is carried out in Exercise 9.21. Basically, MMSE-
SIC is sub-optimal because it favors stream 1 over stream 2 while ML treats them
equally. This asymmetry is only a small edge effect when there are many interleaved
streams but does impact performance when there are only a small number of streams.
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r
4
3

2
3

1

d(r) 4

ML receiver
MMSE-SIC receiver

0
0

Figure 9.16: Tradeoff performance for the D-BLAST architecture with the ML receiver
and with the MMSE-SIC receiver.

Universal Code Design Criterion

We have seen that the D-BLAST architecture is a universal one, but how do we rec-
ognize when another space-time code also has good outage performance universally?
To answer this question, we can derive a code design criterion based on the worst-case
MIMO channel that is not in outage. Consider space-time code matrices with block
length nt. The worst-case channel aligns itself in the “weakest directions” afforded
by a pair of codeword difference matrices. With just one receive antenna, the MISO
channel is simply a column vector and it aligned itself in the direction of the smallest
singular value of the codeword difference matrix (c.f. Section 9.2.3). Here, there are
nmin directions for the MIMO channel and the corresponding design criterion is an
extension of that for the MISO channel: the universal code design criterion at high
SNR is to maximize

λ1λ2 · · ·λnmin
, (9.78)

where λ1, . . . , λnmin
are the smallest nmin singular values of the normalized codeword

difference matrices (c.f. (9.68)). With nt ≤ nr, this is just the determinant crite-
rion, derived in Chapter 3 by averaging the code performance over the i.i.d. Rayleigh
statistics.

The exact code design criterion at an intermediate value of SNR is similar to the
expression for the universal code design for the parallel channel (c.f. (9.49)). The
derivation is carried out in Exercise 9.22.
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Property of an approximately universal code

Using exactly the same arguments as in Section 9.2.2, we can use the universal code
design criterion developed above to characterize the property of a code that makes it
approximately universal over the MIMO channel (see Exercise 9.23):

|λ1λ2 · · ·λnmin
| 2

nmin >
1

nmin2R
. (9.79)

As in the parallel channel (c.f. Exercise 9.14), this condition is only an order-of-
magnitude one: a relaxed condition

|λ1λ2 · · ·λnmin
| 2

nmin > c · 1

nmin2R
, for some constant c > 0, (9.80)

can also be used for approximate universality: it is sufficient to guarantee that the
code achieves the optimal diversity-multiplexing tradeoff. We can make a couple of
interesting observations immediately from this result.

• If a code satisfies the condition for approximate universality in (9.80) for an
nt×nr MIMO channel with nr ≥ nt, i.e., the number of receive antennas is equal
to or larger than the number of transmit antennas, then it is also approximately
universal for an nt × l MIMO channel with l ≥ nr.

• The singular values of the normalized codeword matrices are upper bounded by√
2nt (see Exercise 9.24). Thus, a code that satisfies (9.80) for an nt×nr MIMO

channel also satisfies the criterion in (9.80) for an nt × l MIMO channel with
l ≤ nr. Thus is it also approximately universal for the nt× l MIMO channel with
l ≤ nr.

We can conclude the following from the above two observations:

A code that satisfies (9.80) for an nt × nt MIMO channel is approx-
imately universal for an nt × nr MIMO channel for every value of
number of receive antennas nr.

Exercise 9.25 shows a rotation code that satisfies (9.80) for the 2× 2 MIMO channel;
so this code is approximately universal for every 2× nr MIMO channel.

We have already observed that the D-BLAST architecture with approximately uni-
versal parallel channel codes for the interleaved streams is approximately universal for
the MIMO channel. Alternatively, we can see its approximate universality by explicitly
verifying that it satisfies the condition in (9.80) with nt = nr. Here, we will see this
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for the 2×2 channel with two interleaved streams in the D-BLAST transmit codeword
matrix (c.f. (9.77)). The normalized codeword difference matrix can be written as

D =

[
0 d

(1)
B d

(2)
B

d
(1)
A d

(2)
A 0

]
, (9.81)

where
(
d

(`)
B , d

(`)
A

)
is the normalized pairwise difference codeword for an approximately

universal parallel channel code and satisfies the condition in (9.53):

|d(`)
B d

(`)
A | >

1

2 · 2R
, ` = 1, 2. (9.82)

Here R is the rate in bits/s/Hz in each of the streams. The product of the two singular
values of D is

λ2
1λ

2
2 = det (DD∗)

= |d(1)
B d

(1)
A |2 + |d(2)

B d
(2)
A |2 + |d(2)

B d
(1)
A |2

>
1

2 · 2R
, (9.83)

where the last inequality follows from (9.82). A rate of R bits/s/Hz on each of the
streams corresponds to a rate of 2R/3 bits/s/Hz on the MIMO channel. Thus, com-
paring (9.83) with (9.79), we have verified the approximate universality of D-BLAST
at a reduced rate due to the initialization loss. In other words, the diversity obtained
gain by the D-BLAST architecture in (9.77) at a multiplexing rate of r over the MIMO
channel is d∗(3r/2).

Discussion 9.11: Universal Codes in the Downlink

Consider the downlink of a cellular system where the base stations are equipped
with multiple transmit antennas. Suppose we want to broadcast common
information to all the users in the cell in the downlink. We would like our
transmission scheme to not depend on the number of receive antennas at the
users: each user could have different number of receive antennas, depending on
the model, age, and type of the mobile device.

Universal MIMO codes provide an attractive solution to this problem.
Suppose we broadcast the common information at rate R using a space time code
that satisfies (9.79) for an nt × nt MIMO channel. Since this code is
approximately universal for every nt × nr MIMO channel, the diversity seen by
each user is simultaneously the best possible at rate R. To summarize: the
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diversity gain obtained by each user is the best possible with respect to both,

• the number of receive antennas it has, and

• the statistics of the fading channel the user is currently experiencing.

Chapter 9: The Main Plot

For a slow fading channel at high SNR, the tradeoff between data rate and error
probability is captured by the tradeoff between multiplexing and diversity gains.
The optimal diversity gain d∗(r) is the rate at which outage probability decays
with increasing SNR when the data rate is increasing as r log SNR. Classical
diversity gain is the diversity gain at a fixed rate, i.e., the multiplexing gain r = 0.

The optimal diversity gain d∗(r) is determined by the outage probability of the
channel at a data rate of r log SNR bits/s/Hz. The operational interpretation is
via the existence of a universal code that achieves reliable communication
simultaneously over all channels that are not in outage.

The universal code viewpoint provides a new code design criterion. Instead of
averaging over the channel statistics, we consider the performance of a code over
the worst-case channel that is not in outage.

• For the parallel channel, the universal criterion is to maximize the product of the
codeword differences. Somewhat surprisingly, this is the same as the criterion
arrived by averaging over the Rayleigh channel statistics.

• For the MISO channel, the universal criterion is to maximize the smallest singular
value of the codeword difference matrices.

• For the nt×nr MIMO channel, the universal criterion is to maximize the product
of the nmin smallest singular values of the codeword difference matrices. With
nr ≥ nt, this criterion is the same as that arrived by averaging over the i.i.d.
Rayleigh statistics.

The MIMO channel can be transformed into a parallel channel via D-BLAST.
This transformation is universal: universal parallel channel codes for each of the
interleaved streams in D-BLAST serve as a universal code for the MIMO channel.
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The rate loss due to initialization in D-BLAST can be reduced by increasing the
number of interleaved streams. For the MISO channel, however, the D-BLAST
transformation with only one stream, i.e., using the transmit antennas one at a
time, is approximately universal within the class of channels which have i.i.d.
fading coefficients.
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Exercises

Exercise 9.1. Consider the L-parallel channel with i.i.d. Rayleigh coefficients. Show
that the optimal diversity gain at a multiplexing rate of r per sub-channel is L− Lr.

Exercise 9.2. Consider the repetition scheme where the same codeword is transmitted
over the L i.i.d. Rayleigh sub-channels of a parallel channel. Show that the largest
diversity gain this scheme can achieve at a multiplexing rate of r per sub-channel is
L(1− Lr).

Exercise 9.3. Consider the repetition scheme of transmitting the same codeword over
the nt transmit antennas of an i.i.d. Rayleigh fading nt × nr MIMO channel. Show
that the maximum diversity gain this scheme can achieve at a multiplexing rate of r
is ntnr (1− r).

Exercise 9.4. Consider using the Alamouti scheme over a 2×nr i.i.d. Rayleigh fading
MIMO channel. The transmit codeword matrix spans two symbol times m = 1, 2 (c.f.
Section 3.3.2): [

u1 −u∗2
u2 u∗1

]
. (9.84)

1. With this input to the MIMO channel in (9.71), show that we can write the
output over the two time symbols as (c.f. (3.75))

[
y[1]

(y[2]∗)t

]
=

[
h1 h2

(h∗2)
t − (h∗1)

t

] [
u1

u2

]
+

[
w[1]

(w[2]∗)t

]
. (9.85)

Here we have denoted the two columns of H by h1 and h2.

2. Observing that the two columns of the effective channel matrix in (9.85) are
orthogonal, show that we can extract simple sufficient statistics for the data
symbols u1, u2 (c.f. (3.76)):

ri = ‖H‖ui + wi, i = 1, 2. (9.86)

Here ‖H‖2 denotes ‖h1‖2 + ‖h2‖2 and the additive noises w1 and w2 are i.i.d.
CN (0, 1).

3. Conclude that the maximum diversity gain seen by either stream (u1 or u2) at a
multiplexing rate of r per stream is 2nr(1− r).

Exercise 9.5. Consider the V-BLAST architecture with a bank of decorrelators for
the nt×nr i.i.d. Rayleigh fading MIMO channel with nt ≥ nr. Show that the effective
channel seen by each stream is a scalar fading channel with distribution χ2

nt−nr+1.
Conclude that the diversity gain with a multiplexing gain of r per stream is (nt−nr +
1)(1− r).
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Exercise 9.6. Verify the claim in (9.28) by showing that the sum of the pairwise
error probabilities in (9.26) with xA,xB each a pair of QAM symbols (this is the union
bound on the error probability), has a decay rate of 2− r with increasing SNR.

Exercise 9.7. The result in Exercise 9.6 can be generalized. Show that the diversity
gain of transmitting uncoded QAMs (each at a rate of R = r/n log SNR bits/s/Hz)
on the n transmit antennas of an i.i.d. Rayleigh fading MIMO channel with n receive
antennas is n− r.

Exercise 9.8. Consider the expression for pmimo
out in (9.29) and for piid

out in (9.30).

1. Show that

piid
out(r) ≥ pmimo

out (r) ≥ P {log det (Inr + SNRHH∗) < r log SNR} . (9.87)

2. Show that the lower bound above decays at the same rate as piid
out with increasing

SNR.

3. Conclude that the decay rates of both pmimo
out and piid

out with increasing SNR are
the same.

Exercise 9.9. Consider a scalar slow fading channel

y[m] = hx[m] + w[m], (9.88)

with an optimal diversity-multiplexing tradeoff d∗(·), i.e.,

lim
SNR→∞

log pout(r log SNR)

log SNR
= −d∗(r). (9.89)

Let ε > 0 and consider the following event on the channel gain h:

Eε :=
{
h : log

(
1 + |h|2SNR1−ε

)
< R

}
. (9.90)

1. Show, by conditioning on the event Eε or otherwise, that the probability of error
pe(SNR) of QAM with rate R = r log SNR bits/symbol satisfies:

lim
SNR→∞

log pe(SNR)

log SNR
≤ −d∗(r)(1− ε). (9.91)

Hint: you should show that conditional on the Eε not happening, the probability
of error decays very fast and is negligible compared to the probability of error
conditional on Eε happening.

2. Hence, conclude that QAM achieves the diversity-multiplexing tradeoff of the
scalar channel.
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3. More generally, show that any constellation that satisfies the condition (9.38)
achieves the diversity-multiplexing tradeoff curve of the channel.

4. Even more generally, show that any constellation that satisfies the condition

D2
min > c · 1

2R
for any constant c > 0 (9.92)

achieves the diversity-multiplexing tradeoff curve of the channel. This shows that
the condition (9.38) is really only an order-of-magnitude condition.

Exercise 9.10. Consider coding over a block length N for communication over the
parallel channel in (9.17). Derive the universal code design criterion, generalizing the
derivation in Section 9.2.2 over a single block length.

Exercise 9.11. In this exercise we will try to explicitly calculate the universal code
design criterion for the parallel fading channel; for given differences between a pair of
normalized codewords, the criterion is to maximize the expression in (9.49).

1. Suppose the codeword differences on all the sub-channels have the same mag-
nitude, i.e., |d1| = · · · = |dL|. Show that in this case the worst case channel is
the same over all the sub-channels and the universal criterion in (9.49) simplifies
considerably to

L
(
2R/L − 1

) |d1|2. (9.93)

2. Suppose the codeword differences are ordered: |d1| ≤ · · · ≤ |dL|.
(a) Argue that if the worst case channel h` on the `th sub-channel is non-zero,

then it is also non-zero on all the sub-channels 1, . . . , `− 1.

(b) Consider the largest k such that

|dk|2k ≤ 2R |d1 · · · dk|2 ≤ |dk+1|2k, (9.94)

with |dL+1| defined as +∞. Argue that the worst case channel is zero on all
the sub-channels k + 1, . . . , L. Observe that k = L when all the codeword
differences have the same magnitude; this is in agreement with the result in
part (1).

3. Use the results of the previous part (and the notation of k from (9.94)) to derive
an explicit expression for λ in (9.49):

λk |d1 · · · dk|2 = 2−R. (9.95)

Conclude that the universal code design criterion is to maximize:
(

k
(
2R|d1d2 · · · dk|2

)1/k −
k∑

`=1

|d`|2
)

. (9.96)



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 493

Exercise 9.12. Consider the repetition code illustrated in Figure 9.12. This code is for
the 2-parallel channel with R = 2 bits/s/Hz per sub-channel. We would like to evaluate
the value of the universal design criterion, minimized over all pair of codewords. Show
that this value is equal to 8/3. Hint: The smallest value is yielded by choosing the pair
of codewords as nearest neighbors in the QAM constellation. Since this is a repetition
code, the codeword differences are the same for both the channels; now use (9.93) to
evaluate the universal design criterion.

Exercise 9.13. Consider the permutation code illustrated in Figure 9.13 (with R = 2
bits/s/Hz per sub-channel). Show that the smallest value of the universal design
criterion, minimized over all choices of codeword pairs, is equal to 44/9.

Exercise 9.14. In this exercise we will explore the implications of the condition for
approximate universality in (9.53).

1. Show that if a parallel channel scheme satisfies the condition (9.53), then it
achieves the diversity-multiplexing tradeoff of the parallel channel. Hint: do
Exercise 9.9 first.

2. Show that the the diversity-multiplexing tradeoff can still be achieved even when
the scheme satisfies a more relaxed condition:

|d1d2 · · · dL|2/L > c · 1

L2R
, for some constant c > 0. (9.97)

Exercise 9.15. Consider the class of permutatation codes for the L-parallel channel
described in Section 9.2.2. The codeword is described as (q, π2(q), . . . , πL(q)) where
q belongs to a normalized QAM (so that each of the I and Q channels are peak con-
strained by±1) with 2LR points; so, the rate of the code is R bits/s/Hz per sub-channel.
In this exercise we will see that this class contains approximately universal codes.

1. Consider random permutations with the uniform measure; since there are 2LR!
of them, each of the permutations occur with probability 1/2LR!. Show that the
average inverse product of the pairwise codeword differences, averaged over both
the codeword pairs and the random permutations, is upper bounded as follows:

Eπ2,...,πL

[
1

2R (2R − 1)

∑

q1 6=q2

1

|q1 − q2|2|π2(q1)− π2(q2)|2 · · · |πL(q1)− πL(q2)|2
]
≤ 4L2R.

(9.98)

2. Conclude from the previous part that there exist permutations π2, . . . , πL such
that

1

2R

∑
q1

( ∑

q2 6=q1

1

|q1 − q2|2|π2(q1)− π2(q2)|2 · · · |πL(q1)− πL(q2)|2
)
≤ 4L2R2LR.

(9.99)
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3. Now suppose we fix q1 and consider the sum of the inverse product of all the
possible pairwise codeword differences:

f(q1) :=
∑

q2 6=q1

1

|q1 − q2|2|π2(q1)− π2(q2)|2 · · · |πL(q1)− πL(q2)|2 . (9.100)

Observe that when q2 is an immediate neighbor of q1,

|q1 − q2|2 =
4

2LR
. (9.101)

Since |π`(q1)− π`(q2)|2 ≤ 8, for every ` = 2, . . . , L, conclude that

f(q1) ≥ 2LR

23L−1
. (9.102)

4. Argue from (9.99) and (9.102) that at least half the QAM points q1 must have
the property that

f(q1) ≤ 2R

(
8L2R− 1

23L−1

)
. (9.103)

Further, conclude that for such q1 (they make up at least half of the total QAM
points), we must have for every q2 6= q1 that

|q1 − q2|2|π2(q1)− π2(q2)|2 · · · |πL(q1)− πL(q2)|2 ≥ 1

2LR
(
8L2R− 1

23L−1

) . (9.104)

5. Finally, conclude that there exists a permutation code that is approximately
universal for the parallel channel by arguing the following.

• Expurgating no more than half the number of QAM points only reduces
the total rate LR by no more than 1 bit/s/Hz and thus does not affect the
multiplexing rate.

• The product distance condition on the permutation codeword differences in
(9.104) does not quite satisfy the condition for approximate universality in
(9.97). Relax the condition in (9.97) to

|d1d2 · · · dL|2/L > c · 1

R2R
, for some constant c > 0, (9.105)

and show that this is sufficient for a code to achieve the optimal diversity-
multiplexing tradeoff curve.
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Exercise 9.16. Consider the bit-reversal scheme for the parallel channel described in
Section 9.2.2. Strictly speaking, the condition in (9.57) is not true for every integer
between 0 and 2R − 1. However, the set of integers for which this is not true is small
(i.e., expurgating them will not change the multiplexing rate of the scheme). Thus the
bit-reversal scheme with an appropriate expurgation of codewords is approximately
universal for the 2-parallel channel. A reading exercise is to study [90] where the
expurgated bit-reversal scheme is described in detail.

Exercise 9.17. Consider the bit-reversal scheme described in Section 9.2.2 but with
every alternate bit flipped after the reversal. Then for every pair of normalized code-
word differences, it can be shown that

|d1d2|2 >
1

64 · 22R
, (9.106)

where the data rate is R bits/s/Hz per sub-channel. Argue now that the bit-reversal
scheme with alternate bit flipping is approximately universal for the 2-parallel channel.
A reading exercise is to study the proof of (9.106) in [90]. Hint: Compare (9.106) with
(9.53) and use the result derived in Exercise 9.14.

Exercise 9.18. Consider a MISO channel with the fading channels from the nt trans-
mit antennas, h1, . . . , hnt , i.i.d.

1. Show that

P

{
log

(
1 +

SNR

nt

nt∑

`=1

|h`|2
)

< r log SNR

}
(9.107)

and

P

{
nt∑

`=1

log
(
1 + SNR|h`|2

)
< ntr log SNR

}
(9.108)

have the same decay rate with increasing SNR.

2. Interpret (9.107) and (9.108) with the outage probabilities of the MISO channel
and that of a parallel channel obtained through an appropriate transformation of
the MISO channel, respectively. Argue that the conversion of the MISO channel
into a parallel channel discussed in Section 9.2.3 is approximately universal for
the class of i.i.d. fading coefficients.

Exercise 9.19. Consider a nt × nt matrix D. Show that

min
h:‖h‖=1

h∗DD∗h = λ2
1, (9.109)

where λ1 is the smallest singular value of D.
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Exercise 9.20. Consider the Alamouti transmit codeword (c.f. (9.84)) with u1, u2

independent uncoded QAMs with 2R points in each.

1. For every codeword difference matrix

[
d1 −d∗2
d2 d∗1

]
, (9.110)

show that the two singular values are the same and equal to
√
|d1|2 + |d2|2.

2. With the codeword difference matrix normalized as in (9.68) and each the QAM
symbols u1, u2 to be constrained in a power of SNR/2, show that

|d`|2 ≥ 2

2R
, ` = 1, 2.

3. Conclude from the previous steps that the square of the smallest singular value
of the codeword difference matrix is lower bounded by 2/2R. Since the condition
for approximate universality in (9.70) is an order-of-magnitude one (the constant
factor next to 2R term does not matter, see Exercises 9.9 and 9.14), we have
explicitly shown that the Alamouti scheme with uncoded QAMs on the two
streams is approximately universal for the two transmit antenna MISO channel.

Exercise 9.21. Consider the D-BLAST architecture in (9.77) with just two interleaved
streams for the 2 × 2 i.i.d. Rayleigh fading MIMO channel. The two streams are
independently coded at rate R = r log SNR bits/s/Hz each and compose of the pair of

codewords
(
x

(`)
A , x

(`)
B

)
for ` = 1, 2. The two streams are coded using an approximately

universal parallel channel code (say, the bit-reversal scheme described in Section 9.2.2).
A union bound averaged over the Rayleigh MIMO channel can be used to show

that the diversity gain obtained by each stream with joint ML decoding is 4 − 2r. A
reading exercise is to study the proof of this result in [90].

Exercise 9.22. [52] Consider transmitting codeword matrices of length at least nt on
the nt × nr MIMO slow fading channel (c.f. (9.71)).

1. Show that the pairwise error probability between two codeword matrices XA and
XB, conditioned on a specific realization of the MIMO channel H, is

Q

(√
SNR

2
‖HD‖2

)
, (9.111)

where D is the normalized codeword difference matrix (c.f. (9.68)).
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2. Writing the SVDs H := U1ΨV∗
1 and D := U2ΛV∗

2, show that the pairwise error
probability in (9.111) can be written as

Q

(√
SNR

2
‖ΨV∗

1U2Λ‖2

)
. (9.112)

3. Suppose the singular values are increasingly ordered in both Ψ and Λ. For fixed
Ψ,Λ,U2, show that the channel eigendirections V∗

1 that minimize the pairwise
error probability in (9.112) is

V1 = U2. (9.113)

4. Observe that the channel outage condition depends only on the singular values
Ψ of H (c.f. (9.72)). Use the previous parts to conclude that the calculation of
the worst-case pairwise error probability for the MIMO channel reduces to the
optimization problem

min
ψ1,...,ψnmin

SNR

2

L∑

`=1

|ψ`|2|λ`|2, (9.114)

subject to the constraint

nmin∑

`=1

log

(
1 +

SNR

nt

|ψ`|2
)
≥ R. (9.115)

Here we have written

Ψ := diag {ψ1, . . . , ψnmin
} , and Λ := diag {λ1, . . . , λnt} .

5. Observe that the optimization problem in (9.114) and the constraint (9.115) are
very similar to the corresponding ones in the parallel channel (c.f. (9.43) and
(9.40), respectively). Thus the universal code design criterion for the MIMO
channel is the same as that of a parallel channel (c.f. (9.47)) with the following
parameters:

• there are nmin sub-channels,

• the parallel channel coefficients are ψ1, . . . , ψnmin
, the singular values of the

MIMO channel, and

• the codeword differences are the smallest singular values, λ1, . . . , λnmin
, of

the codeword difference matrices.
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Exercise 9.23. Using the analogy between the worst-case pairwise error probability
of a MIMO channel with that of an appropriately defined parallel channel (c.f. Exer-
cise 9.22), justify the condition for approximate universality for the MIMO channel in
(9.79).

Exercise 9.24. Consider transmitting codeword matrices of length l ≥ nt on the
nt × nr MIMO slow fading channel. The total power constraint is SNR, so for any
transmit codeword matrix X, we have ‖X‖2 ≤ l SNR. For a pair of codeword matrices
XA and XB, let the normalized codeword difference matrix be D (normalized as in
(9.68)).

1. Show that D satisfies

‖D‖2 ≤ 2

SNR

(‖XA‖2 + ‖XB‖2
) ≤ 2l. (9.116)

2. Writing the singular values of D as λ1, . . . , λnt , show that

nt∑

`=1

λ2
` ≤ 2l. (9.117)

Thus, each of the singular values is upper bounded by
√

2l, a constant that does
not increase with SNR.

Exercise 9.25. Consider the following transmission scheme (spanning two symbols)
for the two transmit MIMO channel. The entries of the transmit codeword matrix
X := [xij] are defined as

[
x11

x22

]
:= R(θ1)

[
u1

u2

]
, and

[
x21

x12

]
:= R(θ2)

[
u3

u4

]
. (9.118)

Here u1, u2, u3, u4 are independent QAMs of size 2R/2 each (so the data rate of this
scheme is R bits/s/Hz). The rotation matrix R(θ) is (c.f. (3.46))

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
. (9.119)

With the choice of the angles θ1, θ2 equal to 1/2 tan−1 2 and 1/2 tan−1(1/2) radians
respectively, Theorem 2 of [123] shows that the determinant of every normalized code-
word difference matrix D satisfies

| detD|2 ≥ 1

10 · 2R
. (9.120)

Conclude that the code described in (9.118), with the appropriate choice of the angles
θ1, θ2 above, is approximately universal for every MIMO channel with two transmit
antennas.
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Chapter 10

MIMO IV: Multiuser Channels

In Chapters 8 and 9, we have studied the role of multiple transmit and receive antennas
in the context of point-to-point channels. In this chapter, we shift the focus to multiuser
channels and study the role of multiple antennas in both the uplink (many-to-one) and
the downlink (one-to-many). In addition to allowing spatial multiplexing and providing
diversity to each user, multiple antennas allow the base station to simultaneously
transmit or receive data from multiple users at high rates. Again, this is a consequence
of the increase in degrees of freedom from having multiple antennas.

We have considered several MIMO transceiver architectures for the point-to-point
channel in Chapter 8. In several of these, such as linear receivers with or without
successive cancellation, the complexity is mainly at the receiver. Independent data
streams are sent at the different transmit antennas, and no cooperation across trans-
mit antennas is needed. Equating the transmit antennas with users, these receiver
structures can be directly used in the uplink where the users have a single transmit
antenna each but the base station has multiple receive antennas; this is a common
configuration in cellular wireless systems.

It is less apparent how to come up with good strategies for the downlink, where
the receive antennas are at the different users; thus the receiver structure has to be
separate, one for each user. However, as will see, there is an interesting duality between
the uplink and the downlink, and by exploiting this duality, one can map each receive
architecture for the uplink to a corresponding transmit architecture for the downlink.
In particular, there is an interesting precoding strategy which is the “transmit dual” to
the receiver-based successive cancellation strategy. We will spend some time discussing
this.

The chapter is structured as follows. In Section 10.1, we first focus on the uplink
with a single transmit antenna for each user and multiple receive antennas at the
base station. We then, in Section 10.2, extend our study to the MIMO uplink where
there are multiple transmit antennas for each user. In Sections 10.3 and 10.4, we turn
our attention to the use of multiple antennas in the downlink. We study precoding

499
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Figure 10.1: The uplink with single transmit antenna at each user and multiple receive
antennas at the base station.

strategies that achieve the capacity of the downlink. We conclude in Section 10.5 with
a discussion of the system implications of using MIMO in cellular networks; this will
link up the new insights obtained here with those in Chapters 4 and 6.

10.1 Uplink with Multiple Receive Antennas

We begin with the narrowband time-invariant uplink with each user having a single
transmit antenna and the base station equipped with an array of antennas (Figure
10.1). The channels from the users to the base station are time-invariant. The baseband
model is

y[m] =
K∑

k=1

hkxk[m] + w[m], (10.1)

with y[m] being the received vector (of dimension nr, the number of receive antennas)
at time m, and hk the spatial signature of user k impinged on the receive antenna
array at the base station. User k’s scalar transmit symbol at time m is denoted by
xk[m] and w[m] is i.i.d. CN (0, N0Inr) noise.

10.1.1 Space-Division Multiple Access

In the literature, the use of multiple receive antennas in the uplink is often called space-
division multiple access (SDMA): we can discriminate amongst the users by exploiting
the fact that different users impinge different spatial signatures on the receive antenna
array.
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An easy observation we can make is that this uplink is very similar to the MIMO
point-to-point channel in Chapter 5 except that the signals sent out on the transmit
antennas cannot be coordinated. We studied precisely such a signaling scheme using
separate data streams on each of the transmit antennas in Section 8.3. We can form an
analogy between users and transmit antennas (so nt, the number of transmit antennas
in the MIMO point-to-point channel in Section 8.3, is equal to the number of users K).
Further, the equivalent MIMO point-to-point channel H is [h1, . . . ,hK ], constructed
from the SIMO channels of the users.

Thus, the transceiver architecture in Figure 8.1 in conjunction with the receiver
structures in Section 8.3 can be used as an SDMA strategy. For example, each of the
user’s signal can be demodulated using a linear decorrelator or a MMSE receiver. The
MMSE receiver is the optimal compromise between maximizing the signal strength
from the user of interest and suppressing the interference from the other users. To get
better performance, one can also augment the linear receiver structure with successive
cancellation to yield the MMSE-SIC receiver (Figure 10.2). With successive cancel-
lation, there is also a further choice of cancellation ordering. By choosing a different
order, users are prioritized differently in the sharing of the common resource of the
uplink channel, in the sense that users cancelled later are treated better.

Provided that the overall channel matrix H is well-conditioned, all of these SDMA
schemes can fully exploit the total number of degrees of freedom min{K, nr} of the
uplink channel (although, as we have seen, different schemes have different power
gains). This translates to being able to simultaneously support multiple users, each
with a data rate that is not limited by interference. Since the users are geographically
separated, their transmitted signals arrive in different directions at the receive array
even when there is limited scattering in the environment, and the assumption of a
well-conditioned H is usually valid. (Recall Example 4 in Section 7.2.4.) Contrast
this to the point-to-point case when the transmit antennas are co-located, and a rich
scattering environment is needed to provide a well-conditioned channel matrix H.

Given the power levels of the users, the achieved SINR of each user can be com-
puted for the different SDMA schemes using the formulas derived in Section 8.3 (see
Exercise 10.1). Within the class of linear receiver architecture, we can also formulate
a power control problem: given target SINR requirements for the users, how does one
optimally choose the powers and linear filters to meet the requirements? This is simi-
lar to the uplink CDMA power control problem described in Section 4.3.1, except that
there is a further degree of freedom in the choice of the receive filters as well as the
transmit powers. The first observation is that for any choice of transmit powers, one
always wants to use the MMSE filter for each user, since that choice maximizes the
SINR for every user. Second, the power control problem shares the basic monotonicity
property of the CDMA problem: when a user lowers its transmit power, it creates
less interference and benefits all other users in the system. As a consequence, there
is a component-wise optimal solution for the powers, where every user is using the
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MMSE

MMSE

y[m]

Receiver 2

Receiver 1

User 2
User 1 User 2

DecodeSubtract

User 1

User 1
Decode

Figure 10.2: The MMSE-SIC receiver: User 1’s data is first decoded and then the
corresponding transmit signal is subtracted off before the next stage. This receiver
structure, by changing the ordering of cancellation, achieves the two corner points in
the capacity region.

minimum possible power to support the SINR requirements. (See Exercise 10.2.) A
simple distributed power control algorithm will converge to the optimal solution: at
each step, each user first updates its MMSE filter as a function of the current power
levels of the other users, and then updates its own transmit power so that its SINR
requirement is just met. (See Exercise 10.3.)

10.1.2 SDMA Capacity Region

In Section 8.3.4, we have seen that the MMSE-SIC receiver achieves the best total
rate among all the receiver structures. The performance limit of the uplink channel is
characterized by the notion of a capacity region, introduced in Chapter 6. How does
the performance achieved by MMSE-SIC compare to this limit?

With a single receive antenna at the base station, the capacity region of the 2-user
uplink channel is already presented in Chapter 6; it is the pentagon in Figure 6.2:

R1 < log

(
1 +

P1

N0

)
,

R2 < log

(
1 +

P2

N0

)
,

R1 + R2 < log

(
1 +

P1 + P2

N0

)
,

where P1 and P2 are the average power constraints on users 1 and 2 respectively. The
individual rate constraints correspond to the maximum rate that each user can get if
it has the entire channel to itself; the sum rate constraint is the total rate of a point-
to-point channel with the two users acting as two transmit antennas of a single user,
but sending independent signals.
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A

B

log
(
1 + ‖h1‖2P1

N0

)

C

R1

log
(
1 + ‖h2‖2P2

N0

)

R2

R1 + R2 = log det
(
Inr + HKxH∗

N0

)

Figure 10.3: Capacity region of the two-user SDMA uplink.

The SDMA capacity region, for the multiple receive antenna case, is the natural
extension (Appendix B.9 provides a formal justification):

R1 < log

(
1 +

‖h1‖2P1

N0

)
, (10.2)

R2 < log

(
1 +

‖h2‖2P2

N0

)
, (10.3)

R1 + R2 < log det

(
Inr +

1

N0

HKxH
∗
)

, (10.4)

where Kx = diag(P1, P2). The capacity region is plotted in Figure 10.3.
The capacities of the point-to-point SIMO channels from each user to the base

station serve as the maximum rate each user can reliably communicate at if it has the
entire channel to itself. These yield the constraints (10.2) and (10.3). The point-to-
point capacity for user k (k = 1, 2) is achieved by receive beamforming (projecting the
received vector y in the direction of hk), converting the effective channel into a SISO
one, and then decoding the data of the user.

Inequality (10.4) is a constraint on the sum of the rates that the users can commu-
nicate at. The right hand side is the total rate achieved in a point-to-point channel
with the two users acting as two transmit antennas of one user with independent inputs
at the antennas (c.f. (8.2)).

Since MMSE-SIC receivers (in Figure 10.2) are optimal with respect to achieving
the total rate of the point-to-point channel with the two users acting as two transmit
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antennas of one user, it follows that the rates for the two users that this architecture
can achieve in the uplink meets inequality (10.4) with equality. Moreover, if we cancel
user 1 first, user 2 only has to contend with the background Gaussian noise and its
performance meets the single-user bound (10.2). Hence, we achieve the corner point A
in Figure 10.3. By reversing the cancellation order, we achieve corner point B. Thus,
MMSE-SIC receivers are information theoretically optimal for SDMA in the sense of
achieving rate pairs corresponding to the two corner points A and B. Explicitly, the
rate point A is given by the rate tuple (R1, R2):

R2 = log

(
1 +

P2‖h2‖2

N0

)
,

R1 = log
(
1 + P1h

∗
1 (N0Inr + P2h2h

∗
2)
−1 h1

)
, (10.5)

where P1h
∗
1 (N0Inr + P2h

∗
2h

∗
2)
−1 h1 is the output SIR of the MMSE receiver for user 1

treating user 2’s signal as colored Gaussian interference (c.f. . (8.62)).
For the single receive antenna (scalar) uplink channel, we have already seen in

Section 6.1 that the corner points are also achievable by the SIC receiver, where at
each stage a user is decoded treating all the uncancelled users as Gaussian noise. In
the vector case with multiple receive antennas, the uncancelled users are also treated
as Gaussian noise, but now this is a colored vector Gaussian noise. The MMSE filter is
the optimal demodulator for a user in the face of such colored noise (c.f. Section 8.3.3).
Thus, we see that successive cancellation with MMSE filtering at each stage is the
natural generalization of the SIC receiver we developed for the single antenna channel.
Indeed, as explained in Section 8.3.4, the SIC receiver is really just a special case of
the MMSE-SIC receiver when there is only one receive antenna, and they are optimal
for the same reason: they “implement” the chain rule of mutual information.

A comparison between the capacity regions of the uplink with and without multiple
receive antennas (Figure 6.2 and Figure 10.3, respectively) highlights the importance
of having multiple receive antennas in allowing SDMA. Let us focus on the high SNR
scenario when N0 is very small as compared with P1 and P2. With a single receive
antenna at the base station, we see from Figure 6.2 that there is a total of only one
spatial degree of freedom, shared between the users. In contrast, with multiple receive
antennas we see from Figure 10.3 that while the individual rates of the users have
no more than one spatial degrees of freedom, the sum rate has two spatial degrees of
freedom. This means that both users can simultaneously enjoy one spatial degree of
freedom, a scenario made possible by SDMA and not possible with a single receive
antenna. The intuition behind this is clear when we look back at our discussion of the
decorrelator (c.f. Section 8.3.1). The received signal space has more dimensions than
that spanned by the transmit signals of the users. Thus in decoding user 1’s signal we
can project the received signal in a direction orthogonal to the transmit signal of user
2, completely eliminating the inter-user interference (the analogy between streams and
users carries forth here as well). This allows two effective parallel channels at high
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SNR. Improving the simple decorrelator by using the MMSE-SIC receiver allows us to
exactly achieve the information theoretic limit.

In the light of this observation, we can take a closer look at the two corner points
in the boundary of the capacity region (points A and B in Figure 10.3). If we are
operating at point A we see that both users 1 and 2 have one spatial degree of freedom
each. The point C, which corresponds to the symmetric capacity of the uplink (c.f.
(6.2)), also allows both users to have unit spatial degree of freedom. (In general, the
symmetric capacity point C need not lie on the line segment joining points A and B;
however it will be the center of this line segment when the channels are symmetric,
i.e., ‖h1‖ = ‖h2‖.) While the point C cannot be achieved directly using the receiver
structure in Figure 10.2, we can achieve that rate pair by time-sharing between the
operating points A and B (these two latter points can be achieved by the MMSE-SIC
receiver).

Our discussion has been restricted to the 2-user uplink. The extension to K users
is completely natural. The capacity region is now a K dimensional polyhedron: the
set of rates (R1, . . . , RK) such that

∑

k∈S

Rk < log det

(
Inr +

1

N0

∑

k∈S
Pkhkh

∗
k

)
, for each S ⊂ {1, . . . , K} . (10.6)

There are K! corner points on the boundary of the capacity region and each corner
point is specified by an ordering of the K users and the corresponding rates are achieved
by an MMSE-SIC receiver with that ordering of cancelling users.

10.1.3 System Implications

What are the practical ways of exploiting multiple receive antennas in the uplink, and
how do their performance compare to capacity? Let us first consider the narrowband
system from Chapter 4 where the allocation of resources among the users is orthogonal.
In Section 6.1 we studied orthogonal multiple access for the uplink with a single receive
antenna at the base station. Analogous to (6.8) and (6.9), the rates achieved by two
users, when the base station has multiple receive antennas and a fraction α of the
degrees of freedom is allocated to user 1, are:

(
α log

(
1 +

P1‖h1‖2

αN0

)
, (1− α) log

(
1 +

P2‖h2‖2

(1− α) N0

))
. (10.7)

It is instructive to compare this pair of rates with the one obtained with orthogonal
multiple access in the single receive antenna setting (c.f. (6.8) and (6.9)). The difference
is that the received SNR of user k is boosted by a factor ‖hk‖2; this is the receive
beamforming power gain. There is however no gain in the degrees of freedom: the
total is still one. The power gain allows the users to reduce their transmit power
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Figure 10.4: The two-user uplink with multiple receive antennas at the base station:
performance of orthogonal multiple access is strictly inferior to the capacity.

for the same received SNR level. However, due to orthogonal resource allocation and
sparse reuse of the bandwidth, narrowband systems already operate at high SNR and
in this situation a power gain is not much of a system benefit. A degree-of-freedom
gain would have made a larger impact.

At high SNR, we have already seen that the 2-user SDMA sum capacity has two
spatial degrees of freedom as opposed to the single one with only one receive antenna
at the base station. Thus, orthogonal multiple access makes very poor use of the
available spatial degrees of freedom when there are multiple receive antennas. Indeed,
this can be seen clearly from a comparison of the orthogonal multiple access rates with
the capacity region. With a single receive antenna, we have found that we can get to
exactly one point on the boundary of the uplink capacity region (see Figure 6.4); the
gap is not too large unless there is a significant power disparity. With multiple receive
antennas, Figure 10.4 shows that the orthogonal multiple access rates are strictly sub-
optimal at all points 1 and the gap is also larger.

Intuitively, to exploit the available degrees of freedom both users must access the
channel simultaneously and their signals should be separable at the base station (in the
sense that h1 and h2, the receive spatial signatures of the users at the base station, are
linearly independent). To get this benefit, more complex signal processing is required
at the receiver to extract the signal of each user from the aggregate. The complexity
of SDMA grows with the number of users K when there are more users in the system.

1Except for the degenerate case when h1 and h2 are multiples of each other; see Exercise 10.4.
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On the other hand, the available degrees of freedom is limited by the number of receive
antennas nr and so there is no further degree-of-freedom gain beyond having nr users
performing SDMA simultaneously. This suggests a nearly-optimal multiple access
strategy where the users are divided into groups of nr users with SDMA within each
group and orthogonal multiple access between the groups. Exercise 10.5 studies the
performance of this scheme in greater detail.

On the other hand, at low SNR, the channel is power-limited rather than degrees-of-
freedom-limited and SDMA provides little performance gain over orthogonal multiple
access. This can be observed by an analysis as in the characterization of the capacity
of MIMO channels at low SNR, c.f. Section 8.2.2, and is elaborated in Exercise 10.6.

In general, multiple receive antennas can be used to provide beamforming gain for
the users. While this power gain is not of much benefit to the narrowband systems,
both the sideband CDMA and wideband OFDM uplink operate at low SNR and the
power gain is more beneficial.

Summary 10.1 SDMA and Orthogonal Multiple Access

The MMSE-SIC receiver is optimal for achieving SDMA capacity.

SDMA with nr receive antennas and K users provides min(nr, K) spatial degrees
of freedom.

Orthogonal multiple access with nr receive antennas provides only 1 spatial degree
of freedom but nr-fold power gain.

Orthogonal multiple access provides comparable performance to SDMA at low
SNR but is far inferior at high SNR.

10.1.4 Slow Fading

We introduce fading first in the scenario when the delay constraint is small relative
to the coherence time of all the users: the slow fading scenario. The uplink fading
channel can be written as, an extension of (10.1),

y[m] =
K∑

k=1

hk[m]xk[m] + w[m]. (10.8)

In the slow fading model, for every user k, hk[m] = hk for all time m. As in the uplink
with a single antenna (c.f. Section 6.3.1), we will analyze only the symmetric uplink:
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the users have the same transmit power constraint, P , and further, the channels of the
users are statistically independent and identical. In this situation, symmetric capacity
is a natural performance measure and suppose the users are transmitting at the same
rate R bits/s/Hz.

Conditioned on a realization of the received spatial signatures h1, . . . ,hK , we have
the time-invariant uplink studied in Section 10.1.2. When the symmetric capacity of
this channel is less than R, an outage results. The probability of the outage event is,
from (10.6),

pul−mimo
out := P

{
log det

(
Inr + SNR

∑

k∈S
hkh

∗
k

)
< |S|R, for some S ⊂ {1, . . . , K}

}
.

(10.9)
Here we have written SNR := P/N0. The corresponding largest rate R such that
pul−mimo

out is less than or equal to ε is the ε-outage symmetric capacity Csym
ε . With

a single user in the system, Csym
ε is simply the ε-outage capacity, Cε (SNR), of the

point-to-point channel with receive diversity studied in Section 5.4.2. More generally,
with K > 1, Csym

ε is upper bounded by this quantity: with more users, inter-user
interference is another source of error.

Orthogonal multiple access completely eliminates inter-user interference and the
corresponding largest symmetric outage rate is, as in (6.33),

C ε
K

(KSNR)

K
. (10.10)

We can see, just as in the situation when the base station has a single receive antenna
(c.f. Section 6.3.1), that orthogonal multiple access at low SNRs is close to optimal.
At low SNRs, we can approximate pul−mimo

out (with nr = 1, a similar approximation is
in (6.34)):

pul−mimo
out ≈ Kprx

out, (10.11)

where prx
out is the outage probability of the point-to-point channel with receive diversity

(c.f. (5.62)). Thus Csym
ε is approximately C ε

K
(SNR). On the other hand, the rate in

(10.10) is also approximately equal to C ε
K

(SNR) at low SNRs.
At high SNRs, we have seen that orthogonal multiple access is sub-optimal, both

in the context of outage performance with a single receive antenna and the capacity
region of SDMA. A better baseline performance can be obtained by considering the
outage performance of the bank of decorrelators: this receiver structure performed well
in terms of the capacity of the point-to-point MIMO channel, c.f. Figure 8.9. With
the decorrelator bank, the inter-user interference is completely nulled out (assuming
nr ≥ K). Further, with i.i.d. Rayleigh fading, each user sees an effective point-to-point
channel with nr−K +1 receive diversity branches (c.f. Section 8.3.1). Thus the largest
symmetric outage rate is exactly the ε-outage capacity of the point-to-point channel
with nr −K + 1 receive diversity branches, leading to the following interpretation:
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Using the bank of decorrelators, increasing the number of receive antennas nr

by 1 allows us to either admit one extra user with the same outage performance
for each user, or increase the effective number of diversity branches seen by each
user by 1.

How does the outage performance improve if we replace the bank of decorrelators
with the joint ML receiver? The direct analysis of Csym

ε at high SNR is quite involved,
so we resort to the use of the coarser diversity-multiplexing tradeoff introduced in
Chapter 9 to answer this question. For the bank of decorrelators, the diversity gain
seen by each user is (nr−nt+1)(1−r) where r is the multiplexing gain of each user (c.f.
Exercise 9.5). This provides a lower bound to the diversity-multiplexing performance
of the joint ML receiver. On the other hand, the outage performance of the uplink
cannot be any more than the situation when there is no inter-user interference, i.e.,
each user sees a point-to-point channel with receiver diversity of nr branches. This is
the single-user upper bound. The corresponding single-user tradeoff curve is nr(1− r).
These upper and lower bounds to the outage performance are plotted in Figure 10.5.

The tradeoff curve with the joint ML receiver in the uplink can be evaluated: with
more receive antennas than the number of users (i.e., nr ≥ K), the tradeoff curve is
the same as the upper bound derived with each user seeing no inter-user interference.
In other words, the tradeoff curve is nr(1− r) and single-user performance is achieved
even though there are other users in the system. This allows the following contrasting
interpretation to the performance of the decorrelator bank:

Using the joint ML receiver, increasing the number of receive antennas nr by 1
allows us to both admit one extra user and simultaneously increase the effective
number of diversity branches seen by each user by 1.

With nr < K, the optimal uplink tradeoff curve is more involved. We can observe
that the total spatial degrees of freedom in the uplink is now limited by nr and thus
the largest multiplexing rate per user can be no more than nr/K. On the other hand,
with no inter-user interference, each user can have a multiplexing gain up to 1; thus,
this upper bound can never be attained for large enough multiplexing rates. It turns
out that for slightly smaller multiplexing rates r ≤ nr/(K + 1) per user, the diversity
gain obtained is still equal to the single-user bound of nr(1− r). For r larger than this
threshold (but still smaller than nr/K), the diversity gain is that of a K × nr MIMO
channel at a total multiplexing rate of Kr; this is as if the K users pooled their total
rate together. The overall optimal uplink tradeoff curve is plotted in Figure 10.6: it
has two line segments joining the points

(0, nr),

(
nr

K + 1
,
nr(K − nr + 1)

K + 1

)
, and

(nr

K
, 0

)
.
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1 r

d(r)

nr

nr − nt + 1

Figure 10.5: The diversity-multiplexing tradeoff curves for the uplink with a bank of
decorrelators (equal to (nr − nt + 1)(1− r), a lower bound to the outage performance
with the joint ML receiver) and that when there is no inter-user interference (equal to
nr(1− r), the single-user upper bound to the outage performance of the uplink).



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 511

1

d(r)

nr

nr

K+1
nr

K
r

•

Figure 10.6: The diversity-multiplexing tradeoff curve for the uplink with the joint ML
receiver for nr < K. The multiplexing rate r is measured per user. Up to a multiplexing
gain of nr/(K + 1), single-user tradeoff performance of nr(1 − r) is achieved. The
maximum number of degrees of freedom per user is nr/K, limited by the number of
users in the system.

Exercise 10.7 provides the justification to the calculation of this tradeoff curve.
In Section 6.3.1, we plotted the ratio of Csym

ε for a single receive antenna uplink to
Cε (SNR), the outage capacity of a point-to-point channel with no inter-user interfer-
ence. For a fixed outage probability ε, increasing the SNR corresponds to decreasing
the required diversity gain. Substituting nr = 1 and K = 2, in Figure 10.6, we see
that as long as the required diversity gain is larger than 2/3, the corresponding mul-
tiplexing gain is as if there is no inter-user interference. This explains the behavior in
Figure 6.10, where the ratio of Csym

ε to Cε (SNR) increases initially with SNR. With
a further increase in SNR, the corresponding desired diversity gain drops below 2/3
and now there is a penalty in the achievable multiplexing rate due to the inter-user
interference. This penalty corresponds to the drop of the ratio in Figure 6.10 as SNR
increases further.

10.1.5 Fast Fading

Here we focus on the case when communication is over several coherence intervals of
the user channels; this way most channel fade levels are experienced. This is our fast
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fading assumption studied for the single antenna uplink in Section 6.3 and the point-
to-point MIMO channel in Section 8.2. As usual, to simplify the analysis we assume
that the base station can perfectly track the channels of all the users.

Receiver CSI

Let us first consider the case when the users only have a statistical model of the channel
(taken to be stationary and ergodic, as in the earlier chapters). In our notation, this
is the case of receiver CSI. For notational simplicity, let us consider only two users in
the uplink (i.e., K = 2). Each user’s rate cannot be larger than when it is the only
user transmitting (an extension of (5.91) with multiple receive antennas):

Rk ≤ E
[
log

(
1 +

‖hk‖2Pk

N0

)]
, k = 1, 2. (10.12)

We also have the sum constraint (an extension of (6.37) with multiple receive antennas,
c.f. (8.10)):

R1 + R2 ≤ E
[
log det

(
Inr +

1

N0

HKxH
∗
)]

. (10.13)

Here we have written H = [h1h2] and Kx = diag {P1, P2}. The capacity region is
a pentagon (see Figure 10.7). The two corner points are achieved by the receiver
architecture of linear MMSE filters followed by successive cancellation of the decoded
user. Appendix B.9.3 provides a formal justification.

Let us focus on the sum capacity in (10.13). This is exactly the capacity of a point-
to-point MIMO channel with receiver CSI where the covariance matrix is chosen to be
diagonal. The performance gain in the sum capacity over the single receive antenna
case (c.f. (6.37)) is of the same nature as that of a point-to-point MIMO channel
over a point-to-point channel with only a single receive antenna. With a sufficiently
random and well-conditioned channel matrix H, the performance gain is significant (c.f.
our discussion in Section 8.2.2). Since there is a strong likelihood of the users being
geographically far apart, the channel matrix is likely to be well-conditioned (recall our
discussion in Example 4 in Section 7.2.4). In particular, the important observation
we can make is that each of the users has one spatial degree of freedom, while with a
single receive antenna, the sum capacity itself has one spatial degree of freedom.

Full CSI

We now move to the other scenario, full CSI at both the base station and at each of
the users.2 We have studied the full CSI case in the uplink for single transmit and

2In an FDD system, the base station need not feedback all the channel states of all the users to
every user. Instead, only the amount of power to be transmitted needs be relayed to the users.
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N0

)]

Figure 10.7: Capacity region of the two-user SIMO uplink with receiver CSI.

receive antennas in Section 6.3 and here we will see the role played by an array of
receive antennas.

Now the users can vary their transmit power as a function of the channel realiza-
tions; still subject to an average power constraint. If we denote the transmit power
of user k at time m by Pk (h1[m],h2[m]), i.e., it is a function of the channel states
h1[m],h2[m] at time m, then the rate pairs (R1, R2) at which the users can jointly
reliably communicate to the base station satisfy (analogous to (10.12) and (10.13)):

Rk ≤ E
[
log

(
1 +

‖hk‖2Pk (h1,h2)

N0

)]
, k = 1, 2, (10.14)

R1 + R2 ≤ E
[
log det

(
Inr +

1

N0

HKxH
∗
)]

. (10.15)

Here we have written Kx = diag {P1 (h1,h2) , P2 (h1,h2)}. By varying the power al-
locations, the users can communicate at rate pairs in the union of the pentagons of
the form defined in (10.14) and (10.15). By time sharing between two different power
allocation policies, the users can also achieve every rate pair in the convex hull3 of the
union of these pentagons; this is the capacity region of the uplink with full CSI. The
power allocations are still subject to the average constraint, denoted by P , (taken to
be the same for each user for notational convenience):

E [Pk (h1,h2)] ≤ P, k = 1, 2. (10.16)

3The convex hull of a set is the collection of all points that can be represented as convex combi-
nations of elements of the set.
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In the point-to-point channel, we have seen that the power variations are waterfilling
over the channel states (c.f. Section 5.4.6). To get some insight into how the power
variations are done in the uplink with multiple receive antennas, let us focus on the
sum capacity

Csum = max
Pk(h1,h2), k=1,2

E
[
log det

(
Inr +

1

N0

HKxH
∗
)]

, (10.17)

where the power allocations are subject to the average constraint in (10.16). In the
uplink with a single receive antenna at the base station (c.f. Section 6.3.3), we have
seen that the power allocation that maximizes sum capacity allows only the best user
to transmit (a power which is waterfilling over the best user’s channel state, c.f. (6.47)).
Here each user is received as a vector (hk for user k) at the base station and there is
no natural ordering of the users to bring this argument forth here. Still, the optimal
allocation of powers can be found using the Lagrangian techniques, but the solution is
somewhat complicated and is studied in Exercise 10.9.

We have restricted our discussion to only two users so far. The the capacity region
for K users has K! vertices, each one corresponding to a specific ordering of the suc-
cessive cancellation of the users. Each user varies its transmit power as a function of
the channel states of all the users.

10.1.6 Multiuser Diversity Revisited

One of the key insights from the study of the performance of the uplink with full CSI
in Chapter 6 was the discovery of multiuser diversity. How do multiple receive anten-
nas affect multiuser diversity? With a single receive antenna and i.i.d. user channel
statistics, we have seen (c.f. Section 6.6) that the sum capacity in the uplink can be
interpreted as the capacity of the following point-to-point channel with full CSI:

• The power constraint is the sum of the power constraints of the users (equal to
KP with equal power constraints for the users Pi = P ).

• The channel quality is |hk∗|2 := maxk=1...K |hk|2, that corresponding to the strongest
user k∗.

The corresponding sum capacity is (c.f. (6.49))

Csum = E
[
log

(
1 +

P ∗(hk∗)|hk∗ |2
N0

)]
, (10.18)

where P ∗ is the waterfilling power allocation (c.f. (5.100) and (6.47)). With multiple
receive antennas, the optimal power allocation does not allow a simple characterization.
To get some insight, let us first consider (the sub-optimal strategy of) transmitting from
only one user at a time.
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One User at a Time Policy

In this case, the multiple antennas at the base station translate into receive beamform-
ing gain for the users. Now we can order the users based on the beamforming power
gain due to the multiple receive antennas at the base station. Thus, as an analogy to
the strongest user in the single antenna situation, here we can choose that user which
has the largest receive beamforming gain: the user with the largest ‖hk‖2. Assuming
i.i.d. user channel statistics, the sum rate with this policy is

E
[
log

(
1 +

P ∗
k∗(‖hk∗‖)‖hk∗‖2

N0

)]
. (10.19)

Comparing (10.19) with (10.18), we see that the only difference is that the scalar
channel gain |hk|2 is replaced by the receive beamforming gain ‖hk‖2.

The multiuser diversity gain depends on the probability that the maximum of the
users’ channel qualities gets large (the tail probability). For example, we have seen
(c.f. Section 6.7) that the multiuser diversity gain with Rayleigh fading is larger than
that in Rician fading (with the same average channel quality). With i.i.d. channels to
the receive antenna array (with unit average channel quality), we have by the law of
large numbers

‖hk‖2

nr

→ 1, nr →∞. (10.20)

So, the receive beamforming gain can be approximated as: ‖hk‖2 ≈ nr for large enough
nr. This means that the tail of the receive beamforming gain decays rapidly for large
nr.

As an illustration, the density of ‖hk‖2 for i.i.d. Rayleigh fading (i.e., it is a χ2
2nr

random variable) scaled by nr is plotted in Figure 10.8. We see that the larger the nr

value is, the more concentrated the density of the scaled random variable χ2
2nr

is around
its mean. This illustration is similar in nature to that in Figure 6.23 in Section 6.7
where we have seen the plot of the densities of the channel quality with Rayleigh and
Rician fading. Thus while the array of receive antennas provides a beamforming gain,
the multiuser diversity gain is restricted. This effect is illustrated in Figure 10.9 where
we see that the sum capacity does not increase much with the number of users, when
compared to the corresponding AWGN channel.

Optimal Power Allocation Policy

We have discussed the impact of multiple receive antennas on multiuser diversity under
the sub-optimal strategy of allowing only one user (the best user) to transmit at any
time. Let us now consider how the sum capacity benefits from multiuser diversity; i.e.,
we have to study the power allocation policy that is optimal for the sum of user rates.
In our previous discussions, we have found a simple form for this power allocation
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Figure 10.8: Plot of the density of a χ2
2nr

random variable divided by nr for nr = 1, 5.
The larger the nr, the more concentrated the normalized random variable is around
its mean of one.

policy: for a point-to-point single antenna channel, the allocation is waterfilling. For
the single antenna uplink, the policy is to allow only the best user to transmit and
further the power allocated to the best user is waterfilling over its channel quality.
In the uplink with multiple receive antennas, there is no such simple expression in
general. However, with both nr and K large the following simple policy is very close to
the optimal one. (See Exercise 10.10.) Every user transmits and the power allocated
is waterfilling over its own channel state, i.e.,

Pk (H) =

(
1

λ
− I0

‖hk‖2

)+

, k = 1, . . . , K. (10.21)

As usual the water level λ is chosen such that the average power constraint it met.
It is instructive to compare the waterfilling allocation in (10.21) with the one in

the uplink with a single receive antenna (c.f. (6.47)). The important difference is that
when there is only one user transmitting, waterfilling is done over the channel quality
with respect to the background noise (of power density N0). However, here all the
users are simultaneously transmitting, using a similar waterfilling power allocation
policy. Hence the waterfilling in (10.21) is done over the channel quality (the receive
beamforming gain) with respect to the background interference plus noise: this is
denoted by the term I0 in (10.21). In particular, at high SNR the waterfilling policy



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 517

15 20 25 30 35

AWGN, nr = 5
Sum Capacity

Number of Users

nr = 5

nr = 1

1

1050

3.5

3

2.5

2

1.5

0.5

Figure 10.9: Sum capacities of the uplink Rayleigh fading channel with nr number of
receive antennas, for nr = 1, 5. Here SNR = 1 (0 dB) and the Rayleigh fading channel
is h ∼ CN (0, Inr). Also plotted for comparison is the corresponding performance for
the uplink AWGN channel with nr = 5 and SNR = 5 (7 dB).
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in (10.21) simplifies to the constant power allocation at all times (under the condition
that there are more receive antennas than the number of users). With the number of
users much larger than the number of receive antennas, the approximation of (10.21)
to the optimal power allocation strategy is not good; this is studied in more detail in
Exercise 10.11.

Now the impact on multiuser diversity is clear: it is reduced to the basic opportunis-
tic communication gain by waterfilling in a point-to-point channel. This gain depends
solely on how the individual channel qualities of the users fluctuate with time and thus
the multiuser nature of the gain is lost. As we have seen earlier (c.f. Section 6.6), the
gain of opportunistic communication in a point-to-point context is much more limited
than that in the multiuser context.

Summary 10.2 Opportunistic Communication and Multiple Receive Antennas

Orthogonal multiple access: scheduled user gets a power gain but reduced
multiuser diversity gain.

SDMA: multiple users simultaneously transmit.

• Optimal power allocation approximated by waterfilling with respect to an intra-
cell interference level.

• Multiuser nature of the opportunistic gain is lost.

10.2 MIMO Uplink

Now we move to consider the role of multiple transmit antennas (at the users) along
with the multiple receive antennas at the base station (Figure 10.10). Let us denote
the number of transmit antennas at user k by ntk, k = 1 . . . K. We begin with the
time-invariant channel; the corresponding model is an extension of (10.1):

y[m] =
K∑

k=1

Hkxk[m] + w[m], (10.22)

where Hk is a fixed nr by ntk matrix.
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Figure 10.10: The MIMO uplink with multiple transmit antennas at each user and
multiple receive antennas at the base station.

10.2.1 SDMA with Multiple Transmit Antennas

There is a natural extension of our SDMA discussion in Section 10.1.2 to multiple
transmit antennas. As before, we start with K = 2 users.

Transmitter architecture: Each user splits its data and encodes them into independent
streams of information with user k employing nk := min (ntk, nr) number of
streams (just as in the point-to-point MIMO channel). Powers Pk1, Pk2, . . . , Pknk

are allocated to the nk data streams, passed through a rotation Uk and sent
over the transmit antenna array at user k. This is analogous to the transmitter
structure we have seen in the point-to-point MIMO channel in Chapter 5. In
fact, in the time-invariant point-to-point MIMO channel, the rotation matrix U
is chosen to correspond to the right rotation in the singular value decomposition
of the channel and the powers allocated to the data streams correspond to the
waterfilling allocations over the squared singular values of the channel matrix
(c.f. Figure 7.2). The transmitter architecture is illustrated in Figure 10.11.

Receiver architecture: The base station uses the MMSE-SIC receiver to decode the
data streams of the users. This is an extension of the receiver architecture in
Chapter 5 (c.f. Figure 8.16). This architecture is illustrated in Figure 10.12.

The rates R1, R2 achieved by this transceiver architecture must satisfy the constraints,
analogous to (10.2), (10.3) and (10.4):

Rk ≤ log det

(
Inr +

1

N0

HkKxkH
∗
k

)
, k = 1, 2, (10.23)

R1 + R2 ≤ log det

(
Inr +

1

N0

2∑

k=1

HkKxkH
∗
k

)
. (10.24)
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Figure 10.11: The transmitter architecture for the two-user MIMO uplink. Each user
splits its data into independent data streams, allocates powers to the data streams and
transmits a rotated version over the transmit antenna array.
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Figure 10.12: Receiver architecture for the two-user MIMO uplink. In this figure,
each user has two transmit antennas and split their data into two data streams each.
The base station decodes the data streams of the users using the linear MMSE filter,
successively canceling them as they are decoded.

Here we have written Kxk := UkΛkU
∗
k and Λk to be a diagonal matrix with the ntk

diagonal entries equal to the power allocated to the data streams Pk1, . . . , Pknk
(if

nk < ntk then the remaining diagonal entries are equal to zero, c.f. Figure 10.11). The
rate region defined by the constraints in (10.23) and (10.24) is a pentagon; this is similar
to the one in Figure 10.3 and illustrated in Figure 10.13. The receiver architecture in
Figure 10.2 where the data streams of user 1 are decoded first, canceled, and then the
data streams of user 2 are decoded achieves the corner point A in Figure 10.13.

With a single transmit antenna at each user, the transmitter architecture simplifies
considerably: there is only one data stream and the entire power is allocated to it.
With multiple transmit antennas, we have a choice of power splits among the data
streams and also the choice of the rotation U before sending the data streams out
of the transmit antennas. In general, different choices of power splits and rotations
lead to different pentagons (see Figure 10.14), and the capacity region is the convex
hull of the union of all these pentagons; thus the capacity region in general is not
a pentagon. This is because, unlike the single transmit antenna case, there are no
covariance matrices Kx1,Kx2 that simultaneously maximize the right hand side of all
the three constraints in (10.23) and (10.24). Depending on how one wants to tradeoff
the performance of the two users, one would use different input strategies. This is
formulated as a convex programming problem in Exercise 10.13.
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Figure 10.13: The rate region of the two-user MIMO uplink with transmitter strategies
(power allocations to the data streams and the choice of rotation before sending over
the transmit antenna array) given by the covariance matrices Kx1 and Kx2.
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Figure 10.14: The achievable rate region for the 2-user MIMO MAC with two specific
choices of transmit filter covariances: Kxk for user k, for k = 1, 2.
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Throughout this section, our discussion has been restricted to the 2-user uplink.
The extension to K users is completely natural. The capacity region is now K dimen-
sional and for fixed transmission filters Kxk modulating the streams of user k (here
k = 1, . . . , K) there are K! corner points on the boundary region of the achievable rate
region; each corner point is specified by an ordering of the K users and the correspond-
ing rate tuple is achieved by the the linear MMSE filter bank followed by successive
cancellation of users (and streams within a user’s data). The transceiver structure is
a K user extension of the pictorial depiction for 2-users in Figures 10.11 and 10.12.

10.2.2 System Implications

Simple engineering insights can be drawn from the capacity results. Consider an uplink
channel with K mobiles, each with a single transmit antenna. There are nr receive
antennas at the base station. Suppose the system designer wants to add one more
transmit antenna at each mobile. How does this translate towards increasing the
number of spatial degrees of freedom?

If we look at each user in isolation and think of the uplink channel as a set of
isolated SIMO point-to-point links from each user to the base station, then adding one
extra antenna at the mobile increases by 1 the available spatial degrees of freedom in
each of such link. However, this is misleading. Due to the sum rate constraint, the total
number of spatial degrees of freedom is limited by the minimum of K and nr. Hence,
if K is larger than nr, then the number of spatial degrees of freedom is already limited
by the number of receive antennas at the base station, and increasing the number of
transmit antennas at the mobiles will not increase the total number of spatial degrees
of freedom further. This example points out the importance of looking at the uplink
channel as a whole rather than as a set of isolated point-to-point links.

On the other hand, multiple transmit antennas at each of the users significantly
benefits the performance of orthogonal multiple access. With a single transmit antenna,
the total number of spatial degrees of freedom with orthogonal multiple access is just
one. Increasing the number of transmit antennas at the users boosts the number of
spatial degrees of freedom; user k has min (ntk, nr) number of spatial degrees of freedom
when it is transmitting.

10.2.3 Fast Fading

Our channel model is an extension of (10.22):

y[m] =
K∑

k=1

Hk[m]xk[m] + w[m]. (10.25)

The channel variations {Hk[m]}m are independent across users k and stationary and
ergodic in time m.
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Receiver CSI

In the receiver CSI model, the users only have access to the statistical characterization
of the channels while the base station tracks all the users’ channel realizations. The
users can still follow the SDMA transmitter architecture in Figure 10.11: splitting the
data into independent data streams, splitting the total power across the streams and
then sending the rotated version of the data streams over the transmit antenna array.
However, the power allocations and the choice of rotation can only depend on the
channel statistics and not on the explicit realization of the channels at any time m.

In our discussion of the point-to-point MIMO channel with receiver CSI in Sec-
tion 8.2.1, we have seen some additional structure to the transmit signal. With linear
antenna arrays and sufficiently rich scattering so that the channel elements can be
modelled as zero mean uncorrelated entries, the capacity achieving transmit signal
sends independent data streams over the different angular windows; i.e., the covari-
ance matrix is of the form (c.f. (8.11)):

Kx = UtΛU∗
t , (10.26)

where Λ is a diagonal matrix with nonnegative entries (representing the power trans-
mitted in each of the transmit angular windows). The rotation matrix Ut represents
the transformation of the signal sent over the angular windows to the actual signal
sent out of the linear antenna array (c.f. (7.67)).

A similar result holds in the uplink MIMO channel as well. When each of the users’
MIMO channels (viewed in the angular domain) have zero mean, uncorrelated entries
then it suffices to consider covariance matrices of the form in (10.26); i.e., user k has
the transmit covariance matrix:

Kxk = UtkΛkU
∗
tk, (10.27)

where the diagonal entries of Λk represent the powers allocated to the data streams,
one in each of the angular windows (so their sum is equal to Pk, the power constraint
for user k). (See Exercise 10.14.) With this choice of transmit strategy, the pair of
rates (R1, R2) at which users can jointly reliably communicate is constrained, as in
(10.12) and (10.13), by:

Rk ≤ E
[
log det

(
Inr +

1

N0

HkKxkH
∗
k

)]
, k = 1, 2, (10.28)

R1 + R2 ≤ E

[
log det

(
Inr +

1

N0

2∑

k=1

HkKxkH
∗
k

)]
. (10.29)

This constraint forms a pentagon and the corner points are achieved by the architec-
ture of linear MMSE filter combined with successive cancellation of data streams (c.f.
Figure 10.12).
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The capacity region is the convex hull of the union of these pentagons, one for
each power allocation to the data streams of the users (i.e., the diagonal entries of
Λ1,Λ2). In the point-to-point MIMO channel, with some additional symmetry (such
as in the i.i.d. Rayleigh fading model), we have seen that the capacity achieving power
allocation is equal powers to the data streams (c.f. (8.12)). An analogous result holds
in the MIMO uplink as well. With i.i.d. Rayleigh fading for all the users, the equal
power allocation to the data streams, i.e.,

Kxk =
Pk

ntk

Intk
, (10.30)

achieves the entire capacity region; thus in this case the capacity region is simply a
pentagon. (See Exercise 10.15.)

The analysis of the capacity region with full CSI is very similar to our previous
analysis (c.f. Section 10.1.5). Due to the increase in number of parameters to feedback
(so that the users can change their transmit strategies as a function of the time varying
channels), this scenario is also somewhat less relevant in engineering practice.

10.3 Downlink with Multiple Transmit Antennas

We now turn to the downlink channel, from the base station to the multiple users.
This time the base station has an array of transmit antennas but each user has a single
receive antenna (Figure 10.15). It is often a practically interesting situation since it
is easier to put multiple antennas at the base station than at the mobile users. As
in the uplink case we first consider the time-invariant scenario where the channel is
fixed. The baseband model of the narrowband downlink with the base station having
nt antennas and K users with each user having a single receive antenna is

yk[m] = h∗kx[m] + wk[m], k = 1, . . . , K, (10.31)

where yk[m] is the received vector for user k at time m, h∗k is a nt dimensional row
vector representing the channel from the base station to user k. Geometrically, user
k observes the projection of the transmit signal in the spatial direction hk in additive
Gaussian noise. The noise wk[m] ∼ CN (0, N0) and is i.i.d. in time m. An important
assumption we are implicitly making here is that the channels hk’s are known to the
base station as well as to the users.

10.3.1 Degrees of Freedom in the Downlink

If the users could cooperate, then the resulting MIMO point-to-point channel would
have min(nt, K) spatial degrees of freedom, assuming that the rank of the matrix
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Figure 10.15: The downlink with multiple transmit antennas at the base station and
single receive antenna at each user.

H = [h1, . . . ,hK ] is full. Can we attain this full spatial degrees of freedom even when
users cannot cooperate?

Let us look at a special case. Suppose h1, . . . ,hK are orthogonal (which is only
possible if K ≤ nt). In this case, we can transmit independent streams of data to
each user, such that the stream for the kth user {x̃k[m]} is along the transmit spatial
signature hk, i.e.,

x[m] =
K∑

k=1

x̃k[m]hk. (10.32)

The overall channel decomposes into a set of parallel channels; user k receives:

yk[m] = ‖hk‖2x̃k[m] + wk[m]. (10.33)

Hence, one can transmit K parallel non-interfering streams of data to the users, and
attain the full number of spatial degrees of freedom in the channel.

What happens in general, when the channels of the users are not orthogonal?
Observe that to obtain non-interfering channels for the users in the example above,
the key property of the transmit signature hk is that hk is orthogonal to the spatial
directions hi’s of all the other users. For general channels (but still assuming linear
independence among h1, . . . ,hK ; thus K ≤ nt), we can preserve the same property by
replacing the signature hk by a vector uk that lies in the subspace Vk orthogonal to all
the other hi’s; the resulting channel for user k is:

yk[m] = (h∗kuk)x̃k[m] + wk[m]. (10.34)

Thus, in the general case too, we can get K spatial degrees of freedom. We can further
choose uk ∈ Vk to maximize the SNR of the channel above; geometrically, this is given
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by the projection of hk onto the subspace Vk. This transmit filter is precisely the
decorrelating receive filter used in the uplink and also in the point-to-point setting.
(See Section 8.3.1 for the geometric derivation of the decorrelator.)

The above discussion is for the case when K ≤ nt. When K ≥ nt, one can apply the
same scheme but transmitting only to nt users at a time, achieving nt spatial degrees
of freedom. Thus, in all cases, we can achieve a total spatial degrees of freedom of
min(nt, K), the same as that of the capacity of the point-to-point link when all the
receivers can cooperate.

An important point to observe is that this performance is achieved assuming knowl-
edge of the channels hk at the base station. We required the same channel side infor-
mation at the base station as well when we studied SDMA and showed that it achieves
the same spatial degrees of freedom as when the users cooperate. In a TDD system, the
base station can exploit channel reciprocity and measure the uplink channel to infer
about the downlink channel. In an FDD system, the uplink and downlink channels
are in general quite different, and feedback would be required: quite an onerous task
especially when the users are highly mobile and the number of transmit antennas is
large. Thus the requirement of channel state information at the base station is quite
asymmetric in the uplink and the downlink: it is more onerous in the downlink.

10.3.2 Uplink-Downlink Duality and Transmit Beamforming

In the point-to-point and uplink scenarios, we understand that the decorrelating re-
ceiver is the optimal linear filter at high SNR when the interference from other streams
dominates over the additive noise. For general SNR, one should use the linear MMSE
receiver to optimally balance between interference and noise suppression. This was also
called receive beamforming. In the previous section, we found a downlink transmission
strategy which is the analog of the decorrelating receive strategy. It is natural to look
for a downlink transmission strategy analogous to the linear MMSE receiver. In other
words, what is “optimal” transmit beamforming?

For a given set of powers, the uplink performance of the kth user is a function
of only the receive filter uk. Thus, it is simple to formulate what we mean by an
“optimal” linear receiver: the one that maximizes the output SINR. The solution is
the MMSE receiver. In the downlink, however, the SINR of each user is a function of
all of the transmit signatures u1, . . . ,uK of the users. Thus, the problem is seemingly
more complex. However, there is in fact a downlink transmission strategy which is a
natural “dual” to the MMSE receive strategy and is optimal in a certain sense. This is
in fact a consequence of a more general duality between the uplink and the downlink,
which we now explain.
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Uplink-Downlink Duality

Suppose transmit signatures u1, . . . ,uK are used for the K users. The transmitted
signal at the antenna array is:

x[m] =
K∑

k=1

x̃k[m]uk, (10.35)

where {x̃k[m]} is the data stream of user k. Substituting into (10.31) and focusing on
user k, we get:

yk[m] = (h∗kuk)x̃k[m] +
∑

j 6=k

(h∗kuj)x̃j[m] + wk[m]. (10.36)

The SINR for user k is given by:

SINRk :=
Pk | u∗khk |2

N0 +
∑

j 6=k Pj | u∗jhk |2 . (10.37)

where Pk is the power allocated to user k.
Denote a := (a1, . . . , aK)t where

ak :=
SINRk

(1 + SINRk) | h∗kuk |2 ,

and we can rewrite (10.37) in matrix notation as:

(IK − diag {a1, . . . , aK}A)p = N0a . (10.38)

Here we denoted p to be the vector of transmitted powers (P1, . . . , PK). We also
denoted the K ×K matrix A to have (k, j)th component equal to | u∗jhk |2.

We now consider an uplink channel that is naturally “dual” to the given downlink
channel. Rewrite the downlink channel (10.31) in matrix form:

ydl[m] = H∗xdl[m] + wdl[m], (10.39)

where ydl[m] := (y1[m], . . . , yK [m])t is the vector of the received signals at the K
users and H := [h1,h2, . . . ,hK ] is a nt by K matrix. We added the subscript “dl” to
emphasize this is the downlink. The dual uplink channel has K users (each with a
single transmit antenna) and nt receive antennas:

yul[m] = Hxul[m] + wul[m], (10.40)

where xul[m] is the vector of transmitted signals from the K users, yul[m] is the vector
of received signals at the nt receive antennas, and wul[m] ∼ CN (0, N0). To demodulate
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Figure 10.16: The original downlink with linear transmit strategy and its uplink dual
with linear reception strategy.
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the kth user in this uplink channel, we use the receive filter uk, which is the transmit
filter for user k in the downlink. The two dual systems are shown in Figure 10.16.

In this uplink, the SINR for user k is given by:

SINRul
k :=

Qk | u∗khk |2
N0 +

∑
j 6=k Qj | u∗khj |2 , (10.41)

where Qk is the transmit power of user k. Denoting b := (b1, . . . , bK)t where

bk :=
SINRul

k(
1 + SINRul

k

) | u∗khk |2
,

we can rewrite (10.41) in matrix notation as:

(
IK − diag {b1, . . . , bK}At

)
q = N0b. (10.42)

Here, q is the vector of transmit powers of the users and A is the same as the one in
(10.38).

What is the relationship between the performance of the downlink transmission
strategy and its dual uplink reception strategy? We claim that to achieve the same
SINR’s for the users in both the links, the total transmit power is the same in the two
systems. To see this, we first solve (10.38) and (10.42) for the transmit powers and we
get

p = N0 (IK − diag {a1, . . . , aK}A)−1 a = N0(Da −A)−11, (10.43)

q = N0

(
IK − diag {b1, . . . , bK}At

)−1
b = N0(Db −At)−11, (10.44)

where Da := diag(1/a1, . . . , 1/aK), Db := diag(1/b1, . . . , 1/bK) and 1 is the vector of
all 1’s. To achieve the same SINR’s in the downlink and its dual uplink, a = b, and
we conclude

K∑

k=1

Pk = N01
t(Da −A)−11 = N01

t
[
(Da −A)−1

]t
1 = N01

t(Da −At)−11 =
K∑

k=1

Qk.

(10.45)
It should be emphasized that the individual powers Pk and Qk to achieve the same

SINR’s are not the same in the downlink and the uplink dual; only the total power is
the same.

Transmit Beamforming and Optimal Power Allocation

As observed earlier, the SINR of each user in the downlink depends in general on all
the transmit signatures of the users. Hence, it is not meaningful to pose the problem of
choosing the transmit signatures to maximize each of the SINR’s separately. A more
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sensible formulation is to minimize the total transmit power needed to meet a given
set of SINR requirements. The optimal transmit signatures balance between focusing
energy in the direction of the user of interest and minimizing the interference to other
users. This transmit strategy can be thought of as performing transmit beamforming.
Implicit in this problem formulation is also a problem of allocating powers to each of
the users.

Armed with the uplink-downlink duality established above, the transmit beam-
forming problem can be solved by looking at the uplink dual. Since for any choice of
transmit signatures, the same SINR’s can be met in the uplink dual using the transmit
signatures as receive filters and the same total transmit power, the downlink problem
is solved if we can find receive filters that minimize the total transmit power in the
uplink dual. But this problem was already solved in Section 10.1.1. The receive filters
are always chosen to be the MMSE filters given the transmit powers of the users; the
transmit powers are iteratively updated so that the SINR requirement of each user
is just met. (In fact, this algorithm not only minimizes the total transmit power, it
minimizes the transmit powers of every user simultaneously.) The MMSE filters at the
optimal solution for the uplink dual can now be used as the optimal transmit signatures
in the downlink, and the corresponding optimal power allocation p for the downlink
can be obtained via (10.43).

It should be noted that the MMSE filters are the ones associated with the minimum
powers used in the uplink dual, not the ones associated with the optimal transmit
powers p in the downlink. At high SNR, each MMSE filter approaches a decorrelator,
and since the decorrelator, unlike the MMSE filter, does not depend on the powers of
the other interfering users, the same filter is used in the uplink and in the downlink.
This is what we have already observed in Section 10.3.1.

Beyond Linear Strategies

In our discussion of receiver architectures for point-to-point communication in Sec-
tion 8.3 and the uplink in Section 10.1.1, we boosted the performance of linear receivers
by adding successive cancellation. Is there something analogous in the downlink as
well?

In the case of the downlink with single transmit antenna at the base station, we
have already seen such a strategy in Section 6.2: superposition coding and decoding.
If multiple users’ signals are superimposed on top of each other, the user with the
strongest channel can decode the signals of the weaker users, strip them off and then
decode its own. This is a natural analog to successive cancellation in the uplink. In
the multiple transmit antenna case, however, there is no natural ordering of the users.
In particular, if a linear superposition of signals is transmitted at the base station:

x[m] =
K∑

k=1

x̃k[m]uk,
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then each user’s signal will be projected differently onto different users, and there is
no guarantee that there is a single user who would have sufficient SINR to decode
everyone else’s data.

In both the uplink and the point-to-point MIMO channel, successive cancellation
was possible because there was a single entity (the base station) that had access to the
entire vector of received signals. In the downlink we do not have that luxury since the
users cannot cooperate. This was overcome in the special case of single transmit an-
tenna because, from a decodability point of view, it is as though a given user has access
to the received signals of all the users with weaker channels. In the general multiple
transmit antenna case, this property does not hold and a “cancellation” scheme has to
be necessarily at the base station, which does indeed have access to the data of all the
users. But how does one cancel a signal of a user even before it has been transmitted?
We turn to this topic next.

10.3.3 Precoding for Interference Known at Transmitter

Let us consider the precoding problem in a simple point-to-point context:

y[m] = x[m] + s[m] + w[m], (10.46)

where x[m], y[m], w[m] are the real transmitted symbol, received symbol and N (0, σ2)
noise at time m respectively. The noise is i.i.d. in time. The interference sequence
{s[m]} is known in its entirety at the transmitter but not at the receiver. The trans-
mitted signal {x[m]} is subject to a power constraint. For simplicity, we have assumed
all the signals to be real-valued for now. When applied to the downlink problem,
{s[m]} is the signal intended for another user, hence known at the transmitter (the
base station) but not necessary at the receiver of the user of interest. This problem also
appears in many other scenarios. For example, in data hiding applications, {s[m]} is
the “host” signal in which one wants to hide digital information; typically the encoder
has access to the host signal but not the decoder. The power constraint on {x[m]} in
this case reflects a constraint on how much the host signal can be distorted, and the
problem here is to embed as much information as possible given this constraint.4

How can the transmitter precode the information onto the sequence {x[m]} taking
advantage of its knowledge of the interference? How much power penalty must be
paid when compared to the case when the interference is also known at the receiver,
or equivalently, when the interference does not exist? To get some intuition about the
problem, let us first look at symbol-by-symbol precoding schemes.
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Figure 10.17: The transmitted signal is the difference between the PAM symbol and
the interference. The larger the interference, the more the power that is consumed.

x
−3a
2

−a
2

a
2

3a
2

Figure 10.18: A 4 point PAM constellation.

Symbol-by-Symbol Precoding

For concreteness, suppose we would like to modulate information using uncoded 2M -
PAM: the constellation points are {a(1+2i)/2, i = −M, . . . , M−1}, with a separation
of a. We consider only symbol-by-symbol precoding in this subsection, and so to
simplify notations below, we drop the index m. Suppose we want to send a symbol
u in this constellation. The simplest way to compensate for the interference s is to
transmit x = u − s instead of u, so that the received signal is y = u + w.5 However,
the price to pay is an increase in the required energy by s2. This power penalty grows
unbounded with s2. This is depicted in Figure 10.17.

The problem with the naive pre-cancellation scheme is that the PAM symbol may
be arbitrarily far away from the interference. Consider the following precoding scheme
which performs better. The idea is to replicate the PAM constellation along the entire
length of the real line to get an infinite extended constellation (Figures 10.18 and 10.19).
Each of the 2M information symbols now corresponds to the equivalence class of points
at the same relative position in the replicated constellations. Given the information
symbol u, the precoding scheme chooses that representation p in its equivalence class
which is closest to the interference s. We then transmit the difference x = p−s. Unlike
the naive scheme, this difference can be much smaller and does not grow unbounded
with s. A visual representation of the precoding scheme is provided in Figure 10.20.

4A good application of data hiding is embedding digital information in analog television broadcast.
5This strategy will not work for the downlink channel at all because s contains the message of the

other user and cancellation of s at the transmitter means that the other user will get nothing.
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Figure 10.19: The 4 point PAM constellation is replicated along the entire real line.
Points marked by the same sign correspond to the same information symbol (one of
the 4 points in the original constellation).
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Figure 10.20: Depiction of the precoding operation for M = 2 and PAM information
symbol u = −3a/2. The crosses form the equivalence class for this symbol. The
difference between s and the closest cross p is transmitted.

One way to interpret the precoding operation is to think of the equivalence class
of any one PAM symbol u as a (uniformly spaced) quantizer qu(·) of the real line. In
this context, we can think of the transmitted signal x to be the quantization error: the
difference between the interference s and the quantized value p = qu(s), with u being
the information symbol to be transmitted.

The received signal is:

y = (qu(s)− s) + s + w = qu(s) + w.

The receiver finds the point in the infinite replicated constellation that is closest to s
and then decodes to the equivalence class containing that point.

Let us look at the probability of error and the power consumption of this scheme,
and how they compare to the corresponding performance when there is no interference.
The probability of error is approximately6

2Q
( a

2σ

)
, (10.47)

When there is no interference and a 2M -PAM is used, the error probability of the
interior points is the same as (10.47) but for the two exterior points, the error prob-
ability is Q

(
a
2σ

)
, smaller by a factor of 1/2. The probability of error is larger for

6The reason why this is not exact is because there is a chance that the noise will be so large that
the closest point to y just happens to be in the same equivalence class of the information symbol,
thus leading to a correct decision. However, the probability of this event is negligible.
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the exterior points in the precoding case because there is an additional possibility of
confusion across replicas. However, the difference is negligible when error probabilities
are small.7

What about the power consumption of the precoding scheme? The distance be-
tween adjacent points in each equivalence class is 2Ma; thus, unlike in the naive
interference pre-cancellation scheme, the quantization error does not grow unbounded
with s:

|x| ≤ Ma.

If we assume that s is totally random so that this quantization error is uniform between
zero and this value, then the average transmit power is:

E[x2] =
a2M2

3
. (10.48)

In comparison, the average transmit power of original 2M -PAM constellation is a2M2/3−
a2/12. Hence, the precoding scheme requires a factor of

4M2

4M2 − 1

more transmit power. Thus, there is still a gap from AWGN detection performance.
However, this power penalty is negligible when the constellation size M is large.

Our description is motivated from a similar precoding scheme for the point-to-
point frequency-selective (ISI) channel, devised independently by Tomlinson [97] and
Harashima and Miyakawa [45]. In this context, the interference is inter-symbol inter-
ference:

s[m] =
∑

`≥0

h`x[m− `],

where h is the impulse response of the channel. Since the previous transmitted sym-
bols are known to the transmitter, the interference is known if the transmitter has
knowledge of the channel. In Discussion 10 we have alluded to connections between
MIMO and frequency-selective channels and precoding is yet another import from one
knowledge base to the other. Indeed, Tomlinson-Harashima precoding was devised
as an alternative to receiver-based decision-feedback equalization for the frequency-
selective channel, the analog to the SIC receiver in MIMO and uplink channels. The
precoding approach has the advantage of avoiding the error propagation problem of
decision-feedback equalizers, since in the latter the cancellation is based on detected
symbols, while the precoding is based on known symbols at the transmitter.

7This factor of two can easily be compensated for by making the symbol separation slightly larger.
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Dirty-Paper Precoding: Achieving AWGN Capacity

The precoding scheme in the last section is only for a single dimensional constellation
(such as PAM), while spectrally efficient communication requires coding over multiple
dimensions. Moreover, in the low SNR regime, uncoded transmission yields very poor
error probability performance and coding is necessary. There has been much work in
devising block precoding schemes and it is still a very active research area. A detailed
discussion of specific schemes is beyond the scope of this book. Here, we will build
on the insights from symbol-by-symbol precoding to give a plausibility argument that
appropriate precoding can in fact completely obliviate the impact of the interference and
achieve the capacity of the AWGN channel. Thus, the power penalty we observed in
the symbol-by-symbol precoding scheme can actually be avoided with high-dimensional
coding. In the literature, the precoding technique presented here is also called Costa
precoding or dirty-paper precoding.8

A First Attempt

Consider communication over a block of length N symbols:

y = x + s + w (10.49)

In the symbol-by-symbol precoding scheme earlier, we started with a basic PAM con-
stellation and replicate it to cover uniformly the entire (1-dimensional) range the in-
terference s spans. For block coding, we would like to mimic this strategy by starting
with a basic AWGN constellation and replicate it to cover the N -dimensional space
uniformly. Using a sphere-packing argument, we give an estimate of the maximum
rate of reliable communication using this type of schemes.

Consider a domain of volume V in <N . The exact size of the domain is not im-
portant, as long as we ensure that the domain is large enough such that the received
signal y will for sure lie inside. This is the domain on which we replicate the basic
codebook. We generate a codebook with M codewords, and replicate each of the code-
words K times and place the extended constellation Ce of MK points on the domain
sphere(Figure 10.21) Each codeword then corresponds to an equivalence class of points
in <N . Equivalently, the given information bits u define a quantizer qu(·). The natu-
ral generalization of the symbol-by-symbol precoding procedure simply quantizes the
known interference s using this quantizer to a point p = qu(s) in Ce and transmits the
quantization error

x1 = p− s. (10.50)

8This latter name comes from the title of Costa’s paper: “Writing on Dirty Paper”. The writer
of the message knows where the dirt is and can adapt his writing to help the reader decipher the
message without knowing where the dirt is.
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Figure 10.21: A replicated constellation in high dimension. The information specifies
an equivalence class of points corresponding to replicas of a codeword (here with the
same marking)

Based on the received signal y, the decoder finds the point in the extended constellation
that is closest to y and decodes to the information bits corresponding to its equivalence
class.

Performance

To estimate the maximum rate of reliable communication for a given average power
constraint P using this scheme, we make two observations:
• (Sphere-packing) To avoid confusing x1 with any of the other K(M − 1) points in

the extended constellation Ce that belong to other equivalence classes, the noise
spheres of radius

√
Nσ2 around each of these points should be disjoint (Figure

10.22). This means that

KM <
V

Vol[BN(
√

Nσ2)]
, (10.51)

the ratio of the volume of the domain sphere to that of the noise sphere.

• (Sphere-covering) To maintain the average transmit power constraint of P , the
quantization error should be no more than

√
NP for any interference vector s.

Thus, the spheres of radius
√

NP around the K replicas of a codeword should be
able to cover the whole domain such that any point is within a distance of

√
NP
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√

NP

Figure 10.22: (a) Disjoint noise spheres should fit in the domain for reliable commu-
nication. (b) Spheres of radius

√
NP around the points corresponding to the same

information bits should cover the whole domain.

from a replica (Figure 10.22. To ensure that,

K >
V

Vol[BN(
√

NP )]
. (10.52)

This in effect imposes a constraint on the minimal density of the replication.

Putting the two constraints (10.51) and (10.52) together, we get:

M <
Vol[BN(

√
NP )]

Vol[BN(
√

Nσ2)]
=

(√
NP

)N

(√
Nσ2

)N
, (10.53)

which implies that the maximum rate of reliable communication is at most:

R :=
log M

N
=

1

2
log

P

σ2
. (10.54)

This yields an upper bound on the rate of reliable communication. Moreover, it
can be shown that if the MK constellation points are independently and uniformly
distributed on the domain, then with high probability, communication is reliable if
condition (10.51) holds and the average power constraint is satisfied if condition (10.52)
holds. Thus, the rate (10.54) is also achievable. The proof of this is along the lines
of the argument in Appendix B.5.2, where the achievability of the AWGN capacity is
shown.

Observe that the rate (10.54) is close to the AWGN capacity 1/2 log(1 + P/σ2)
at high SNR. However, the scheme is strictly sub-optimal at finite SNR. In fact, it
achieves zero rate if the SNR is below 0 dB. How can the performance of this scheme
be improved?

Performance Enhancement via MMSE Estimation

The performance of the above scheme is limited by the two constraints (10.51) and
(10.52). To meet the average power constraint, the density of replication cannot be
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MMSE then Nearest Neighbor Decoding
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Figure 10.23: MMSE decoding yields a much smaller uncertainty sphere than that by
nearest neighbor decoding.
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reduced beyond (10.52). On the other hand, constraint (10.51) is a direct consequence
of the nearest neighbor decoding rule, and this rule is in fact sub-optimal for the
problem at hand. To see why, consider the case when the interference vector s is 0
and the noise variance σ2 is significantly larger than P . In this case, the transmitted
vector x1 is roughly at a distance

√
NP from the origin while the received vector y

is at a distance
√

N(P + σ2), much farther away. Blindly decoding to the point in Ce

nearest to y makes no use of the prior information that the transmitted vector x1 is of
(relatively short) length

√
NP (Figure 10.23). Without using this prior information,

the transmitted vector is thought by the receiver as anywhere in a large uncertainty
sphere of radius

√
Nσ2 around y and the extended constellation points have to be

spaced that far apart to avoid confusion. By making use of the prior information, the
size of the uncertainty sphere can be reduced. In particular, we can consider a linear
estimate αy of x1. By the law of large numbers, the squared error in the estimate is:

‖αy − x1‖2 = ‖αw + (α− 1)x1‖2 ≈ N
[
α2σ2 + (1− α)2P

]
(10.55)

and by choosing

α =
P

P + σ2
, (10.56)

this error is minimized, equalling to:

NPσ2

P + σ2
. (10.57)

In fact αy is nothing but the linear MMSE estimate x̂mmse of x1 from y and NPσ2/(P +
σ2) is the MMSE estimation error. If we now use a decoder which decodes to the
constellation point nearest to αy (as opposed to y), then an error occurs only if there
is another constellation point closer than this distance to αy. Thus, the uncertainty
sphere is now of radius √

NPσ2

P + σ2
. (10.58)

We can now redo the analysis in the above subsection, but with the radius
√

Nσ2 of the
noise sphere replaced by this radius of the MMSE uncertainty sphere. The maximum
achievable rate is now:

1

2
log

(
1 +

P

σ2

)
(10.59)

thus achieving the AWGN capacity.
In the above, we have simplified the problem by assuming s = 0, to focus on how

the decoder has to be modified. For a general interference vector s,

αy = α(x1 + s + w) = α(x1 + w) + αs = x̂mmse + αs, (10.60)
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αs

p

x1

Figure 10.24: The precoding process with the α factor.

i.e., the linear MMSE estimate of x1 but shifted by αs. Since the receiver does not
know s, this shift has to be pre-compensated for at the transmitter. In the earlier
scheme, we were using the nearest neighbor rule and we compensated for the effect of s
by pre-subtracting s from the constellation point p representing the information, i.e.,
we sent the error in quantizing s. But now we are using the MMSE rule and hence we
should compensate by pre-subtracting αs instead. Specifically, given the data u, we
find within the equivalence class representing u the point p which is closest to αs, and
transmit x1 = p− αs (Figure 10.24). Then,

p = x1 + αs

αy = x̂mmse + αs = p̂

and
p− αy = x̂mmse − x1. (10.61)

The receiver finds the constellation point nearest to αy and decodes the information
(Figure 10.25). An error occurs only if there is another constellation point closer to
αy than p, i.e., if it lies in the MMSE uncertainty sphere. This is exactly the same
situation as in the case of zero interference.

Transmitter Knowledge of Interference is Enough

Something quite remarkable has been accomplished: even though the interference is
known only at the transmitter and not at the receiver, the performance that can be
achieved is as though there were no interference at all. The comparison between the
cases with and without interference is depicted in Figure 10.26.

For the plain AWGN channel without interference, the codewords lie in a sphere
of radius

√
NP (x-sphere). When a codeword x1 is transmitted, the received vector y
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p̂ = αy

α(x1 + w) = x̂mmse

αs

y

w

x1

s

Figure 10.25: The decoding process with the α factor.

Figure 10.26: Pictorial representation of the cases with and without interference.
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lies in the y-sphere, outside the x-sphere. The MMSE rule scales down y to αy, and
the uncertainty sphere of radius

√
NPσ2/(P + σ2) around αy lies inside the x-sphere.

The maximum reliable rate of communication is given by the number of uncertainty
spheres that can be packed into the x-sphere

1

N
log

Vol[BN(
√

NP )]

Vol[BN(
√

NPσ2/(P + σ2))]
=

1

2
log

(
1 +

P

σ2

)
, (10.62)

the capacity of the AWGN channel. In fact, this is how achievability of the AWGN
capacity is shown in Appendix B.5.2.

With interference, the codewords have to be replicated to cover the entire domain
where the interference vector can lie. For any interference vector s, consider a sphere
of radius

√
NP around αs; this can be thought of as the AWGN x-sphere whose center

is shifted to αs. A constellation point p representing the given information bits lies
inside this sphere. The vector p − αs is transmitted. By using the MMSE rule, the
uncertainty sphere around αy again lies inside this shifted x-sphere. thus, we have the
same situation as in the case without interference: the same information rate can be
supported.

In the case without interference and where the codewords lie in a sphere of radius√
NP , both the nearest neighbor rule and the MMSE rule achieve capacity. This

is because although y lies outside the x-sphere, there are no codewords outside the
x-sphere and the nearest neighbor rule will automatically find the codeword in the
x-sphere closest to y. However, in the precoding problem when there are constellation
points lying outside the shifted x-sphere, the nearest neighbor rule will lead to confusion
with these other points and is therefore strictly sub-optimal.

Dirty-Paper Code Design

We have given a plausibility argument of how the AWGN capacity can be achieved
without knowledge of the interference at the receiver. It can be shown that randomly
chosen codewords can achieve this performance. Construction of practical codes is
the subject of current research. One such class of codes is called nested lattice codes
(Figure 10.27). The design requirements of this nested lattice code are:
• Each sub-lattice should be a good vector quantizer for the scaled interference αs,

to minimize the transmit power.

• The entire extended constellation should behave as a good AWGN channel code.

The discussion of such codes is beyond the scope of this book. The design problem,
however, simplifies in the low SNR regime. We discuss this below.
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Figure 10.27: A nested lattice code. All the points in each sub-lattice represents the
same information bits.

Low SNR: Opportunistic Orthogonal Coding

In the infinite bandwidth channel, the SNR per degree of freedom is zero and we
can use this as a concrete channel to study the nature of precoding at low SNRs.
Consider the infinite bandwidth real AWGN channel with additive interference s(t)
modelled as real white Gaussian (with power spectral density Ns/2) and known non-
causally to the transmitter. The interference is independent of both the background
real white Gaussian noise and the real transmit signal which is power constrained, but
not bandwidth constrained. Since the interference is known non-causally only to the
transmitter, the minimum Eb/N0 for reliable communication on this channel can only
be larger than that in the plain AWGN channel without the interference; thus a lower
bound on the minimum Eb/N0 is −1.59 dB.

We have already seen for the AWGN channel (c.f. Section 5.2.2 and Exercises 5.8
and 5.9) that orthogonal codes achieve the capacity in the infinite bandwidth regime.
Equivalently, orthogonal codes achieve the minimum Eb/N0 of −1.59 dB over the
AWGN channel. Hence, we start with an orthogonal set of codewords representing
M messages. Each of the codewords is replicated K times so that the overall constel-
lation with MK vectors forms an orthogonal set. Each of the M messages corresponds
to a set of K orthogonal signals. To convey a specific message, the encoder trans-
mits that signal, among the set of K orthogonal signals corresponding to the message
selected, that is closest to the interference s(t), i.e., the one which has the largest cor-
relation with the s(t). This signal is the constellation point to which s(t) is quantized
to. Note that in the general scheme, the signal qu(αs) − αs is transmitted, but since
α → 0 in the low SNR regime, we are transmitting qu(αs) itself.

An equivalent way of seeing this scheme is as opportunistic pulse position modula-
tion: classical PPM involves a pulse that conveys information based on the position
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when it is not zero. Here, every K of the pulse positions corresponds to one message
and the encoder opportunistically chooses the position of the pulse among the K pos-
sible pulse positions (once the desired message to be conveyed is picked) where the
interference is the largest.

The decoder first picks the most likely position of the transmit pulse (among the
MK possible choices) using the standard largest amplitude detector. Next, it picks the
message corresponding to the set in which the most likely pulse occurs. Choosing K
large allows the encoder to harness the opportunistic gains afforded by the knowledge of
the additive interference. On the other hand, decoding gets harder as K increases since
the number of possible pulse positions, MK, grows with K. An appropriate choice
of K as a function of the number of messages, M , and the noise and interference
powers, N0 and Ns respectively, trades off the opportunistic gains on the one hand
with the increased difficulty in decoding on the other. This trade off is evaluated
in Exercise 10.17 where we see that the correct choice of K allows the opportunistic
orthogonal codes to achieve the infinite bandwidth capacity of the AWGN channel
without interference. Equivalently, the minimum Eb/N0 is the same as that in the plain
AWGN channel and is achieved by opportunistic orthogonal coding.

10.3.4 Precoding for the downlink

We now apply the precoding technique to the downlink channel. We first start with
the single transmit antenna case and then discuss the multiple antenna case.

Single Transmit Antenna

Consider the two-user downlink channel with a single transmit antenna:

yk[m] = hkx[m] + wk[m], k = 1, 2, (10.63)

where wk[m] ∼ CN (0, N0). Without loss of generality, let us assume that user 1 has
the stronger channel: |h1|2 ≥ |h2|2. Write x[m] = x1[m] + x2[m], where {xk[m]} is
the signal intended for user k, k = 1, 2. Let Pk be the power allocated to user k. We
use a standard i.i.d. Gaussian codebook to encode information for user 2 in {x2[m]}.
Treating {x2[m]} as interference which is known at the transmitter, we can apply Costa
precoding for user 1 to achieve a rate of

R1 = log

(
1 +

|h1|2P1

N0

)
, (10.64)

the capacity of an AWGN channel for user 1 with {x2[m]} completely absent. What
about user 2? It can be shown that {x1[m]} can be made to appear like independent
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Gaussian noise to user 2. (See Exercise 10.18.) Hence, user 2 gets a reliable data rate
of

R2 = log

(
1 +

|h2|2P2

|h2|2P1 + N0

)
. (10.65)

Since we have assumed that user 1 has the stronger channel, these same rates can
in fact be achieved by superposition coding and decoding (c.f. Section 6.2): we super-
impose independent i.i.d. Gaussian codebook for user 1 and 2, with user 2 decoding
the signal {x2[m]} treating {x1[m]} as Gaussian noise, and user 1 decoding the infor-
mation for user 2, canceling it off, and then decoding the information intended for it.
Thus, precoding is another approach to achieve rates on the boundary of the capacity
region in the single antenna downlink channel.

Superposition coding is a receiver-centric scheme: the base station simply adds the
codewords of the users while the stronger user has to do the decoding job of both
the users. In contrast, precoding puts a substantial computational burden on the
base station with receivers being regular nearest-neighbor decoders (though the user
whose signal is being precoded needs to decode the extended constellation which has
more points than the rate would entail). In this sense we can think of precoding as a
transmitter-centric scheme.

However, there is something curious about this calculation. The precoding strat-
egy described above encodes information for user 1 treating user 2’s signal as known
interference. But certainly we can reverse the role of user 1 and user 2, and encode
information for user 2, treating user 1’s signal as interference. This strategy achieves
rates

R′
1 = log

(
1 +

|h1|2P1

|h1|2P2 + N0

)
, R′

2 = log

(
1 +

|h2|2P2

N0

)
. (10.66)

But these rates cannot be achieved by superposition coding/decoding under the power
allocations P1, P2: the weak user cannot remove the signal intended for the strong
user. Is this rate tuple then outside the capacity region? It turns out that we have
no contradiction and this rate pair is strictly contained inside the capacity region (see
Exercise 10.19).

In this discussion, we have restricted ourselves to just two users, but the extension
to K users is obvious. See Exercise 10.20.

Multiple Transmit Antennas

We now return to the scenario of real interest, multiple transmit antennas (10.31):

yk [m] = h∗kx [m] + wk [m] , k = 1, 2, . . . , K. (10.67)

The precoding technique can be applied to upgrade the performance of the linear beam-
forming technique described in Section 10.3.2. Recall from (10.35), the transmitted
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signal is

x[m] =
K∑

k=1

x̃k[m]uk, (10.68)

where {x̃k[m]} is the signal for user k and uk is its transmit beamforming vector. The
received signal of user k is given by:

yk[m] = (h∗kuk)x̃k[m] +
∑

j 6=k

(h∗kuj)x̃j[m] + wk[m], (10.69)

= (h∗kuk)x̃k[m] +
∑

j<k

(h∗kuj)x̃j[m] +
∑

j>k

(h∗kuj)x̃j[m] + wk[m]. (10.70)

Applying Costa precoding for user k, treating the interference
∑

j<k(h
∗
kuj)x̃j[m] from

users 1, . . . , k − 1 as known and
∑

j>k(h
∗
kuj)x̃j[m] from users k + 1, . . . K as Gaussian

noise, the rate that user k gets is:

Rk = log(1 + SINRk), (10.71)

where SINRk is the effective signal-to-interference-plus-noise ratio after precoding:

SINRk =
Pk | u∗khk |2

N0 +
∑

j>k Pj | u∗jhk |2 . (10.72)

Here Pj is the power allocated to user j. Observe that unlike the single transmit
antenna case, this performance cannot be achieved by superposition coding/decoding.

For linear beamforming strategies, an interesting uplink-downlink duality is iden-
tified in Section 10.3.2. We can use the downlink transmit signatures (denoted by
u1, . . . ,uK) to be the same as the receive filters in the dual uplink channel (10.40) and
the same SINRs for the users can be achieved in both the uplink and the downlink
with appropriate user power allocations. Further the sum of these power allocations
is the same for both the uplink and the downlink. We now extend this observation to
a duality between transmit beamforming with precoding in the downlink and receive
beamforming with SIC in the uplink.

Specifically, suppose we use Costa precoding in the downlink, and SIC in the uplink
and the transmit signatures of the users in the downlink are the same as the receive
filters of the users in the uplink. Then it turns out that the same set SINRs of the
users can be achieved by appropriate user power allocations in the uplink and the
downlink and further the sum of these power allocations is the same. This duality
holds provided that order of SIC in the uplink is the reverse of the Costa precoding
order in the downlink. For example, in the Costa precoding above we employed the
order 1, . . . , K: i.e., we precoded the user k signal so as to cancel the interference from
the signals of users 1, . . . , k− 1. For this duality to hold, we need to reverse this order
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in the SIC in the uplink: i.e., the users are successively cancelled in the order K, . . . , 1
(with user k seeing no interference from the cancelled user signals K,K − 1, . . . k + 1).

The derivation of this duality follows the same lines as for linear strategies and is
done in Exercise 10.21. Note that in this SIC ordering, user 1 sees the least uncancelled
interference and user K sees the most. This is exactly the opposite to that under the
Costa precoding strategy. Thus, we see that in this duality, the ordering of the users
is reversed. Identifying this duality facilitates the computation of good transmit filters
in the downlink. For example, we know that in the uplink the optimal filters for a
given set of powers are MMSE filters; the same filters can be used in the downlink
transmission.

In Section 10.1.2, we saw that receive beamforming in conjunction with SIC achieves
the capacity region of the uplink channel with multiple receive antennas. It has been
shown that transmit beamforming in conjunction with Costa precoding achieves the
capacity of the downlink channel with multiple transmit antennas.

10.3.5 Fast Fading

The time varying downlink channel is an extension of (10.31):

yk[m] = h∗k[m]x[m] + wk[m], k = 1, . . . , K. (10.73)

Full CSI

With full CSI, both the base station and the users track the channel fluctuations and
in this case, the extension of the linear beamforming strategies combined with Costa
precoding to the fading channel is natural. Now we can vary the power and transmit
signature allocations of the users, and the Costa precoding order as a function of the
channel variations. Linear beamforming combined with Costa precoding achieves the
sum capacity of the fast fading downlink channel with full CSI, just as in the time-
invariant downlink channel.

It is interesting to compare this sum capacity achieving strategy with that when the
base station has just one transmit antenna (c.f. Section 6.4.2). In this basic downlink
channel, we identified the structure of the sum capacity achieving strategy: transmit
only to the best user (using a power that is waterfilling over the best user’s channel
quality, c.f. (6.54)). The linear beamforming strategy proposed here involves in general
transmitting to all the users simultaneously and is quite different from the one user at
a time policy. This difference is analogous to the one we have seen in the uplink with
single and multiple receive antennas at the base station.

Due to the duality, we have a connection between the strategies for the downlink
channel and its dual uplink channel. Thus, the impact of multiple transmit antennas
at the base station on multiuser diversity follows the discussion in the uplink context
(c.f. Section 10.1.6): focusing on the one user at a time policy, the multiple transmit
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antennas provide a beamforming power gain; this gain is the same as in the point-
to-point context and the multiuser nature of the gain is lost. With the sum capacity
achieving strategy, the multiple transmit antennas provide multiple spatial degrees of
freedom allowing the users to be transmitted to simultaneously, but the opportunistic
gains are of the same form as in the point-to-point case; the multiuser nature of the
gain is diminished.

Receiver CSI

So far we have made the full CSI assumption. In practice, it is often very hard for
the base station to have access to the user channel fluctuations and the receiver CSI
model is more natural. The major difference here is that now the transmit signatures
of the users cannot be allocated as a function of the channel variations. Furthermore,
the base station is not aware of the interference caused by the other users’ signals for
any specific user k (since the channel to the kth user is unknown) and Costa precoding
is ruled out.

Exercise 10.22 discusses how to use the multiple antennas at the base station with-
out access to the channel fluctuations. One of the important conclusions is that time
sharing among the users achieves the capacity region in the symmetric downlink chan-
nel with receiver CSI alone. This implies that the total spatial degrees of freedom in
the downlink are restricted to one, the same as the degree of freedom of the channel
from the base station to any individual user. On the other hand, with full CSI at the
base station we have seen (c.f. Section 10.3.1) that the spatial degrees of freedom are
equal to min (nt, K). Thus lack of CSI at the base station causes a drastic reduction
in the degrees of freedom of the channel.

Receiver CSI and Partial CSI at the Base Station

In many practical systems, there is some form of partial CSI fed back to the base
station from the users. For example, in the IS-856 standard discussed in Chapter 6
each user feeds back the overall SINR of the link to the base station it is communicating
with. Thus, while the base station does not have the exact knowledge of the channel
(phase and amplitude) from the transmit antenna array to the users, it does have
partial information: the overall quality of the channel (such as (‖hk[m]‖2 for user k at
time m).

In Section 6.7.3 we studied opportunistic beamforming that artificially induces time
fluctuations in the channel to increase the multiuser diversity. The multiple transmit
antennas were used to induce time fluctuations and the partial CSI was used to schedule
the users at appropriate time slots. However the gain from multiuser diversity is a
power gain (boost in the SINR of the user being scheduled) and with just a single user
scheduled at any time slot, only one of the spatial degrees of freedom is being used.
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user 2

user 1

Figure 10.28: Opportunistic beamforming with two orthogonal beams. The user “clos-
est” to a beam is scheduled on that beam, resulting in two parallel data streams to
two users.

This basic scheme can be modified, however, allowing multiple users to be scheduled
and thus increasing the utilized spatial degrees of freedom.

The conceptual idea is to have multiple beams, each orthogonal to one another, at
the same time (Figure 10.28). Separate pilot symbols are introduced on each of the
beams and the users feedback the SINR of each beam. Transmissions are scheduled
to as many users as there are beams at each time slot. If there are enough users
in the system, the user who is beamformed with respect to a specific beam (and
orthogonal to the other beams) is scheduled on the specific beam. Let us consider
K ≥ nt (if K < nt then we use only K of the transmit antennas), and at each
time m, Q[m] = [q1[m], . . . ,qnt [m]] be a nt × nt unitary matrix, with the columns
q1[m], . . . ,qnt [m] orthonormal. The vector qi[m] represents the ith beam at time m.

The vector signal sent out from the antenna array at time m is

nt∑
i=1

xi[m]qi[m]. (10.74)

Here x1, . . . , xnt are the nt independent data streams (in the case of coherent downlink
transmission, these signals include pilot symbols as well). The unitary matrix Q[m] is
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varied such that the individual components do not change abruptly in time. Focusing
on the kth user, the signal it receives at time m is (substituting (10.74) in (10.73))

yk[m] =
nt∑
i=1

xi[m]h∗k[m]qi[m] + wk[m]. (10.75)

For simplicity, let us consider the scenario when the channel coefficients are not varying
over the time scale of communication (slow fading), i.e. hk[m] = hk. When the ith beam
takes on the value:

qi[m] =
hk

‖hk‖ , (10.76)

then user k is in beamforming configuration with respect to the ith beam; moreover, it
is simultaneously orthogonal to the other beams. The received signal at user k is

yk[m] = ‖hk‖xi[m] + wk[m]. (10.77)

If there are enough users in the system, for every beam i some user will be nearly in
beamforming configuration with respect to it (and simultaneously nearly orthogonal to
the other beams). Thus we have nt data streams being transmitted simultaneously in
orthogonal spatial directions and the full spatial degrees of freedom are being utilized.
The limited feedback from the users allows opportunistic scheduling of the user trans-
missions in the appropriate beams at the appropriate time slots. To achieve close to
the beamforming (and corresponding nulling to all the other beams) performance re-
quires a user population that is larger than in the scenario of Section 6.7.3. In general,
depending on the size of the users in the system, the number of spatially orthogonal
beams can be designed.

There are extra system requirements to support multiple beams (as compared to
just the single time varying beam introduced in Section 6.7.3). First, in the case of
coherent downlink transmission, multiple pilot symbols, one set for each beam has to
be inserted, and thus the fraction of pilot symbol power increases. Second, the receivers
now track nt separate beams and feedback SINRs of each on each of the beams. On a
practical note, the receivers could feedback only the best SINR and the identification
of the beam which yields this SINR; this restriction probably will not degrade the
performance by much. Thus with almost the same amount of feedback as the single
beam scheme, the modified opportunistic beamforming scheme utilizes all the spatial
degrees of freedom.

10.4 MIMO Downlink

We have seen so far how downlink is affected by the availability of multiple transmit
antennas at the base station. In this section, we study the downlink with multiple
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Figure 10.29: The downlink with multiple transmit antennas at the base station and
multiple receive antennas at each user.

receive antennas (at the users) (see Figure 10.29). To focus on the role of multiple
receive antennas, we begin with a single transmit antenna at the base station.

The downlink channel with a single transmit and multiple receive antennas at each
user can be written as:

yk [m] = hkx [m] + wk [m] , k = 1, 2, (10.78)

where wk [m] ∼ CN (0, N0Inr) and i.i.d. in time m. The receive spatial signature
at user k is denoted by hk. Let us focus on the time-invariant model first and fix
this vector. If there were only one user, then we know from Section 7.2.1 that the
user should do receive beamforming: project the received signal in the direction of
the vector channel. Let us try this technique here, with both users matched filtering
their received signals w.r.t. their channels. This is illustrated in Fig. 10.30 and can be
shown to be the optimal strategy for both the users (see Exercise 10.23). With the
matched filter front-end at each user, we have an effective AWGN downlink with a
single antenna:

ỹk [m] :=
h∗kyk [m]

‖hk‖ = ‖hk‖x [m] + wk [m] , k = 1, 2. (10.79)

Here wk[m] is CN (0, N0) and i.i.d. in time m and the downlink channel in (10.79) is
very similar to the basic single antenna downlink channel model of (6.16) in Section 6.2.
The only difference is that user k’s channel quality |hk|2 is replaced by ‖hk‖2.

Thus to study the downlink with multiple receive antennas, we can now carry over
all our discussions from Section 6.2 for the single antenna scenario. In particular, we
can order the two users based on their received SNR (suppose ‖h1‖ ≤ ‖h2‖) and do
superposition coding: the transmit signal is the linear superposition of the signals to
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Figure 10.30: Each user with a front end matched filter converting the SIMO downlink
into a SISO downlink.

the two users. Then, user 1 treats signal of user 2 as noise and decodes its data from
ỹ1. Finally, user 2 which has the better SNR decodes the data of user 1, subtracts
the transmit signal of user 1 from ỹ2 and then decodes its’ data. With a total power
constraint of P and splitting this among the two users P = P1+P2 we can write the rate
tuples that is achieved with the receiver architecture in Fig. 10.30 and superposition
coding (c.f. (6.22)),

R1 = log

(
1 +

P1‖h1‖2

P2‖h1‖2 + N0

)
, R2 = log

(
1 +

P2‖h2‖2

N0

)
. (10.80)

Thus we have combined the techniques of Sections 7.2.1 and 6.2, namely receive beam-
forming and superposition coding into a communication strategy for the single transmit
and multiple receive antenna downlink.

The matched filter operation by the users in Figure 10.30 only requires tracking
of their channels by the users, i.e., CSI is required at the receivers. Thus, even with
fast fading, the architecture in Figure 10.30 allows us to transform the downlink with
multiple receive antennas to the basic single antenna downlink channel as long as the
users have their channel state information. In particular, analyzing receiver CSI and
full CSI for the downlink in (10.78) simplifies to the basic single antenna downlink
discussion (in Section 6.4).

In particular, we can ask what impact multiple receive antennas have on multiuser
diversity, an important outcome of our discussion in Section 6.4. The only difference
here is the distribution of the channel quality: ‖hk‖2 replacing |hk|2. This was also the
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same difference in the uplink when we studied the role of multiple receive antennas in
multiuser diversity gain (in Section 10.1.6). We can carry over our main observation:
the multiple receive antennas provide a beamforming gain but the tail of ‖hk‖2 decay
more rapidly (Figure 10.8) and the multiuser diversity gain is restricted (Figure 10.9).
To summarize, the traditional receive beamforming power gain is balanced by the loss
of the benefit of the multiuser diversity gain (which is also a power gain) due to the
“hardening” of the effective fading distribution: ‖hk‖2 ≈ nr (c.f. (10.20)).

With multiple transmit antennas at the base station and multiple receive antennas
at each of the users, we can extend our set of linear strategies from the discussion in
Section 10.3.2: now the base station splits the information for user k into independent
data streams, modulates them on different spatial signatures and then transmits them.
With full CSI, we can vary these spatial signatures and powers allocated to the users
(and the further allocation among the data streams within a user) as a function of the
channel fluctuations. We can also embellish the linear strategies with Costa precoding,
successively pre-canceling the data streams. The performance of this scheme (linear
beamforming strategies with and without Costa precoding) can be related to the cor-
responding performance of a dual MIMO uplink channel (much as in the discussion of
Section 10.3.2 with multiple antennas at the base station alone).

10.5 Multiple Antennas in Cellular Networks: A

System View

We have discussed the system design implications of the multiple antennas in both
the uplink and the downlink. These discussions have been in the context of multiple
access within a single cell and are spread throughout the chapter (c.f. Sections 10.1.3,
10.1.6, 10.2.2, 10.3.5 and 10.4). In this section we take stock of these implications
and consider the role of multiple antennas in cellular networks with multiple cells.
Particular emphasis is on two points:

• the use of multiple antennas in suppressing inter-cell interference

• how the use of multiple antennas within cells impacts the optimal amount of
frequency reuse in the network.

Summary 10.3 System Implications of Multiple Antennas on Multiple Access
Three ways of using multiple receive antennas in the uplink

• Orthogonal multiple access: each user gets a power gain, but no change in degrees
of freedom.
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• Opportunistic communication, one user at a time: power gain but the multiuser
diversity gain is reduced.

• Space division multiple access is capacity achieving: users simultaneously trans-
mit and are jointly decoded at the base station.

Comparison between Orthogonal multiple access and SDMA

• low SNR: performance of orthogonal multiple access comparable to that of SDMA.

• high SNR: SDMA allows up to nr users to simultaneously transmit with a sin-
gle degree of freedom each. Performance is significantly better than that with
orthogonal multiple access.

• An intermediate access scheme with moderate complexity performs comparably
to SDMA at all SNR levels: blocks of approximately nr users in SDMA mode
and orthogonal access for different blocks.

MIMO Uplink

• Orthogonal multiple access: each user has multiple degrees of freedom.

• SDMA: the overall degrees of freedom are still restricted by the number of receive
antennas.

Downlink with multiple receive antennas
Each user gets receive beamforming gain but reduced multiuser diversity gain.

Downlink with multiple transmit antennas

• No CSI at the base station: single spatial degree of freedom.

• Full CSI: the uplink-downlink duality principle makes this situation analogous
to the uplink with multiple receive antennas and now there are up to nt spatial
degrees of freedom.

• Partial CSI at the base station: the same spatial degrees of freedom as the full
CSI scenario can be achieved by a modification of the opportunistic beamforming
scheme: multiple spatially orthogonal beams are sent out and multiple users are
simultaneously scheduled on these beams.
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10.5.1 Inter-cell Interference Management

Consider the multiple receive antenna uplink with users operating in SDMA mode.
We have seen that successive cancellation is an optimal way to handle interference
among the users within the same cell. However, this technique is not suitable to
handle interference from neighboring cells: the out of cell transmissions are meant to
be decoded by their nearest base stations and the received signal quality is usually
too poor to allow decoding at base stations farther away. On the other hand, linear
receivers such as the MMSE does not decode the information from the interference and
can be used to suppress out-of-cell interference.

The following model captures the essence of out-of-cell interference: the received
signal at the antenna array (y) comprises of the signal (x) of the user of interest (with
the signals of other users in the same cell successfully canceled) and the out-of-cell
interference (z):

y = hx + z. (10.81)

Here h is the received spatial signature of the user of interest. One model for the
random interference z is as CN (0,Kz), i.e., it is colored Gaussian noise with covari-
ance matrix Kz. For example, if the interference originates from just one out-of-cell
transmission (with transmit power, say, q) and the base station has an estimate of the
received spatial signature of the interfering transmission (say, g), then the appropriate
choice of the covariance matrix is

qgg∗ + N0I, (10.82)

taking into account the structure of the interference and the background additive
Gaussian noise. More generally, if there are just a few out-of-cell interferers and their
received spatial signatures and transmit powers can be tracked at the base station Kz

can be chosen appropriately.
Once such a model has been adopted, the multiple receive antennas can be used to

suppress interference: we can use the linear MMSE receiver developed in Section 8.3.3
to get the soft estimate (c.f. (8.61)):

x̂ = v∗mmsey = h∗K−1
z y. (10.83)

The expression for the corresponding SINR is in (8.62). This is the best SINR possible
with a linear estimate. When the interfering noise is white, the operation is simply
traditional receive beamforming. On the other hand, when the interference is very
large and not white then the operation reduces to a decorrelator: this corresponds
to nulling out the interference. The effect of channel estimation error on interference
suppression is explored in Exercise 10.24.

In the uplink, the model for the interference depends on the type of the multiple
access. In many instances, a natural model for the interference is that it is white.
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For example, if the out-of-cell interference comes from many geographically spread
out users (this situation occurs when there are many users in SDMA mode), then the
overall interference is averaged over the multiple user’s spatial locations and white
noise is a natural model. In this case, the receive antenna array does not explicitly
suppress out-of-cell interference. To be able to exploit the interference suppression
capability of the antennas, two things must happen:
• The number of simultaneously transmitting users in each cell should be small. For

example, in a hybrid SDMA/TDMA strategy, the total number of users in each
cell may be large but the number of users simultaneously in SDMA mode is small
(equal to or less than the number of receive antennas).

• The out-of-cell interference has to be trackable. In the SDMA/TDMA system,
even though the interference at any time comes from a small number of users, the
interference depends on the geographic location of the interfering user(s) which
changes with the time slot. So either each slot has to be long enough to allow
enough time to estimate the color of the interference based only on the pilot signal
received in that time slot, or the users are scheduled in a periodic manner and the
interference can be tracked across different time slots.

An example of such a system is described in Example 12.
On the other hand, interference suppression in the downlink using multiple receive

antennas at the mobiles is different. Here the interference comes from the base sta-
tions of the neighboring cells that reuse the same frequency, i.e., from fixed specific
geographic locations. Now, an estimate of the covariance of the interference can be
formed and the linear MMSE can be used to manage the inter-cell interference.

We now turn to the role of multiple antennas in deciding the optimal amount of
frequency reuse in the cellular network. We consider the effect on both the uplink
and the downlink and the role of multiple receive and multiple transmit antennas
separately.

10.5.2 Uplink with Multiple Receive Antennas

We begin with a discussion of the impact of multiple antennas at the base station on
the two orthogonal cellular systems studied in Chapter 4 and then move to SDMA.

Orthogonal Multiple Access

The array of multiple antennas is used to boost the received signal strength from the
user within the cell via receive beamforming. One immediate benefit is that each user
can lower its transmit power by a factor equal to the beamforming gain (proportional
to nr) to maintain the same signal quality at the base station. This reduction in
transmit power also helps to reduce inter-cell interference, so the effective SINR with
the power reduction is in fact more than the SINR achieved in the original setting.
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In Example 6 we considered a linear array of base stations and analyzed the tradeoff
between reuse and data rates per user for a given cell size and transmit power setting.
With an array of antennas at each base station, the SNR of every user improves by a
factor equal to the receive beamforming gain. Much of the insight derived in Example 6
on how much to reuse can be naturally extended to the case here with the operating
SNR boosted by the receive beamforming gain.

SDMA

If we do not impose the constraint that uplink communication be orthogonal among
the users in the cell, we can use the SDMA strategy where many users simultaneously
transmit and are jointly decoded at the base station. We have seen that this scheme
significantly betters orthogonal multiple access at high SNR due to the increased spatial
degrees of freedom. At low SNRs, both orthogonal multiple access and SDMA benefit
comparably with the users getting a receive beamforming gain. Thus for SDMA to
provide significant performance improvement over orthogonal multiple access we need
the operating SNR to be large; in the context of a cellular system, this means less
frequency reuse.

Whether the loss in spectral efficiency due to less frequency reuse is fully compen-
sated for by the increase in spatial degrees of freedom depends on the specific physical
situation. The frequency reuse ratio ρ represents the loss in spectral efficiency. The
corresponding reduction in interference is represented by the fraction fρ: this is the
fraction of the received power from a user at the edge of the cell, the interference
constitutes. For example, in a linear cellular system fρ decays roughly as ρα but for
a hexagonal cellular system the decay is much slower: fρ decays roughly as ρα/2 (c.f.
Example 6).

Suppose we consider all the K users to be at the edge of the cell (a worst case
scenario) and are communicating via SDMA to the base station with receiver CSI.
Let W denote the total bandwidth allotted to the cellular system scaled down by
the number of simultaneous SDMA users sharing it within a cell (as with orthogonal
multiple access, c.f. Example 6). With SDMA used in each cell, K users simultaneously
transmit over the entire bandwidth KρW .

The SINR of the user at the edge of the cell is, as in (5.20),

SINR =
SNR

ρK + fρ SNR
, with SNR :=

P

N0Wdα
. (10.84)

The SNR at the edge of the cell is SNR, a function of the transmit power P , the cell
size d, and the power decay rate α (c.f. (5.21)). The notation for the fraction fρ is
carried over from Example 6. The largest symmetric rate each user gets is, the MIMO
extension of (5.22),

Rρ = ρW E [log det (Inr + SINR HH∗)] bits/s. (10.85)
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Here the columns of H represent the receive spatial signatures of the users at the
base station and the log det expression is the sum of the rates at which users can
simultaneously communicate reliably.

We can now address the engineering question of how much to reuse using the simple
formula for the rate in (10.85). At low SNRs the situation is analogous to the single
receive antenna scenario studied in Example 6: the rate is insensitive to the reuse
factor and this can be verified directly from (10.85). On the other hand, at large SNRs
the interference grows as well and the SINR peaks at 1/fρ. The largest rate then is,
as in (5.23),

ρW E
[
log det

(
Inr +

1

fρ

HH∗
)]

bits/s, (10.86)

and goes to zero for small values of ρ: thus as in Example 6, less reuse does not lead
to a favorable situation.

How do multiple receive antennas affect the optimal reuse ratio? Setting K = nr

(a rule of thumb arrived at in Exercise 10.5), we can use the approximation in (8.29)
to simplify the expression for the rate in (10.86):

Rρ ≈ ρW nr c∗
(

1

fρ

)
. (10.87)

The first observation we can make is that since the rate grows linearly in nr, the
optimal reuse ratio does not depend on the number of receive antennas. The optimal
reuse ratio thus depends only on how the inter-cell interference fρ decays with the
reuse parameter ρ, as in the single antenna situation studied in Example 6.

The rates at high SNR with reuse ratios 1, 1/2 and 1/4 are plotted in Figure 10.31
for nr = K = 5 in the linear cellular system. We observe the optimality of universal
reuse at all power decay rates: the gain in SINR from less reuse is not worth the
loss in spectral reuse. Comparing with the single receive antenna example, the receive
antennas provide a performance boost (the rate increases linearly with nr). We also
observe that universal reuse is now preferred. The hexagonal cellular system provides
even less improvement in SINR and thus universal reuse is optimal; this is unchanged
from the single receive antenna example.

10.5.3 MIMO Uplink

An implementation of SDMA corresponds to altering the nature of medium access.
For example, there is no simple way of incorporating SDMA in any of the three cel-
lular systems introduced in Chapter 4 without altering the fundamental way resource
allocation is done among users. On the other hand, the use of multiple antennas at the
base station to do receive beamforming for each user of interest is a scheme based at
the level of a point-to-point communication link and can be implemented regardless of
the nature of the medium access. In some contexts where the medium access scheme
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Figure 10.31: The symmetric rate for every user (in bps/Hz) with K = 5 users in
SDMA model in an uplink with nr = 5 receive antennas plotted as a function of the
power decay rate α for the linear cellular system. The rates are plotted for reuse ratios
1, 1/2 and 1/3.

cannot be altered, a scheme based on improving the quality of individual point-to-
point links is preferred. However, an array of multiple antennas at the base station
used to receive beamform provides only a power gain and not an increase in degrees of
freedom. If each user has multiple transmit antennas as well, then an increase in the
degrees of freedom of each individual point-to-point link can be obtained.

In an orthogonal system, the point-to-point MIMO link provides each user with
multiple degrees of freedom and added diversity. With receiver CSI, each user can
use its transmit antenna array to harness the spatial degrees of freedom when it is
scheduled. The discussion of the role of frequency reuse earlier now carries over to
this case. The nature of the tradeoff is similar: there is a loss in spectral degrees of
freedom (due to less reuse) but an increase in the spatial degrees of freedom (due to
the availability of multiple transmit antennas at the users).

10.5.4 Downlink with Multiple Receive Antennas

In the downlink the interference comes from a few specific locations at fixed transmit
powers: the neighboring base stations which reuse the same frequency. Thus, the in-
terference pattern can be empirically measured at each user and the array of receive
antennas used to do linear MMSE (as discussed in Section 10.5.1) and boost the re-
ceived SINR. For orthogonal systems, the impact on frequency reuse analysis is similar
to that in the uplink with the SINR from the MMSE receiver replacing the earlier
simpler expression (as in (5.20), for the uplink example).

If the base station has multiple transmit antennas as well, the interference could be
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harder to suppress: in the presence of substantial scattering, each of the base station
transmit antennas could have a distinct receive spatial signature at the mobile and
in this case an appropriate model for the interference is white noise. On the other
hand, if the scattering is only local (at the base station and at the mobile) then all the
base station antennas have the same receive spatial signature (c.f. Section 7.2.3) and
interference suppression via the MMSE receiver is still possible.

10.5.5 Downlink with Multiple Transmit Antennas

With full CSI (i.e., both at the base station and at the users), the uplink-downlink
duality principle (c.f. Section 10.3.2) allows a comparison to the reciprocal uplink with
the multiple receive antennas and receiver CSI. In particular, there is a one-to-one
relationship between linear schemes (with and without successive cancellation) for the
uplink and that for the downlink. Thus much of our inferences in the uplink with
multiple receive antennas hold in the downlink as well. However, full CSI may not be
so practical in an FDD system: having CSI at the base station in the downlink requires
substantial CSI feedback via the uplink.

Example 10.12: SDMA in ArrayComm Systems

ArrayComm Inc. is one of the early companies pioneering SDMA technology.
Their products include a SDMA overlay on Japan’s PHS cellular system, a fixed
wireless local loop system, and a mobile cellular system (iBurst).

An ArrayComm SDMA system exemplifies many of the design features that
multiple antennas at the base station allow. It is TDMA based and is much like
the narrowband system we studied in Chapter 4. The main difference is that
within each narrowband channel in each time slot, a small number of users are in
SDMA mode (as opposed to just a single user in the basic narrowband system of
Section 4.2). The array of antennas at the base station is also used to suppress
out-of-cell interference, thus allowing denser frequency reuse than a basic
narrowband system. To enable successful SDMA operation and interference
suppression in both the uplink and the downlink, the ArrayComm system has
several key design features

• The time slots for TDMA are synchronized across different cells. Further, the
time slots are long enough to allow accurate estimation of the interference using
the training sequence. The estimate of the color of the interference is then in the
same time slot to suppress out-of-cell interference. Channel state information is
not kept across slots.

• The small number of SDMA users within each narrowband channel are demod-
ulated using appropriate linear filters: for each user, this operation suppresses
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both the out-of-cell interference and the in-cell interference from the other users
in SDMA mode sharing the same narrowband channel.

• The uplink and the downlink operate in TDD mode with the downlink transmission
immediately following the uplink transmission and is to the same set of users. The
uplink transmission provides the base station CSI that is used in the immediately
following downlink transmission to perform SDMA and to suppress out-of-cell
interference via transmit beamforming and nulling. TDD operation avoids the
expensive channel state feedback required for downlink SDMA in FDD systems.

To get a feel for the performance improvement with SDMA over the basic
narrowband system, we can consider a specific implementation of the ArrayComm
system. There are up to 12 antennas per sector at the base station with up to 4
users in SDMA mode over each narrowband channel. This is an improvement of
roughly a factor of 4 over the basic narrowband system which schedules only a
single user over each narrowband channel. Since there are about 3 antennas per
user, substantial out-of-cell interference suppression is possible. This allows us to
increase the frequency reuse ratio; this is a further benefit over the basic
narrowband system. For example, the SDMA overlay on the PHS system
increases the frequency reuse ration of 1/8 to 1.

In the Flash OFDM example in Chapter 4, we have mentioned that one
advantage of orthogonal multiple access systems over CDMA systems is that users
can get access to the system without the need to slowly ramping up the power.
The interference suppression capability of adaptive antennas provides another way
to allow users who are not power controlled to get access to the system quickly
without swamping the existing active users. Even in a near-far situation of 40-50
dB, SDMA still works successfully; this means that potentially many users can be
kept in the hold state when there are no active transmissions.

These improvements come at an increased cost to certain system design
features. For example, while downlink transmissions meant for specific users enjoy
a power gain via transmit beamforming, the pilot signal is intended for all users
and has to be isotropic, thus requiring a proportionally larger amount of power.
This reduces the traditional amortization benefit of the downlink pilot. Another
aspect is the forced symmetry between the uplink and the downlink transmissions.
To successfully use the uplink measurements (of the channels of the users in
SDMA mode and the color of the out-of-cell interference) in the following
downlink transmission, the transmission power levels in the uplink and the
downlink have to be comparable (see Exercise 10.25). This puts a strong
constraint on the system designer since the mobiles operate on batteries and are
typically much more power constrained than the base station which is powered by
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an AC supply. Further, the pairing of the uplink or downlink transmissions is
ideal when the flow of traffic is symmetric in both the directions; this is usually
true in the case of voice traffic. On the other hand, data traffic can be asymmetric
and leads to wasted uplink (downlink) transmissions if only downlink (uplink)
transmissions are desired.

Chapter 10: The Main Plot

Uplink with multiple receive antennas

Space division multiple access (SDMA) is capacity achieving: all users
simultaneously transmit and are jointly decoded by the base station.

• Total spatial degrees of freedom limited by number of users and number of receive
antennas.

• Rule of thumb is to have a group of nr users in SDMA mode and different groups
in orthogonal access mode.

• each of the nr user transmissions in a group obtain the full receive diversity gain
equal to nr.

Uplink with multiple transmit and receive antennas

The overall spatial degrees of freedom is still restricted by the number of receive
antennas, but the diversity gain is enhanced.

Downlink with multiple transmit antennas

Uplink-downlink duality identifies a correspondence between the downlink and the
reciprocal uplink.

Precoding is the analogous operation to successive cancelation in the uplink. A
precoding scheme that perfect cancels the intra-cell interference caused to a user
was described.
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Precoding operation requires full CSI; hard to justify in an FDD system. With
only partial CSI at the base station, an opportunistic beamforming scheme with
multiple orthogonal beams utilizes the full spatial degrees of freedom.

Downlink with multiple receive antennas

Each user’s link is enhanced by receive beamforming: both a power gain and a
diversity gain equal to the number of receive antennas are obtained.
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10.6 Bibliographical Notes

The precoding technique for communicating on a channel where the transmitter is
aware of (part of) the channel uncertainty was first studied in the context of the ISI
channel by Tomlinson [97] and Harashima and Miyakawa [45]. More sophisticated
precoders for the ISI channel (designed for use in telephone modems) were developed
by Eyuboglu and Forney [27] and Laroia, et. al. [56]. A survey on precoding and
shaping for ISI channels is contained in an article by Forney and Ungerböck [30].

Information theoretic study of a state dependent channel where the transmitter
has non-causal knowledge of the state was studied, and the capacity characterized, by
Gelfand and Pinsker [36]. The calculation of the capacity for the important special
case of additive Gaussian noise and an additive Gaussian state was done by Costa [19]
who concluded the surprising result that the capacity is the same as the same channel
where the state is known to the receiver also. Practical construction of the binning
schemes (involving two steps: a vector quantization step and a channel coding step) is
still an ongoing effort and the current progress is surveyed by Zamir, Shamai and Erez
[125]. The performance of the opportunistic orthogonal signaling scheme, which uses
orthogonal signals as both channel codes and vector quantizers, was analyzed by Liu
and Viswanath [61].

The conceptual connection between the Costa precoding scheme and an achievable
region for the general broadcast channel by Marton [66] in the context of the multiple
antenna downlink channel was made by Caire and Shamai [15]. The optimality of these
schemes for the sum rate was shown in [15, 115, 124, 111]. A technique for general outer
bounds was derived in [100, 112]. A conjecture stated in these two works was proved by
Weingarten, Steinberg and Shamai [117]; this proved that the Costa precoding scheme
achieves the entire capacity region of the multiple antenna downlink.

The change of variable (reciprocity) between the uplink and the downlink was
observed in different contexts: linear beamforming [110, 28], capacity of the point to
point MIMO channel [95], and achievable rates of the single antenna Gaussian MAC
and BC [49]. The presentation here is based on a unified understanding of these results
[115].
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Exercises

Exercise 10.1. Consider the time invariant uplink with multiple receive antennas (c.f.
(10.1)). Suppose user k transmits data at power Pk, k = 1 . . . K. We would like to
employ a bank of linear MMSE receivers at the base station to decode the data of the
users:

x̂k[m] = c∗ky[m], (10.88)

is the estimate of the data symbol xk[m].

1. Find an explicit expression for the linear MMSE filter ck (for user k). Hint:
Recall the analogy between the uplink here with independent data streams being
transmitted on a point to point MIMO channel and see (8.66) in Section 8.3.3.

2. Explicitly calculate the SINR of user k using the linear MMSE filter. Hint: See
(8.67).

Exercise 10.2. Consider the bank of linear MMSE receivers at the base station de-
coding the user signals in the uplink (as in Exercise 10.1). We would like to tune the
transmit powers of the users P1, . . . , PK such that the SINR of each user (calculated in
Exercise 10.1(2)) is at least equal to a target level β. Show that if it is possible to find
a set of power levels that meet this requirement, then there exists a component-wise
minimum power setting that meets the SINR target level. This result is on similar
lines to the one in Exercise 4.5 and is proved in [104].

Exercise 10.3. In this problem, a sequel to Exercise 10.2, we will see an adaptive
algorithm that updates the transmit powers and linear MMSE receivers for each user in
a greedy fashion. This algorithm is closely related to the one we studied in Exercise 4.8
and is adapted from [104].

Users begin (at time 1) with an arbitrary power setting p
(1)
1 , . . . , p

(1)
K . The bank

of linear MMSE receivers (c
(1)
1 , . . . , c

(1)
K ) at the base station is tuned to these transmit

powers. At time m + 1, each user updates its transmit power and its MMSE filter as
a function of the power levels of the other users at time m so that its SINR is exactly
equal to β. Show that if there exists a set of powers such that the SINR requirement can
be met, then this synchronous update algorithm will converge to the component-wise
minimal power setting identified in Exercise 10.2.

In this exercise, the update of the user powers (and corresponding MMSE filters)
is synchronous among the users. An asynchronous algorithm, analogous to the one in
Exercise 4.9, works as well.

Exercise 10.4. Consider the two user uplink with multiple receive antennas (c.f.
(10.1)):

y[m] =
2∑

k=1

hkxk[m] + w[m]. (10.89)
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Suppose user k has an average power constraint Pk, k = 1, 2.

1. Consider orthogonal multiple access: with α fraction of the degrees of freedom
allocated to user 1 (and 1−α fraction to user 2), the reliable communication rates
of the two users are given in eqn. (10.7). Calculate the fraction α that yields the
largest sum rate achievable by orthogonal multiple access and the corresponding
sum rate. Hint: Recall the result for the uplink with a single receive antenna in
Section 6.1.3 that the largest sum rate with orthogonal multiple access is equal
to the sum capacity of the uplink, c.f. Figure 6.4.

2. Consider the difference between the sum capacity of the uplink with multiple
receive antennas (c.f. (10.4)) with the largest sum rate of this uplink with or-
thogonal multiple access.

(a) Show that this difference is zero exactly when h1 = ch2 for some (complex)
constant c.

(b) Suppose h1 and h2 are not scalar complex multiples of each other. Show
that at high SNR (N0 goes to zero) the difference between the two sum
rates becomes arbitrarily large. With P1 = P2 = P , calculate the rate of
growth of this difference with SNR (P/N0). We conclude that at high SNR
(large values of P1, P2 as compared to N0) orthogonal multiple access is very
suboptimal in terms of the sum of the rates of the users.

Exercise 10.5. Consider the K-user uplink and focus on the sum and symmetric
capacities. The base station has an array of nr receive antennas. With receiver CSI
and fast fading, we have the following expression: the symmetric capacity is

Csym =
1

K
E [log2 det (Inr + SNRHH∗)] bps/Hz. (10.90)

and the sum capacity Csum is KCsym. Here the columns of H represent the receive
spatial signatures of the users and are modeled as i.i.d. CN (0, 1). Each user has an
identical transmit power constraint P , and the common SNR is equal to P/N0.

1. Show that the sum capacity increases monotonically with the number of users.

2. Show that the symmetric capacity, on the other hand, goes to zero as the number
of users K grows large, for every fixed SNR value and nr.

3. Show that the sum capacity increases linearly in K at low SNR. Thus the sym-
metric capacity is independent of K at low SNR values.

4. Argue that at high SNR the sum capacity only grows logarithmically in K as K
increases beyond nr.
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5. Plot Csum and Csym as a function of K for sample SNR values (from 0 dB to 30
dB) and sample nr values (3 through 6). Can you conclude some general trends
from your plots? In particular, focus on the following issues.

(a) How does the value of K at which the sum capacity starts to grow slowly
depend on nr?

(b) How does the value of K beyond which the symmetric capacity starts to
decay rapidly depend on nr?

(c) How does the answer to the previous two questions change with the oper-
ating SNR value?

You should be able to arrive at the following rule of thumb: K = nr is a good
operating point at most SNR values in the sense that increasing K beyond it
does not increase the sum capacity by much, and in fact reduces the symmetric
capacity by quite a bit.

Exercise 10.6. Consider the K user uplink with nr multiple antennas at the base
station as in Exercise 10.5. The expression for the symmetric capacity is in (10.90).
Argue that the symmetric capacity at low SNR is comparable to the symmetric rate
with orthogonal multiple access. Hint: Recall the discussion on the low SNR MIMO
performance gain in Section 8.2.2.

Exercise 10.7. In a slow fading uplink, the multiple receive antennas can be used to
improve the reliability of reception (diversity gain), improve the rate of communication
at a fixed reliability level (multiplexing gain), and also spatially separate the signals of
the users (multiple access gain). A reading exercise is to study [101, 71] which derive
the fundamental tradeoff between these gains.

Exercise 10.8. In this exercise, we further study the comparison between orthogonal
multiple access and SDMA with multiple receive antennas at the base station. While
orthogonal multiple access is simple to implement, SDMA is the capacity achieving
scheme and outperforms orthogonal multiple access in certain scenarios (c.f. Exer-
cise 10.4) but requires complex joint decoding of the users at the base station.

Consider the following access mechanism which is a cross between purely orthogonal
multiple access (where all the users signals are orthogonal) and purely SDMA (where
all the K users share the bandwidth and time simultaneously). Divide the K users
into groups of approximately nr users each. We provide orthogonal resource allocation
(time, frequency or a combination) to each of the groups but within each group the
users (approximately nr of them) operate in an SDMA mode.

We would like to compare this intermediate scheme with orthogonal multiple access
and SDMA. Let us use the largest symmetric rate achievable with each scheme as
the performance criterion. The uplink model (same as the one in Exercise 10.5) is
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the following: receiver CSI with i.i.d. Rayleigh fast fading. Each user has the same
average transmit power constraint P , and SNR denotes the ratio of P to the background
complex Gaussian noise power N0.

1. Write an expression for the symmetric rate with the intermediate access scheme
(the expression for the symmetric rate with SDMA is in (10.90)).

2. Show that the intermediate access scheme has performance comparable to both
orthogonal multiple access and SDMA at low SNR.

3. Show that the intermediate access scheme has performance comparable to SDMA
at high SNR.

4. Fix the number of users K (to, say, 30) and the number of receive antennas nr

(to, say, 5). Plot the symmetric rate with SDMA, orthogonal multiple access and
the intermediate access scheme as a function of SNR (0 dB to 30 dB). How does
the intermediate access scheme compare with SDMA and orthogonal multiple
access for the intermediate SNR values?

Exercise 10.9. Consider the K user uplink with multiple receive antennas (c.f. (10.1)):

y[m] =
K∑

k=1

hkxk[m] + w[m]. (10.91)

Consider the sum capacity with full CSI (c.f. (10.17)):

Csum = max
Pk(H), k=1,...,K

E

[
log det

(
Inr +

1

N0

K∑

k=1

Pk (H)hkh
∗
k

)]
, (10.92)

where we have written H = [h1, . . . ,hK ]. User k has an average power constraint
P ; due to the ergodicity in the channel fluctuations, the average power is equal to
the ensemble average of the power transmitted at each fading state (Pk (H) when the
channel state is H). So the average power constraint can be written as

E [Pk (H)] ≤ P. (10.93)

We would like to understand what power allocations maximize the sum capacity in
(10.92).

1. Consider the map from a set of powers to the corresponding sum rate in the
uplink:

(P1, . . . , PK) 7→ log det

(
Inr +

K∑

k=1

Pkhkh
∗
k

)
. (10.94)
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Show that this map is jointly concave in the set of powers. Hint: You will
find useful the following generalization (to higher dimensions) of the elementary
observation that the map x 7→ log x is concave for positive reals x:

A 7→ log det (A) (10.95)

is concave in the set of positive definite matrices A.

2. Due to the concavity property, we can characterize the optimal power allocation
policy using the Lagrangian:

L (P1 (H) , . . . , PK (H)) := E

[
log det

(
Inr +

K∑

k=1

Pk (H)hkh
∗
k

)]
−

K∑

k=1

λkE [Pk (H)] .

(10.96)
The optimal power allocation policy P ∗

k (H) satisfies the Kuhn-Tucker equations:

∂L

∂Pk (H)

{
= 0 if P ∗

k (H) > 0
≤ 0 if P ∗

k (H) = 0
. (10.97)

Calculate the partial derivative explicitly to arrive at:

h∗k

(
Inr +

K∑
j=1

P ∗
j (H)hjh

∗
j

)−1

hk

{
= λk if P ∗

k (H) > 0
≤ λk if P ∗

k (H) = 0
. (10.98)

Here λ1, . . . , λK are constants such that the average power constraint in (10.93)
is met. With i.i.d. channel fading statistics (i.e., h1, . . . ,hK are i.i.d. random
vectors), these constants can be taken to be equal.

3. The optimal power allocation P ∗
k (H) , k = 1 . . . , K satisfying (10.98) is also the

solution to the following optimization problem:

max
P1,...,PK≥0

log det

(
Inr +

K∑

k=1

Pkhkh
∗
k

)
−

K∑

k=1

λkPk. (10.99)

In general, no closed form solution to this problem is known. However, efficient
algorithms yielding numerical solutions have been designed; see [13]. Solve nu-
merically an instance of the optimization problem in (10.99) with nr = 2, K = 3,

h1 =

[
1
0

]
,h2 =

[
0
1

]
,h3 =

[
1
1

]
, (10.100)

and λ1 = λ2 = λ3 = 0.1. You might find the software package [67] useful.
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4. To get a feel for the optimization problem in (10.99) let us consider a few illus-
trative examples.

(a) Consider the uplink with a single receive antenna, i.e., nr = 1. Further
suppose that each of the |hk|2/λk, k = 1, . . . , K are distinct. Show that an
optimal solution to the problem in (10.99) is to allocate positive power to
at most one user:

P ∗
k =

{ (
1
λk
− 1

|hk|2
)+

if |hk|2
λk

= maxj=1...K
|hj |2
λj

0 else
. (10.101)

This calculation is a reprise of that in Section 6.3.3.

(b) Now suppose there are 3 users in the uplink with two receive antennas, i.e.,
K = 3 and nr = 2. Suppose λk = λ, k = 1, 2, 3 and

h1 =

[
1
1

]
, h2 =

[
1

exp (j2π/3)

]
, h3 =

[
1

exp (j4π/3)

]
. (10.102)

Show that the optimal solution to (10.99) is:

P ∗
k =

2

9

(
3

λ
− 1

)+

, k = 1, 2, 3. (10.103)

Thus for nr > 1 the optimal solution in general allocates positive power to
more than one user. Hint: First show that for any set of powers P1, P2, P3

with their sum constrained (to say P ), it is always optimal to choose them
all equal (to P/3).

Exercise 10.10. In this exercise, we look for an approximation to the optimal power
allocation policy derived in Exercise 10.9. To simplify our calculations, we take i.i.d.
fading statistics of the users so that λ1, . . . , λK can all be taken equal (and denoted by
λ).

1. Show that

h∗k

(
Inr +

K∑
j=1

Pjhjh
∗
j

)−1

hk =
h∗k

(
Inr +

∑
j 6=k Pjhjh

∗
j

)−1

hk

1 + h∗k
(
Inr +

∑
j 6=k Pjhjh∗j

)−1

hkPk

. (10.104)

Hint: You will find the matrix inversion lemma (c.f. (8.130)) useful.

2. Starting from (10.98), use (10.104) to show that the optimal power allocation
policy can be rewritten as:

P ∗
k (H) =


1

λ
− 1

h∗k
(
Inr +

∑
j 6=k P ∗

j (H)hjh∗j
)−1

hk




+

. (10.105)
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3. The quantity

SINRk := h∗k

(
Inr +

∑

j 6=k

P ∗
j (H)hjh

∗
j

)−1

hkP
∗
k (H) (10.106)

can be interpreted as the SINR at the output of an MMSE filter used to demod-
ulate user k’s data (c.f. (8.67)). If we define

I0 :=
P ∗

k (H) ‖hk‖2

SINRk

, (10.107)

then I0 can be interpreted as the interference plus noise seen by user k. Substi-
tuting (10.107) in (10.105) we see that the optimal power allocation policy can
be written as:

Pk (H) =

(
1

λ
− I0

‖hk‖2

)+

. (10.108)

While this power allocation appears to be the same as that of waterfilling, we
have to be careful since I0 itself is a function of the power allocations of the other
users (which themselves depend on the power allocated to user k, c.f. (10.105)).
However, in a large system with K and nr large enough (but the ratio of K and
nr being fixed) I0 converges to a constant in probability (with i.i.d. zero mean
entries of H, the constant it converges to depends only on the variance of the
entries of H, the ratio between K and nr and the background noise density N0).
This convergence result is essentially an application of a general convergence
result that is of the same nature as the singular values of a large random matrix
(discussed in Section 8.2.2). This justifies (10.21) and the details of this result
can be found in [113].

Exercise 10.11.

Exercise 10.12. Consider the two user MIMO uplink (c.f. Section 10.2.1) with input
covariances Kx1,Kx2.

1. Consider the corner point A in Figure 10.13 which depicts the achievable rate
region using this input strategy. Show (as an extension of (10.5)) that at the
point A the rates of the two users are

R2 = log det (Inr + H2Kx2H
∗
2) , (10.109)

R1 = log det
(
Inr + H1Kx1 (N0Inr + H2Kx2H

∗
2)
−1 H∗

1

)
. (10.110)

2. Analogously, calculate the rate pair represented by the point B.
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Exercise 10.13. Consider the capacity region of the two user MIMO uplink (the
convex hull of the union of the pentagon in Figure 10.13 for all possible input strategies
parameterized by Kx1 and Kx2. Let us fix positive weights a1 ≤ a2 and consider
maximizing a1R1 + a2R2 over all rate pairs (R1, R2) in the capacity region.

1. Fix an input strategy (Kxk, k = 1, 2) and consider the value of a1R1 + a2R2

at the two corner points A and B of the corresponding pentagon (evaluated in
Exercise 10.12). Show that the value of the linear functional is always no lesser
at the vertex A than at the vertex B. You can use the expression for the rate
pairs at the two corner points A and B derived in Exercise 10.12. This result is
analogous to the polymatroid property derived in Exercise 6.9 for the capacity
region of the single antenna uplink.

2. Now we would like to optimize a1R1 + a2R2 over all possible input strategies.
Since the linear functional will always be optimized at one of the two vertices A
or B in one of the pentagons, we only need to evaluate a1R1 +a2R2 at the corner
point A (c.f. (10.110) and (10.109)) and then maximize over the different input
strategies:

max
Kxk,TrKxk≤Pk, k=1,2

a1 log det
(
Inr + H1Kx1 (N0Inr + H2Kx2H

∗
2)
−1 H∗

1

)

+a2 log det (Inr + H2Kx2H
∗
2) . (10.111)

Show that the function being maximized above is jointly concave in the input
Kx1,Kx2. Hint: Show that a1R1 + a2R2 evaluated at the point A can also be
written as

a1 log det (Inr + H1Kx1H
∗
1 + H2Kx2H

∗
2) + (a2 − a1) log det (Inr + H2Kx2H

∗
2) .

(10.112)
Now use the concavity property in (10.95) to arrive at the desired result.

3. In general there is no closed form solution to the optimization problem in (10.111).
However, the concavity property of the function being maximized has been used
to design efficient algorithms that arrive at numerical solutions to this problem,
[13].

Exercise 10.14. Consider the two user fast fading MIMO uplink (c.f. (10.25)). In the
angular domain representation (c.f. (7.70))

Ha
k[m] = U∗

rHk[m]Ut, k = 1, 2, (10.113)

suppose that the stationary distribution of Ha
k[m] has entries that are zero mean and

uncorrelated (and further independent across the two users. Now consider maximizing
the linear functional a1R1 + a2R2 (with a1 ≤ a2) over all rate pairs (R1, R2) in the
capacity region.
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1. As in Exercise 10.13, show that the maximal value of the linear functional is
attained at the vertex A in Figure 10.7 for some input covariances. Thus conclude
that, analogous to (10.112), the maximal value of the linear functional over the
capacity region can be written as

max
Kxk, TrKxk≤Pk, k=1,2

a1E [log det (Inr + H1Kx1H
∗
1 + H2Kx2H

∗
2)]

+ (a2 − a1)E [log det (Inr + H2Kx2H
∗
2)] .(10.114)

2. Analogous to Exercise 8.3 show that the input covariances of the form in (10.27)
achieve the maximum above in (10.114).

Exercise 10.15. Consider the two user fast fading MIMO uplink under i.i.d. Rayleigh
fading. Show that the input covariance in (10.30) achieves the maximal value of every
linear functional a1R1 + a2R2 over the capacity region. Thus the capacity region
in this case is simply a pentagon. Hint: Show that the input covariance in (10.30)
simultaneously maximizes each of the constraints (10.28) and (10.29).

Exercise 10.16. Consider the (primal) MIMO channel

y[m] = Hx[m] + w[m], (10.115)

and its reciprocal
yrec[m] = H∗xrec[m] + wrec[m]. (10.116)

The MIMO channel H has nt transmit antennas and nr receive antennas (so the re-
ciprocal channel H∗ is nt times nr). Here w[m] is i.i.d. CN (0, N0Inr) and wrec[m] is
i.i.d. CN (0, N0Int). Consider sending nmin independent data streams on both these
channels. The data streams are transmitted on the channels after passing through
linear transmit filters (represented by unit norm vectors): v1, . . . ,vnmin

for the primal
channel and u1, . . . ,unmin

for the reciprocal channel. The data streams are then recov-
ered from the received signal after passing through linear receive filters: u1, . . . ,unmin

for the primal channel and v1, . . . ,vnmin
for the reciprocal channel. This process is

illustrated in Figure 10.32.

1. Suppose powers Q1, . . . , Qnmin
are allocated to the data streams on the primal

channel and powers P1, . . . , Pnmin
are allocated to the data streams on the re-

ciprocal channel. Show that the SINR for data stream k on the primal channel
is

SINRk =
Qku

∗
kHvk

N0 +
∑

j 6=k Qju∗kHvj

, (10.117)

and that on the reciprocal channel is

SINRrec
k =

Pkv
∗
kH

∗uk

N0 +
∑

j 6=k Pjv∗kH
∗uj

. (10.118)
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Figure 10.32: The data streams being transmitted and received via linear filters on the
primal (top) and reciprocal (bottom) channels.
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2. Suppose we fix the linear transmit and receive filters and want to allocate powers
to meet a target SINR for each data stream (in both the primal and recipro-
cal channels). Find an expression analogous to (10.43) for the component-wise
minimal set of power allocations.

3. Show that to meet the same SINR requirement for a given data stream on both
the primal and reciprocal channels, the sum of the minimal set of powers is the
same in both the primal and reciprocal channels. This is a generalization of
(10.45).

4. We can use this general result to see earlier results in a unified way.

(a) With the filters vk = [0, . . . , 0, 1, 0, . . . , 0]t (with the single 1 in the kth po-
sition), show that we capture the uplink-downlink duality result in (10.45).

(b) Suppose H = UΛV∗ is the singular value decomposition. With the filters
uk equal to the first nmin rows of U and the filters vk equal to the first nmin

columns of V, show that this transceiver architecture achieves the capacity
of the point-to-point MIMO primal and reciprocal channels with the same
overall transmit power constraint, c.f. Figure 7.2. Thus conclude that this
result captures the reciprocity property discussed in Exercise 8.1.

Exercise 10.17. [61] Consider the opportunistic orthogonal signaling scheme de-
scribed in Section 10.3.3. Each of the M messages corresponds to K (real) orthogonal
signals. The encoder transmits that signal which has the largest correlation (among the
K possible choices corresponding to the message to be conveyed) with the interference
(real white Gaussian process with power spectral density Ns/2). The decoder decides
the most likely transmit signal (among the MK possible choices) and then decides
on the message corresponding to the most likely transmit signal. Fix the number of
messages, M , and the number of signals for each message, K. Suppose that message
1 is to be conveyed.

1. Derive a good upper bound on the error probability of opportunistic orthogonal
signaling. Here you can use the technique developed in the upper bound on
the error probability of regular orthogonal signaling in Exercise 5.9. What is
the appropriate choice of the threshold, γ, as a function of M, K and the power
spectral densities Ns/2, N0/2?

2. By an appropriate choice of K as a function of M, Ns, N0 show that the upper
bound you have derived converges to zero as M goes to infinity as long as Eb/N0

is larger than −1.59 dB.

3. Can you explain why opportunistic orthogonal signaling achieves the capacity of
the infinite bandwidth AWGN channel with no interference by interpreting the
correct choice of K?
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4. We have worked with the assumption that the interference s(t) is white Gaussian.
Suppose s(t) is still white but not Gaussian. Can you think of a simple way to
modify the opportunistic orthogonal signaling scheme presented in the text so
that we still achieve the same minimal Eb/N0 of -1.59 dB?

Exercise 10.18. Consider a real random variable x1 that is restricted to the range
[0, 1] and x2 is another random variable that is jointly distributed with x1. Suppose u
is a uniform random variable on [0, 1] and is jointly independent of x1 and x2. Consider
the new random variable

x̃1 =

{
x1 + u if x1 + u ≤ 1
x1 + u− 1 if x1 + u > 1

. (10.119)

The random variable x̃1 can be thought of as the right cyclic addition of x1 and u.

1. Show that x̃1 is uniformly distributed on [0, 1].

2. Show that x̃1 and (x1, x2) are independent.

Now suppose x1 is the Costa-precoded signal containing the message to user 1 in a
two user single antenna downlink based on x2, the signal of user 2 (c.f. Section 10.3.4).
If the realization of the random variable u is known to user 1 also, then x̃1 and x1

contain the same information (since the operation in (10.119) is invertible). Thus we
could transmit x̃1 in place of x1 without any change in the performance of user 1. But
the important change is that the transmit signal x̃1 is now independent of x2.

The common random variable u, shared between the base station and user 1, is
called the dither. Here we have focused on a single time symbol and made x̃1 uniform.
With a large block length, this basic argument can be extended to make the transmit
vector x̃1 appear Gaussian and independent of x2; this dithering idea is used to justify
(10.65).

Exercise 10.19. Consider the two user single antenna downlink (c.f. (10.63)) with
|h1| > |h2|. Consider the rate tuple

(
R
′
1, R

′
2

)
achieved via Costa precoding in (10.66).

In this exercise we show that this rate pair is strictly inside the capacity region of the
downlink. Suppose we allocate powers Q1, Q2 to the two users and do superposition
encoding and decoding (c.f. Figures 6.7 and 6.8) and aim to achieve the same rates as
the pair in (10.66).

1. Calculate Q1, Q2 such that

R
′
1 = log

(
1 +

|h1|2Q1

N0

)
, R

′
2 = log

(
1 +

|h2|2Q2

N0 + |h2|2Q1

)
, (10.120)

where R
′
1 and R

′
2 are the rate pair in (10.66).
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2. Using the fact that user 1 has a stronger channel than user 2 (i.e., |h1| > |h2|)
show that the total power used in the superposition strategy to achieve the same
rate pair (i.e., Q1 + Q2 from the previous part) is strictly smaller than P1 + P2,
the transmit power in the Costa precoding strategy.

3. Observe that an increase in transmit power strictly increases the capacity region
of the downlink. Hence conclude that the rate pair in (10.66) achieved by the
Costa precoding strategy is strictly within the capacity region of the downlink.

Exercise 10.20. Consider the K user downlink channel with a single antenna (an
extension of the two user channel in (10.63)):

yk[m] = hkx[m] + wk[m], k = 1, . . . , K. (10.121)

Show that the following rates are achievable using Costa precoding, extending the
argument in Section 10.3.4:

Rk = log

(
1 +

|hk|2Pk∑K
j=k+1 |hj|2Pj + N0

)
, k = 1, . . . , K. (10.122)

Here P1, . . . , PK are some nonnegative numbers that sum to P , the transmit power
constraint at the base station. You should not need to assume any specific ordering of
the channels qualities |h1|, |h2|, . . . , |hK | in arriving at your result. On the other hand,
if we have

|h1| ≤ |h2| ≤ · · · ≤ |hK |, (10.123)

then the superposition coding approach, discussed in Section 6.2 achieves the rates in
(10.122).

Exercise 10.21. Consider the reciprocal uplink channel in (10.40) with the receive
filters u1, . . . ,uK as in Figure 10.16. This time we embellish the receiver with successive
cancellation, canceling users in the order K through 1 (i.e., user k does not see any
interference from users K,K − 1, . . . k + 1). With powers Q1, . . . , QK allocated to the
users, show that the SINR for user k can be written as

SINRul
k =

Qk | u∗khk |2
N0 +

∑
j<k Qj | u∗khj |2 . (10.124)

To meet the same SINR requirement as in the downlink with Costa precoding in the
reverse order (the expression for the corresponding SINR is in (10.72)) show that the
sum of the minimal powers required is the same for the uplink and the downlink. This
is an extension of the conservation of sum of powers property seen without cancellation
in (10.45).
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Exercise 10.22. Consider the fast fading multiple transmit antenna downlink (c.f.
(10.73)) where the channels from antenna i to user k is modeled as i.i.d. CN (0, 1)
random variables (for each antenna i = 1, . . . , nt and for each user k = 1, . . . , K).
Further suppose that the channel fluctuations are i.i.d. over time as well. Each user
has access to the realization of its channel fluctuations, while the base station only has
knowledge of the statistics of the channel fluctuations (the receiver CSI model). There
is an overall power constraint P on the transmit power.

1. With just one user in the downlink, we have a MIMO channel with receiver only
CSI. Show that the capacity of this channel is equal to

E
[
log

(
1 +

SNR‖h‖2

nt

)]
, (10.125)

where h ∼ CN (0, Int) and SNR = P/N0. Hint: Recall (8.15) and Exercise 8.4.

2. Since the statistics of the user channels are identical, argue that if user k can
decode its data reliably, then all the other users can also successfuly decode user
k’s data (as we did in Section 6.4.1 for the single antenna downlink). Conclude
that the sum of the rates at which the users are being simultaneously reliably
transmitted to is bounded as:

K∑

k=1

Rk ≤ E
[
log

(
1 +

SNR

nt

h∗h
)]

, (10.126)

analogous to (6.52).

Exercise 10.23. Consider the downlink with multiple receive antennas (c.f. (10.78)).
Show that the random variables x[m] and yk[m] are independent conditioned on ỹk[m].
Hence conclude that

I (x;yk) = I (x; ỹk) , k = 1, 2. (10.127)

Thus there is no loss in information by having a matched filter front end at each of the
users converting the SIMO downlink into a single antenna channel to each user.

Exercise 10.24. Consider the two-user uplink fading channel with multiple antennas
at the base station:

y[m] = h1[m]x1[m] + h2[m]x2[m] + w[m]. (10.128)

Here the user channels {h1[m]} , {h2[m]} are statistically independent. Suppose that
h1[m] and h2[m] are CN (0, N0Inr). We operate the uplink in SDMA mode with the
users having the same power P . The background noise w[m] is i.i.d. CN (0, N0Inr).
An SIC receiver decodes user 1 first, removes its contribution from {y[m]} and then
decodes user 2. We would like to assess the effect of channel estimation error of h2 on
the performance of user 1.
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1. Suppose the users send training symbols using orthogonal multiple access and
they spend 20% of their power on sending the training signal, repeated every Tc

seconds which is the channel coherence time of the users. What is the mean-
square estimation error of h1 and h2?

2. The first step of the SIC receiver is to decode user 1’s information suppressing
the user 2’s signal. Using the linear MMSE filter to suppress the interference,
numerically evaluate the average output SINR of the filter due to the channel es-
timation error, as compared to that with perfect channel estimation (c.f. (8.62)).
Plot the degradation (ratio of the SINRs with imperfect and perfect channel
estimates) as a function of the SNR, P/N0, with Tc = 10 ms.

3. Argue using the previous calculation that better channel estimates are required
to fully harness the gains of interference suppression. This means that the pilots
in the uplink with SDMA have to be stronger than in the uplink with a single
receive antenna.

Exercise 10.25. In this exercise, we explore the effect of channel measurement error
on the reciprocity relationship between the uplink and the downlink. To isolate the
situation of interest, consider just a single user in the uplink and the downlink (this
is the natural model whenever the multiple access is orthogonal) with only the base
station having an array of antennas. The uplink channel is (c.f. (10.40))

yul[m] = hxul[m] + wul[m], (10.129)

with a power constraint of Pul on the uplink transmit symbol xul. The downlink channel
is (c.f. (10.39))

ydl[m] = h∗xdl[m] + wdl[m], (10.130)

with a power constraint of Pdl on the downlink transmit vector xdl.

1. Suppose a training symbol is sent with the full power Pul over one symbol time in
the uplink to estimate the channel h at the base station. What is the mean-square
error in the best estimate ĥ of the channel h?

2. Now suppose the channel estimate ĥ from the previous part is used to beamform
in the downlink, i.e., the transmit signal is

xdl =
ĥ

‖ĥ‖xdl,

with the power in the data symbol xdl equal to Pdl. What is the average received
SNR in the downlink? The degradation in SNR is measured by the ratio of
the average received SNRs with imperfect and perfect channel estimates. For a
fixed uplink SNR, Pul/N0, plot the average degradation for different values of the
downlink SNR, Pdl/N0.
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3. Argue using your calculations that using the reciprocal channel estimate in the
downlink is most beneficial when the uplink power Pul is larger or of the same
order as the downlink power Pdl. Further, there is a huge degradation in perfor-
mance when Pdl is much larger than Pul.
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Appendix A

Detection and Estimation in
Additive Gaussian Noise

A.1 Gaussian Random Variables

A.1.1 Scalar Real Gaussian Random Variable

A standard Gaussian random variable w takes values over the real line and has the
probability density function

f(w) =
1√
2π

exp

(
−w2

2

)
, w ∈ <. (A.1)

The mean of w is zero and the variance is 1. This random variable is called a standard
Gaussian random variable. A (general) Gaussian random variable x is of the form

x = σw + µ. (A.2)

The mean of x is µ and the variance is equal to σ2. The random variable x is a
one-to-one function of w and thus the probability density function follows from (A.1)
as

f(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
, x ∈ <. (A.3)

Since the random variable is completely characterized by its mean and variance, we
denote x byN (µ, σ2). In particular, the standard Gaussian random variable is denoted
by N (0, 1). The tail of the Gaussian random variable w:

Q(a) := P {w > a} . (A.4)

is plotted in Figure A.1. The plot and the computations Q (1) = 0.159 and Q (3) =
0.00015 give a sense for how rapidly the tails decay. The tails decay exponentially fast

582
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Figure A.1: The Q function.

as evidenced by the following upper and lower bounds:

1√
2πa

(
1− 1

a2

)
e−a2/2 < Q(a) < e−a2/2, a > 1. (A.5)

An important property of Gaussianity is that it is preserved by linear transforma-
tions: linear combinations of independent Gaussian random variables are still Gaussian.
If x1, . . . , xn are independent and xi ∼ N (µi, σ

2
i ) (where the ∼ notation represents the

phrase “is distributed as”), then

n∑
i=1

cixi ∼ N
(

n∑
i=1

ciµi,

n∑
i=1

c2
i σ

2
i

)
. (A.6)

A.1.2 Real Gaussian Random Vectors

A standard Gaussian random vector w is a collection of n independent and identically
distributed (i.i.d. ) standard Gaussian random variables w1, . . . , wn. The vector w =
(w1, . . . , wn)t takes values in the vector space <n. The probability density function of
w follows from (A.1):

f(w) =
1(√
2π

)n exp

(
−‖w‖

2

2

)
, w ∈ <n. (A.7)
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f(a) = f(a′)
a

Figure A.2: The isobars, i.e., level sets for the density f(w) of the standard Gaussian
random vector, are circles for n = 2.

Here ‖w‖ :=
√∑n

i=1 w2
i , is the Euclidean distance from the origin to w := (w1, . . . , wn)t.

Note that the density depends only on the magnitude of the argument. Since an or-
thogonal transformation O (i.e., OtO = OOt = I) preserves the magnitude of a vector,
we can immediately conclude:

If w is standard Gaussian, then Ow is also standard Gaussian. (A.8)

What this result says is that w has the same distribution in any orthonormal basis.
Geometrically, the distribution of w is invariant to rotations and reflections and hence
w does not prefer any specific direction. Figure A.2 illustrates this isotropic behavior
of the density of the standard Gaussian random vector w. Another conclusion from
(A.8) comes from observing that the rows of matrix O are orthonormal: the projections
of the standard Gaussian random vector in orthogonal directions are independent.

How is the squared magnitude ‖w‖2 distributed? The squared magnitude is equal
to the sum of the square of n i.i.d. zero-mean Gaussian random variables. In the
literature this sum is called a χ-squared random variable with n degrees of freedom
and denoted by χ2

n. With n = 2, the squared magnitude has density

f(a) =
1

2
exp

(
−a

2

)
, a ≥ 0, (A.9)

and is said to be exponentially distributed. The density of the χ2
n random variable for

general n is derived in Exercise A.1.
Gaussian random vectors are defined as linear transformations of a standard Gaus-

sian random vector plus a constant vector, a natural generalization of the scalar case
(c.f. (A.2)):

x = Aw + µ. (A.10)
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Here A is a matrix representing a linear transformation from <n to <n and µ is a fixed
vector in <n. Several implications follow:

1. A standard Gaussian random vector is also Gaussian (with A = I and µ = 0).

2. For any c, a vector in <n, the random variable

ctx ∼ N (
ctµ, ctAAtc

)
; (A.11)

this follows directly from (A.6). Thus any linear combination of the elements of
a Gaussian random vector is a Gaussian random variable1. More generally, any
linear transformation of a Gaussian random vector is also Gaussian.

3. If A is invertible, then the probability density function of x follows directly from
(A.7) and (A.10) :

f(x) =
1(√

2π
)n √

det (AAt)
exp

(
−1

2
(x− µ)t (AAt

)−1
(x− µ)

)
, x ∈ <n.

(A.12)
The isobars of this density are ellipses; the circles of the standard Gaussian
vectors being rotated and scaled by A (Figure A.3). The matrix AAt replaces σ2

in the scalar Gaussian random variable (c.f. (A.3)) and is equal to the covariance
matrix of x:

K := E
[
(x− µ) (x− µ)t] = AAt. (A.13)

For invertible A, the Gaussian random vector is completely characterized by its
mean vector µ and its covariance matrix K = AAt, which is a symmetric and
non-negative definite matrix. We make a few inferences from this observation:

(a) Even though the Gaussian random vector is defined via the matrix A, only
the covariance matrix K = AAt is used to characterize the density of x. Is
this surprising? Consider two matrices A and AO used to define two Gaus-
sian random vectors as in (A.10). When O is orthogonal, the covariance
matrices of both these random vectors is the same, equal to AAt: so the
two random vectors must be distributed identically. We can see this directly
using our earlier observation (c.f. (A.8)) that Ow has the same distribution
as w and thus AOw has the same distribution as Aw.

(b) A Gaussian random vector is composed of independent Gaussian random
variables exactly when the covariance matrix K is diagonal, i.e., the compo-
nent random variables are uncorrelated. Such a random vector is also called
a white Gaussian random vector.

1This property can be used to define a Gaussian random vector; it is equivalent to our definition
in (A.10).
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Figure A.3: The isobars of a general Gaussian random vector are ellipses. They corre-
sponds to level sets {x : ‖A−1(x− µ)‖2 = c} for constants c.

(c) When the covariance matrix K is equal to identity, i.e., the component
random variables are uncorrelated and have the same unit variance then the
Gaussian random vector reduces to the standard Gaussian random vector.

4. Now suppose that A is not invertible. Then Aw maps the standard Gaussian
random vector w into a subspace of dimension less than n, and the density of Aw
is equal to zero outside of that subspace and impulsive inside. This means that
some components of Aw can be expressed as linear combinations of the others.
To avoid messy notation, we can focus only on those components of Aw that are
linearly independent and represent them as a lower dimensional vector x̃, and
represent the other components of Aw as (deterministic) linear combinations of
the components of x̃. By this strategem, we can always take the covariance K
to be invertible.

In general, a Gaussian random vector is completely characterized by its mean µ and
by the covariance matrix K; we denote the random vector by N (µ,K).

A.1.3 Complex Gaussian Random Vectors

So far we have considered real random vectors. In this book, we are primarily interested
in complex random vectors; these are of the form x = xR + jxI where xR,xI are real
random vectors. Complex Gaussian random vectors are ones in which [xR,xI ]

t is a
real Gaussian random vector. The distribution is completely specified by the mean
and covariance matrix of the real vector [xR,xI ]

t. Exercise A.3 shows that the same
information is contained in the mean µ, the covariance matrix K and the pseudo-
covariance matrix J of the complex vector x, where

µ := E[x] (A.14)
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K := E [(x− µ) (x− µ)∗] (A.15)

J := E
[
(x− µ) (x− µ)t] (A.16)

Here, A∗ is the transpose of the matrix A with each element replaced by its complex
conjugate, and At is just the transpose of A. Note that in general the covariance matrix
K of the complex random vector x by itself is not enough to specify the full second-
order statistics of x. Indeed, since K is Hermitian, i.e., K = K∗, the diagonal elements
are real and the elements in the lower and upper triangles are complex conjugates
of each other. Hence it is specified by n2 real parameters, where n is the (complex)
dimension of x. On the other hand, the full second-order statistics of x are specified by
the n(2n + 1) real parameters in the symmetric 2n× 2n covariance matrix of [xR,xI ]

t.
For reasons explained in Chapter 2, in wireless communication we are almost exclu-

sively interested in complex random vectors that have the circular symmetry property:

x is circular symmetric if ejθx has the same distribution of x for any θ. (A.17)

For a circular symmetric complex random vector x,

E[x] = E
[
ejθx

]
= ejθE[x] (A.18)

for any θ; hence the mean µ = 0. Moreover

E
[
xxt

]
= E

[
ejθx

(
ejθx

)t
]

= ej2θE
[
xxt

]
(A.19)

for any θ; hence the pseudo-covariance matrix J is also zero. Thus, the covariance
matrix K fully specifies the first and second order statistics of a circular symmetric
random vector. And if the complex random vector is also Gaussian, K in fact specifies
its entire statistics. A circular symmetric Gaussian random vector with covariance
matrix K is denoted as CN (0,K).

Some special cases:

1. A complex Gaussian random variable w = wR + jwI with i.i.d. zero-mean Gaus-
sian real and imaginary components is circular symmetric. The circular symme-
try of w is in fact a re-statement of the rotational invariance of the real Gaussian
random vector [wR, wI ]

t already observed (c.f. (A.8)). In fact, a circular sym-
metric Gaussian random variable must have i.i.d. zero-mean real and imaginary
components (Exercise A.5). The statistics are fully specified by the variance
σ2 := E[|w|2], and the complex random variable is denoted as CN (0, σ2). (Note
that in contrast, the statistics of a general complex Gaussian random variable
are specified by five real parameters: the means and the variances of the real and
imaginary components and their correlation.) The phase of w is uniform over the
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range [0, 2π] and independent of the magnitude ‖w‖, which has a density given
by:

f(r) =
r

σ2
exp

{−r2

2σ2

}
, r ≥ 0 (A.20)

and is known as a Rayleigh random variable. The square of the magnitude,
i.e., w2

1 + w2
2, is χ2

2, i.e. exponentially distributed, c.f. (A.9). A random variable
distributed as CN (0, 1) is said to be standard.

2. A collection of n i.i.d. CN (0, 1) random variables forms a standard circular sym-
metric Gaussian random vector w and is denoted by CN (0, I). The density
function of w can be explicitly written as, following from (A.7),

f(w) =
1

πn
exp

(−‖w‖2
)
, w ∈ Cn. (A.21)

As in the case of a real Gaussian random vector N (0, I) (c.f. (A.8)), we have the
property that

Uw has the same distribution as w, (A.22)

for any complex orthogonal matrix U (such a matrix is called a unitary matrix
and is characterized by the property U∗U = I). The property (A.22) is the
complex extension of the isotropic property of the real standard Gaussian random
vector (c.f. (A.8)). Note the distinction between the circular symmetry (A.17)
and the isotropic (A.22) properties: the latter is in general much stronger than
the former except that they coincide when w is scalar.

The square of the magnitude of w, as in the real case, is a χ2
2n random variable.

3. If w is CN (0, I) and A is a complex matrix, then x = Aw is also circular sym-
metric Gaussian, with covariance matrix K = AA∗, i.e., CN (0,K). Conversely,
any circular symmetric Gaussian random vector with covariance matrix K can be
written as a linear transformed version of a standard circular symmetric random
vector. If A is invertible, the density function of x can be explicitly calculated
via (A.21), as in (A.12),

f(x) =
1

πn
√

detK
exp

(−x∗K−1x
)
, x ∈ Cn. (A.23)

When A is not invertible, the earlier discussion for real random vectors applies
here as well: we focus only the linearly independent components of x, and treat
the other components as deterministic linear combinations of these ones. This
allows us to work with a compact notation.
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Summary A.1 Complex Gaussian Random Vectors
• An n-dimensional complex Gaussian random vector x has real and imaginary com-

ponents which form a 2n-dimensional real Gaussian random vector.

• x is circular symmetric if for any θ,

ejθx ∼ x. (A.24)

• A circular symmetric Gaussian x has zero mean and its statistics are fully specified
by the covariance matrix K := E[xx∗]. It is denoted by CN (0,K).

• The scalar complex random variable w ∼ CN (0, 1) has i.i.d. real and imaginary
components each distributed as N (0, 1/2). The phase of w is uniformly distributed
in [0, 2π] and independent of its magnitude |w|, which is Rayleigh distributed:

f(r) = r exp

(
−r2

2

)
, r ≥ 0. (A.25)

|w|2 is exponentially distributed.

• If the random vector w ∼ CN (0, I), then its real and imaginary components are
all i.i.d, and w is isotropic, i.e., for any unitary matrix U,

Uw ∼ w. (A.26)

Equivalently, the projections of w onto orthogonal directions are i.i.d. CN (0, 1).
The squared magnitude ‖w‖2 is distributed as χ2

2n with mean n.

• If x ∼ CN (0,K) and K is invertible, then the density of x is:

f(x) =
1

πn
√

detK
exp

(−x∗K−1x
)
, x ∈ Cn. (A.27)

A.2 Detection in Gaussian Noise

A.2.1 Scalar Detection

Consider the real additive Gaussian noise channel:

y = u + w, (A.28)
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where the transmit symbol u is equally likely to be uA or uB (uA > uB ∈ <) and
w ∼ N (0, N0/2) is real Gaussian noise. The detection problem involves making a
decision on whether uA or uB was transmitted based on the observation y. The optimal
detector, with the least probability of making an erroneous decision, chooses the symbol
that is most likely to have been transmitted given the received signal y, i.e., uA is chosen
if

P {u = uA|y} ≥ P {u = uB|y} . (A.29)

Since the two symbols uA, uB are equally likely to have been transmitted, Bayes’ rule
lets us simplify this to the maximum likelihood (ML) receiver, which chooses the trans-
mit symbol that makes the observation y most likely. Conditioned on u = ui, the
received signal y ∼ N (ui, N0/2) , i = A,B, and the decision rule is to choose uA if

1√
πN0

exp

(
−(y − uA)2

N0

)
≥ 1√

πN0

exp

(
−(y − uB)2

N0

)
, (A.30)

and uB otherwise. The ML rule in (A.30) further simplifies: choose uA when

|y − uA| < |y − uB|. (A.31)

The rule is illustrated in Figure A.4 and can be interpreted as corresponding to choosing
the nearest neighboring transmit symbol. The probability of making an error, the same
whether the symbol uA or uB was transmitted, is equal to

P
{

y <
uA + uB

2
|u = uA

}
= P

{
w >

|uA − uB|
2

}
= Q

(
|uA − uB|
2
√

N0/2

)
. (A.32)

Thus, the error probability only depends on the distance between the two transmit
symbols uA, uB.

A.2.2 Detection in a Vector Space

Now consider detecting the transmit vector u equally likely to be uA or uB (both
elements of <n). The received vector is:

y = u + w, (A.33)

and w ∼ N (0, (N0/2)I). Analogous to (A.30), the ML decision rule is to choose uA if

1

(πN0)
n/2

exp

(
−‖y − uA‖2

N0

)
≥ 1

(πN0)
n/2

exp

(
−‖y − uB‖2

N0

)
, (A.34)

which simplifies to, analogous to (A.31),

‖y − uA‖ < ‖y − uB‖, (A.35)
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Figure A.4: The ML rule is to choose the symbol that is closest to the received symbol.

the same nearest neighbor rule. By the isotropic property of the Gaussian noise, we
expect the error probability to be the same for both the transmit symbols uA,uB.
Suppose uA is transmitted, so y = uA + w. Then an error occurs when the event in
(A.35) does not occur, i.e., ‖w‖ > ‖w + uA − uB‖. So, the error probability is equal
to

P
{‖w‖2 > ‖w + uA − uB‖2

}
= P

{
(uA − uB)t w < −‖uA − uB‖2

2

}
. (A.36)

Geometrically, this says that the decision regions are the two sides of the hyperplane
perpendicular to the vector uB−uA, and an error occurs when the received vector lies
on the side of the hyperplane opposite to the transmit vector (Figure A.5). We know
from (A.11) that (uA − uB)t w ∼ N (0, ‖uA − uB‖2N0/2). Thus the error probability
in (A.36) can be written in compact notation as

Q

(
‖uA − uB‖
2
√

N0/2

)
. (A.37)

The quantity ‖uA − uB‖/2 is the distance from each of the vectors uA,uB to the
decision boundary. Comparing the error probability in (A.37) with that, as in the scalar
case (c.f. (A.32), we see that the the error probability depends only on the Euclidean
distance between uA and uB and not on the specific orientations and magnitudes of
uA and uB.
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Figure A.5: The decision regions for the nearest neighbor rule is partitioned by the
hyperplane perpendicular to uB − uA and halfway between uA and uB.

An Alternative View

To see how we could have reduced the vector detection problem to the scalar one,
consider a small change in the way we think of the transmit vector u ∈ {uA,uB}. We
can write the transmit vector u as

u = x (uA − uB) +
1

2
(uA + uB) , (A.38)

where the information is in the scalar x, which is equally likely to be±1/2. Substituting
(A.38) in (A.33), we can subtract the constant vector (uA + uB) /2 from the received
signal y to arrive at

y − 1

2
(uA + uB) = x (uA − uB) + w. (A.39)

We observe that the transmit symbol (a scalar x) is only in a specific direction:

v := (uA − uB) /‖uA − uB‖. (A.40)

The components of the received vector y in the directions orthogonal to v contain
purely noise, and, due to the isotropic property of w, the noise in these directions is also
independent of the noise in the signal direction. This means that the components of the
received vector in these directions are irrrelevant for detection. Therefore projecting
the received vector along the signal direction v provides all the necessary information
for detection:

ỹ := vt

(
y − 1

2
(uA + uB)

)
. (A.41)

We have thus reduced the vector detection problem to the scalar one. Figure A.6
summarizes the situation.
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Figure A.6: Projecting the received vector y onto the signal direction v reduces the
vector detection problem to the scalar one.

More formally, we are viewing the received vector in a different orthonormal basis:
the first direction is that given by v, and the other directions are orthogonal to each
other and to the first one. In other words, we form an orthogonal matrix O whose first
row is v, and the other rows are orthogonal to each other and to the first one and have
unit norm. Then

O

(
y − 1

2
(uA + uB)

)
=




x‖uA − uB‖
0
...
0


 + Ow. (A.42)

Since Ow ∼ N (0, (N0/2)I) (c.f. (A.8)), this means that all but the first component
of the vector O

(
y − 1

2
(uA + uB)

)
are independent of the transmit symbol x and the

noise in the first component. Thus it suffices to make a decision on the transmit symbol
x, using only the first component, which is precisely (A.41).

This important observation can be summarized:

1. In technical jargon, the scalar ỹ in (A.41) is called a sufficient statistic of the
received vector y to detect the transmit symbol u.

2. The sufficient statistic ỹ is a projection of the received signal in the signal di-
rection v: in the literature on communication theory, this operation is called a
matched filter; the linear filter at the receiver is “matched” to the direction of
the transmit signal.

3. This argument explains why the error probability depends on uA and uB only
through the distance between them: the noise is isotropic and the entire detection
problem is rotationally invariant.
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We now arrive at a scalar detection problem:

ỹ = x‖uA − uB‖+ w, (A.43)

where w, the first component of Ow is N (0, N0/2) and independent of the transmit
symbol u. The effective distance between the two constellation points is ‖uA − uB‖.
The error probability is, from (A.32),

Q

(
‖uA − uB‖
2
√

N0/2

)
, (A.44)

the same as that arrived at in (A.37), via a direct calculation.
The above argument for binary detection generalizes naturally to the case when

the transmit vector can be one of M vectors u1, . . . ,uM . The projection of y onto
the subspace spanned by u1, . . . ,uM is a sufficient statistic for the detection problem.
In the special case when the vectors u1, . . . ,uM are collinear, i.e. ui = hxi for some
vector h (for example, when we are transmitting from a PAM constellation), then a
projection onto the direction h provides a sufficient statistic.

A.2.3 Detection in a Complex Vector Space

Consider detecting the transmit symbol u, equally likely to be one of two complex
vectors uA,uB in additive standard complex Gaussian noise. The received complex
vector is

y = u + w, (A.45)

where w ∼ CN (0, N0I). We can proceed as in the real case. Write

u = x (uA − uB) +
1

2
(uA + uB) . (A.46)

The signal is in the direction

v := (uA − uB) /‖uA − uB‖. (A.47)

Projection of the received vector y onto v provides a (complex) scalar sufficient statis-
tic:

ỹ := v∗
(
y − 1

2
(uA + uB)

)
= x‖uA − uB‖+ w (A.48)

where w ∼ CN (0, N0). Note that since x is real (±1/2), we can further extract a
sufficient statistic by looking only at the real component of ỹ:

<[ỹ] = x‖uA − uB‖+ <[w] (A.49)
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where <[w] ∼ N(0, N0/2). The error probability is exactly as in (A.44):

Q

(
‖uA − uB‖
2
√

N0/2

)
, (A.50)

Note that although uA and uB are complex vectors, the transmit vectors

x (uA − uB) +
1

2
(uA + uB) . x = ±1 (A.51)

lies in a subspace of one real dimension and hence we can extract a real sufficient
statistic. If there are more than 2 possible transmit vectors and they are of the form
hxi where xi is complex valued, h∗y is still a sufficient statistic but <[h∗y] is sufficient
only if x is real (for example, when we are transmitting a PAM constellation).

The main results of our discussion are summarized below.

Summary A.2 Vector Detection in Complex Gaussian Noise

Binary Signals:
The transmit vector u is either uA or uB and we wish to detect u from received

vector
y = u + w, (A.52)

where w ∼ CN (0, N0I). The ML detector picks the transmit vector closest to y
and the error probability is:

Q

(
‖uA − uB‖
2
√

N0/2

)
. (A.53)

Collinear Signals:
The transmit symbol x is equally likely to take one of a finite set of values in C

(the constellation points) and the received vector is

y = hx + w, (A.54)

where h is a fixed vector.
Projecting y onto the unit vector v := h/‖h‖ yields a scalar sufficient statistic:

v∗y = ‖h‖x + w. (A.55)

Here w ∼ CN (0, N0).
If further the constellation is real-valued, then

<[v∗y] = ‖h‖x + <[w] (A.56)
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is sufficient. Here <[w] ∼ N (0, N0/2).
With antipodal signalling, x = ±a, the ML error probability is simply

Q

(
a‖h‖√
N0/2

)
. (A.57)

Via a translation, the binary signal detection problem in the first part of the
summary can be reduced to this antipodal signalling scenario.

A.3 Estimation in Gaussian Noise

A.3.1 Scalar Estimation

Consider a zero mean real transmit signal x embedded in independent additive real
Gaussian noise (w ∼ N (0, N0/2)):

y = x + w. (A.58)

Suppose we wish to come up with an estimate x̂ of x and we use the mean squared
error (MSE) to evaluate the performance:

MSE := E
[
(x− x̂)2] , (A.59)

where the averaging is over the randomness of both the transmit signal x and the noise
w. This problem is quite different from the detection problem studied in Section A.2.
The estimate that yields the smallest mean squared error is the classical conditional
mean operator:

x̂ = E [x|y] , (A.60)

which has the important orthogonality property: the error is independent of the obser-
vation. In particular, this implies that

E [(x̂− x)y] = 0. (A.61)

The orthogonality principle is a classical result and all standard text books dealing
with probability theory and random variables treat this material.

In general, the conditional mean operator E [x|y] is some complicated nonlinear
function of y. To simplify the analysis, one studies the restricted class of linear es-
timates that minimize the MSE. This restriction is without loss of generality in the
important case when x is a Gaussian random variable because, in this case, the condi-
tional mean operator is actually linear.
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Since x is zero mean, linear estimates are of the form x̂ = cy for some real number
c. What is the best linear estimator c? This can be derived directly or via using the
orthogonality principle (c.f. (A.61)):

c =
E [x2]

E [x2] + N0/2
. (A.62)

Intuitively, we are weighting the received signal y by the the transmit signal energy as
a fraction of the received signal energy. The corresponding minimum mean squared
error (MMSE) is:

MMSE =
E [x2] N0/2

E [x2] + N0/2
. (A.63)

A.3.2 Estimation in a Vector Space

Now consider estimating x in a vector space:

y = hx + w, (A.64)

Here x and w ∼ N (0, (N0/2)I) are independent and h is a fixed vector in <n. We
have seen that the projection of y in the direction of h:

ỹ =
hty

‖h‖2
= x + w, (A.65)

is a sufficient statistic: the projections of y in directions orthogonal to h are indepen-
dent of both the transmit signal x and w, the noise in the direction of h. Thus we can
convert this problem to a scalar one: estimate x from ỹ, with w ∼ N (0, N0/ (2‖h‖2)).
Now this problem is identical to the scalar estimation problem in (A.58) with the en-
ergy of the noise w suppressed by a factor of ‖h‖2. The best linear estimate of x is
thus, as in (A.62),

E [x2] ‖h‖2

E [x2] ‖h‖2 + N0/2
ỹ. (A.66)

We can combine the sufficient statistic calculation in (A.65) and the scalar linear
estimate in (A.66) to arrive at the best linear estimate x̂ = cty of x from y:

c =
E [x2]

E [x2] ‖h‖2 + N0/2
h. (A.67)

The corresponding minimum mean squared error is:

MMSE =
E [x2] N0/2

E [x2] ‖h‖2 + N0/2
. (A.68)
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An alternative performance measure to evaluate linear estimators is the signal to
noise ratio (SNR) defined as the ratio of the signal energy in the estimate to the noise
energy:

SNR :=
(cth)

2 E [x2]

‖c‖2N0/2
. (A.69)

That the matched filter (c = h) yields the maximal SNR at the output of any linear
filter is a classical result in communication theory (and is studied in all standard text
books on the topic). It follows directly from the Cauchy-Schwartz inequality:

(
cth

)2 ≤ ‖c‖2 ‖h‖2, (A.70)

with equality exactly when c = h. The fact that the matched filter maximizes the SNR
and when appropriately scaled yields the MMSE is not coincidental; this is studied in
greater detail in Exercise A.8.

A.3.3 Estimation in a Complex Vector Space

The extension of our discussion to the complex field is natural. Let us first consider
scalar complex estimation, an extension of the basic real setup in (A.58):

y = x + w, (A.71)

where w ∼ CN (0, N0) is independent of the complex zero mean transmit signal x.
We are interested in a linear estimate x̂ = c∗y, for some complex constant c. The
performance metric is

MSE = E
[|x− x̂|2] . (A.72)

The best linear estimate x̂ = c∗y can be directly calculated to be, as an extension of
(A.62)

c =
E [|x|2]

E [|x|2] + N0

. (A.73)

The corresponding minimum MSE is

MMSE =
E [|x|2] N0

E [|x|2] + N0

. (A.74)

The orthogonality principle (c.f. (A.61)) for the complex case is extended to:

E [(x̂− x)y∗] = 0. (A.75)

The linear estimate in (A.73) is easily seen to satisfy (A.75).
Now let us consider estimating the scalar complex zero mean x in a complex vector

space:
y = hx + w, (A.76)
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with w ∼ CN (0, N0I) independent of x and h a fixed vector in Cn. The projection of
y in the direction of h is a sufficient statistic and we can reduce the vector estimation
problem to a scalar one: estimate x from

ỹ =
h∗y
‖h‖2

= x + w, (A.77)

where w ∼ CN (0, N0/‖h‖2).
Thus the best linear estimator is, as an extension of (A.67),

c =
E [|x|2]

E [|x|2] ‖h‖2 + N0

h. (A.78)

The corresponding minimum MSE is, as an extension of (A.68),

MMSE =
E [x2] N0

E [x2] ‖h‖2 + N0

. (A.79)

Summary A.3 Mean Square Estimation in a Complex Vector Space
The linear estimate with the smallest mean squared error of x from

y = x + w, (A.80)

with w ∼ CN (0, N0), is

x̂ =
E [|x|2]

E [|x|2] + N0

y. (A.81)

To estimate x from

y = hx + w, (A.82)

where w ∼ CN (0, N0I),

h∗y (A.83)

is a sufficient statistic, reducing the vector estimation problem to the scalar one.

The best linear estimator is

x̂ =
E [|x|2]

E [|x|2] ‖h‖2 + N0

h∗y. (A.84)

The corresponding minimum mean squared error (MMSE) is:

MMSE =
E [|x|2] N0

E [|x|2] ‖h‖2 + N0

. (A.85)
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In the special case when x ∼ CN (µ, σ2), this estimator yields the minimum
mean squared error among all estimators, linear or non-linear.

Exercises

Exercise A.1. Consider the n-dimensional standard Gaussian random vector w ∼
N (0, In) and its squared magnitude ‖w‖2.

1. With n = 1, show that the density of ‖w‖2 is

f1(a) =
1√
2πa

exp
(
−a

2

)
, a ≥ 0. (A.86)

2. For any n, show that the density of ‖w‖2 (denoted by fn (·)) satisfies the recursive
relation:

fn+2 (a) =
a

n
fn (a) , a ≥ 0. (A.87)

3. Using the formulas for the densities for n = 1 and 2 (c.f. (A.86) and (A.9),
respectively) and the recurisve relation in (A.87) determine the density of ‖w‖2

for n ≥ 3.

Exercise A.2. Let {w(t)} be white Gaussian noise with power spectral density N0

2
.

Let s1, . . . , sM be a set of finite orthonormal waveforms (i.e., orthogonal and unit
energy), and define zi =

∫∞
−∞ w(t)si(t)dt. Find the joint distribution of z. Hint: Recall

the isotropic property of the normalized Gaussian random vector (c.f. (A.8)).

Exercise A.3. Consider a complex random vector x.

1. Verify that the second-order statistics of x (i.e., the covariance matrix of the real
representation [<[x],=[x]]t) can be completely specified by the covariance and
pseudo-covariance matrices of x , defined in (A.15) and (A.16) respectively.

2. In the case where x is circular symmetric, express the covariance matrix [<[x],=[x]]t

in terms of the covariance matrix of the complex vector x only.

Exercise A.4. Consider a complex Gaussian random vector x.

1. Show that a necessary and sufficient condition for x to be circular symmetric is
that the mean µ and the pseudo-covariance matrix J are zero.

2. Now suppose the relationship between the covariance matrix of [<[x],=[x]]t and
the covariance matrix of x in part (2) of Exercise A.3 holds. Can we conclude
that x is circular symmetric?
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Exercise A.5. Show that a circular symmetric complex Gaussian random variable
must have i.i.d. real and imaginary components.

Exercise A.6. Let x be an n dimensional i.i.d. complex Gaussian random vector, with
the real and imaginary parts distributed as N (0,Kx) where Kx is a 2× 2 covariance
matrix. Suppose U is a unitary matrix (i.e., U∗U = I). Identify the conditions on Kx

under which Ux has the same distribution as x.

Exercise A.7. Let z be an n dimensional i.i.d. complex Gaussian random vector, with
the real and imaginary parts distributed as N (0,Kx) where Kx is a 2× 2 covariance
matrix. We wish to detect a scalar x, equally likely to be ±1 from:

y = hx + z, (A.88)

where x and z are independent and h is a fixed vector in Cn. Identify the conditions
on Kx under which the scalar h∗y is a sufficient statistic to detect x from y.

Exercise A.8. Consider estimating the real zero mean scalar x from:

y = hx + w, (A.89)

where w ∼ N (0, N0/2I) is uncorrelated with x and h is a fixed vector in <n.

1. Consider the scaled linear estimate cty (with the normalization ‖c‖ = 1):

x̂ := a cty =
(
a cth

)
x + a ctz. (A.90)

Show that the constant a that minimizes the mean square error (E
[
(x− x̂)2]) is

equal to
E [x2] |cth|2

E [x2] |cth|2 + N0/2
. (A.91)

2. Calculate the minimal mean square error (denoted by MMSE) of the linear esti-
mate in (A.90) (by using the value of a in (A.91)). Show that

E [x2]

MMSE
= 1 + SNR := 1 +

E [x2] |cth|2
N0/2

. (A.92)

For every fixed linear estimator c, this shows the relationship between the correspond-
ing SNR and MMSE (of an appropriately scaled estimate). In particular, this relation
holds when we optimize over all c leading to the best linear estimator.
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Appendix B

Information Theory Background

This appendix discusses the information theory behind the capacity expressions used
in the book. Section 8.3.4, is the only part of the book that supposes an understanding
of the material in this appendix. More in-depth and broader expositions of information
theory can be found in standard texts such as [22] and [33].

B.1 Discrete Memoryless Channels

Although the transmitted and received signals are continuous-valued in most of the
channels we considered in this book, the heart of the communication problem is discrete
in nature: the transmitter sends one out of a finite number of codewords and the
receiver would like to figure out which codeword is transmitted. Thus, to focus on the
essence of the problem, we first consider channels with discrete input and output, so
called discrete memoryless channels (DMCs).

Both the input x[m] and the output y[m] of a DMC lie in finite sets X and Y
respectively. (These sets are called the input and output alphabets of the chan-
nel respectively.) The statistics of the channel are described by conditional proba-
bilities {p(j|i)}i∈X ,j∈Y . These are also called transition probabilities. Given an in-
put sequence x = (x[1], . . . , x[N ]), the probability of observing an output sequence
y = (y[1], . . . , y[N ]) is given by1

p(y|x) =
N∏

m=1

p(y[m]|x[m]). (B.1)

The interpretation is that the channel noise corrupts the input symbols independently
(hence the term memoryless).

1This formula is only valid when there is no feedback from the receiver to the transmitter, i.e., the
input is not a function of past outputs. This we assume throughout.

602
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Example B.13: Binary Symmetric Channel
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Figure B.1: Examples of discrete memoryless channels: (a) Binary Symmetric Channel;
(b) Binary Erasure Channel.

The binary symmetric channel has binary input and binary output
(X = Y = {0, 1}). The transition probabilities are p(0|1) = p(1|0) = ε,
p(0|0) = p(1|1) = 1− ε. A 0 and a 1 are both flipped with probability ε. See
Figure B.1(a).

Example B.14: Binary Erasure Channel

The binary erasure channel has binary input and ternary output
(X = {0, 1},Y = {0, 1, e}). The transition probabilities are
p(0|0) = p(1|1) = 1− ε, p(e|0) = p(e|1) = ε. Here, symbols cannot be flipped but
can be erased. See Figure B.1(b).

An abstraction of the communication system is abstracted as shown in Figure B.2.
The sender has one out of several equally likely messages it wants to transmit to the
receiver. To convey the information, it uses a codebook C of block length N and size
|C|, where C =

{
x1, . . . ,x|C|

}
and xi’s are the codewords. To transmit the ith message,

the codeword xi is sent across the noisy channel. Based on the received vector y,
the decoder generates an estimate î of the correct message. The error probability is

pe = P
{

î 6= i
}

. We will assume that the maximum likelihood (ML) decoder is used,

since it minimizes the error probability for a given code. Since we are transmitting one
of |C| messages, the number of bits conveyed is log |C|. Since the block length of the
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î
Decoder

p(y|x)

Channel

y = (y[1], . . . , y[N ])xi = (xi[1], . . . , xi[N ])

Encoder

Message

i ∈ {0, 1, . . . , |C| − 1}

Figure B.2: Abstraction of a communication system à la Shannon.

code is N , the rate of the code is R = 1
N

log |C| bits per unit time. The data rate R
and the ML error probability pe are the two key performance measures of a code.

R =
1

N
log |C|. (B.2)

pe = P
{

î 6= i
}

. (B.3)

Information is said to be communicated reliably at rate R if for every δ > 0, one
can find a code of rate R and block length N such that the error probability pe < δ.
The capacity C of the channel is the maximum rate for which reliable communication
is possible.

Note the key feature of this definition is that one is allowed to code over arbitrarily
large block length N . Since there is noise in the channel, it is clear that the error
probability cannot be made arbitrarily small if the block length is fixed a priori. (Recall
the AWGN example in Section 5.1.) Only when the code is over long block lengths,
is there hope that one can rely on some kind of law of large numbers to average out
the random effect of the noise. Still, it is not clear a priori whether a non-zero reliable
information rate can be achieved in general.

Shannon showed not only that C > 0 for most channels of interest but also gave a
simple way to compute C as a function of {p(y|x)}. To explain this we have to first
define a few statistical measures.

B.2 Entropy, Conditional Entropy and Mutual In-

formation

Let x be a discrete random variable taking on values in X and with a probability mass
function px. Define the entropy of x to be2

H(x) :=
∑
i∈X

px(i) log (1/px(i)) . (B.4)

2In this book, all logarithms are taken to the base 2 unless specified otherwise.
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Figure B.3: The binary entropy function.

This can be interpreted as a measure of the amount of uncertainty associated with the
random variable x. The entropy H(x) is always nonnegative and equal to zero if and
only if x is deterministic. If x can take on K values, then it can be shown that the
entropy is maximized when x is uniformly distributed on these K values, in which case
H(x) = log K (see Exercise B.1).

Example B.15: Binary Entropy

The entropy of a binary-valued random variable x which takes on the values with
probabilities p and 1− p is:

H(p) := −p log p− (1− p) log(1− p) (B.5)

The function H(p) is called the binary entropy function, and is plotted in Figure
B.3. It attains its maximum value of 1 at p = 1/2, and is zero when p = 0 or
p = 1. Note that we never mentioned the actual values x takes on; the amount of
uncertainty depends only on the probabilities.
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Let us now consider two random variables x and y. The joint entropy of x and y is
defined to be:

H(x, y) :=
∑

i∈X ,j∈Y
px,y(i, j) log (1/px,y(i, j)) . (B.6)

The entropy of x conditional on y = j is naturally defined to be :

H(x|y = j) :=
∑
i∈X

px|y(i|j) log
(
1/px|y(i|j)

)
. (B.7)

This can be interpreted as the amount of uncertainty left in x after observing that
y = j. The conditional entropy of x given y is the expectation of this quantity,
averaged over all possible values of y:

H(x|y) :=
∑
j∈Y

py(j)H(x|y = j) =
∑

i∈X ,j∈Y
px,y(i, j) log

(
1/px|y(i|j)

)
. (B.8)

The quantity H(x|y) can be interpreted as the average amount of uncertainty left in
x after observing y. Note that

H(x, y) = H(x) + H(y|x) = H(y) + H(x|y). (B.9)

This has a natural interpretation: the total uncertainty in x and y is the sum of the
uncertainty in x plus the uncertainty in y conditional on x. This is called the chain
rule for entropies. In particular, if x and y are independent, H(x|y) = H(x) and hence
H(x, y) = H(x) + H(y). One would expect that conditioning reduces uncertainty, and
in fact it can be shown that

H(x|y) ≤ H(x), (B.10)

with equality if and only if x and y are independent. (See Exercise B.2.) Hence,

H(x, y) = H(x) + H(y|x) ≤ H(x) + H(y), (B.11)

with equality if and only if x and y are independent.
The quantity H(x)−H(x|y) is of special significance to the communication problem

at hand. Since H(x) is the amount of uncertainty in x before observing y, this quantity
can be interpreted as the reduction in uncertainty of x from the observation of y, i.e.,
the amount of information in y about x. Similarly, H(y)−H(y|x) can be interpreted
as the reduction in uncertainty of y from the observation of x. Note that

H(y)−H(y|x) = H(y) + H(x)−H(x, y) = H(x)−H(x|y). (B.12)

So if one defines:

I(x; y) := H(y)−H(y|x) = H(x)−H(x|y), (B.13)



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 608

then this quantity is symmetric in the random variables x and y. I(x; y) is called the
mutual information between x and y. A consequence of (B.10) is that the mutual
information I(x; y) is a nonnegative quantity, and equal to zero if and only if x and y
are independent.

We have defined the mutual information between scalar random variables, but the
definition extends naturally to random vectors. For example, I(x1, x2; y) should be
interpreted as the mutual information between the random vector (x1, x2) and y, i.e.,
I(x1, x2; y) = H(x1, x2) − H(x1, x2|y). One can also define a notion of conditional
mutual information:

I(x; y|z) := H(x|z)−H(x|y, z). (B.14)

Note that since
H(x|z) =

∑

k

pz(k)H(x|z = k), (B.15)

and
H(x|y, z) =

∑

k

pz(k)H(x|y, z = k), (B.16)

it follows that
I(x; y|z) =

∑

k

pz(k)I(x; y|z = k). (B.17)

Given three random variables x1, x2 and y, observe that

I(x1, x2; y) = H(x1, x2)−H(x1, x2|y)

= H(x1) + H(x2|x1)− [H(x1|y) + H(x2|x1, y)]

= I(x1; y) + I(x2; y|x1).

This is the chain rule for mutual information:

I(x1, x2; y) = I(x1; y) + I(x2; y|x1). (B.18)

In words: the information that x1 and x2 jointly provide about y is equal to the sum of
the information x1 provides about y plus the additional information x2 provides about
y after observing x1. This fact is very useful in Chapters 7 to 10.

B.3 Noisy Channel Coding Theorem

Let us now go back to the communication problem shown in Figure B.2. We convey
one of |C| equally likely messages by mapping it to its N -length codeword in the code
C = {x1, . . . ,x|C|}. The input to the channel is then an N -dimensional random vector
x, uniformly distributed on the codewords of C. The output of the channel is another
N -dimensional vector y.
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B.3.1 Reliable Communication and Conditional Entropy

To decode the transmitted message correctly with high probability, it is clear that
the conditional entropy H(x|y) has to be close to zero. Otherwise, there is too much
uncertainty in the input given the output to figure out what the right message is. Now,

H(x|y) = H(x)− I(x;y), (B.19)

i.e., the uncertainty in x subtracting the reduction in uncertainty in x by observing
y. The entropy H(x) is equal to log |C| = NR, where R is the data rate. For reliable
communication, H(x|y) ≈ 0, which implies

R ≈ 1

N
I(x;y). (B.20)

Intuitively: for reliable communication, the rate of flow of mutual information across
the channel should match the rate at which information is generated. Now, the mutual
information depends on the distribution of the random input x, and this distribution
is in turn a function of the code C. By optimizing over all codes, we get an upper
bound on the reliable rate of communication:

max
C

1

N
I(x;y). (B.21)

B.3.2 A Simple Upper Bound

The optimization problem (B.21) is a high-dimensional combinatorial one and it is
difficult to solve. Observe that since the input vector x is uniformly distributed on
the codewords of C, the optimization in (B.21) is over only a subset of possible input
distributions. We can derive a further upper bound by relaxing the feasible set and
allow the optimization to be over all input distributions:

C̄ := max
px

1

N
I(x;y), (B.22)

Now,

I(x;y) = H(y)−H(y|x), (B.23)

≤
N∑

m=1

H(y[m])−H(y|x), (B.24)

=
N∑

m=1

H(y[m])−
N∑

m=1

H(y[m]|x[m]), (B.25)

=
N∑

m=1

I(x[m]; y[m]). (B.26)
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The inequality in (B.24) follows from (B.11) and the equality in (B.25) comes from
the memoryless property of the channel. Equality in (B.24) is attained if the output
symbols are independent over time, and one way to achieve this is to make the inputs
independent over time. Hence,

C̄ =
1

N

N∑
m=1

max
px[m]

I(x[m]; y[m]) = max
px[1]

I(x[1]; y[1]). (B.27)

Thus, the optimizing problem over input distributions on the N -length block reduces
to an optimization problem over input distributions on single symbols.

B.3.3 Achieving the Upper Bound

To achieve this upper bound C̄, one has to find a code whose mutual information
I(x;y)/N per symbol is close to C̄ and such that (B.20) is satisfied. A priori it is
unclear if such a code exists at all. The cornerstone result of information theory, due
to Shannon, is that indeed such codes exist if the block length N is chosen sufficiently
large.

Theorem B.1. (Noisy channel coding theorem [87]) Consider a discrete mem-
oryless channel with input symbol x and output symbol y. The capacity of the
channel is

C = max
px

I(x; y). (B.28)

Shannon’s proof of the existence of optimal codes is through a randomization ar-
gument. Given any symbol input distribution px, we can randomly generate a code C
with rate R by choosing each symbol in each codeword independently according to px.
The main result is that with the rate as in (B.20), the code with large block length N
satisfies with high probability

1

N
I(x;y) ≈ I(x; y). (B.29)

In other words, a reliable communication is possible at the rate of I(x; y). In particular,
by choosing codewords according to the distribution p∗x that maximizes I(x; y), the
maximum reliable rate is achieved. The smaller the desired error probability, the
larger the block length N has to be for the law of large numbers to average out the
effect of the random noise in the channel as well as the effect of the random choice
of the code. We will not go into the details of the derivation of the noisy channel
coding theorem in this book, although the sphere packing argument for the AWGN
channel in Section B.5 suggests that this result is plausible. More details can be found
in standard information theory texts such as that by Cover and Thomas [22].



www.manaraa.com

Tse and Viswanath: Fundamentals of Wireless Communications 611

 0.3

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 0.5

 0.4

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 0.2

 0.1

 0  0

 0.1

 0.2

 0.6
C(ǫ)

(a)

ǫ

C(ǫ)

(a)

ǫ

Figure B.4: The capacity of (a) the binary symmetric channel and (b) the binary
erasure channel.

The maximization in (B.28) is over all distributions of the input random variable
x. Note that the input distribution together with the channel transition probabilities
specifies a joint distribution on x and y. This determines the value of I(x; y). The
maximization is over all possible input distributions. It can be shown that the mutual
information I(x; y) is a concave function of the input probabilities and hence the input
maximization is a convex optimization problem which can be solved very efficiently.
Sometimes one can even appeal to symmetry to obtain the optimal distribution in
closed form.
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Example B.16: Binary Symmetric Channel

The capacity of the binary symmetric channel with crossover probability ε is:

C = max
px

H(y)−H(y|x)

= max
px

H(y)−H(ε)

= 1−H(ε) bits per channel use (B.30)

where H(ε) is the binary entropy function (B.5). The maximum is achieved by
choosing x to be uniform so that the output y is also uniform. The capacity is
plotted in Figure B.4. It is 1 when ε = 0 or 1, and 0 when ε = 1/2.

Note that since a fraction ε of the symbols are flipped in the long run, , one
may think that the capacity of the channel is 1− ε bits per channel use, the
fraction of symbols that get through unflipped. However, this is too naive since
the receiver does not know which symbols are flipped and which are correct.
Indeed, when ε = 1/2, the input and output are independent and there is no way
we can get any information across the channel. The expression (B.30) gives the
correct answer.

Example B.17: Binary Erasure Channel

The optimal input distribution for the binary symmetric channel is uniform
because of the symmetry in the channel. Similar symmetry exists in the binary
erasure channel and the optimal input distribution is uniform too. The capacity
of the channel with erasure probability ε can be calculated to be

C = 1− ε bits per channel use. (B.31)

In the binary symmetric channel, the receiver does not know which symbols
are flipped. In the erasure channel, on the other hand, the receiver knows exactly
which symbols are erased. If the transmitter also knew that information, then it
can send bits only when the channel is not erased and a long-term throughput of
1− ε bits per channel use is achieved. What the capacity result says is that no
such feedback information is necessary; (forward) coding is sufficient to get this
rate reliably.
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B.3.4 Operational Interpretation

There is a common misconception which needs to be pointed out. In solving the input
distribution optimization problem (B.22) for the capacity C, it was remarked that
at the optimal solution, the outputs y[m]’s should be independent, and one way to
achieve this is for the inputs x[m]’s to be independent. Does that imply no coding is
needed to achieve capacity? For example, in the binary symmetric channel, the optimal
input yields i.i.d. equally likely symbols; does it mean then we can send equally likely
information bits raw across the channel and still achieve capacity?

Of course not: to get very small error probability one needs to code over many
symbols. The fallacy of the above argument is that reliable communication cannot be
achieved at exactly the rate C and when the outputs are exactly independent. Indeed,
when the outputs and inputs are i.i.d,

H(x|y) =
N∑

m=1

H(x[m]|y[m]) = NH(x[m]|y[m]), (B.32)

and there is a lot of uncertainty in the input given the output: the communication
is hardly reliable. But once one shoots for a rate strictly less than C, no matter how
close, the coding theorem guarantees that reliable communication is possible. The
mutual information I(x;y)/N per symbol is close to C, the outputs y[m]’s are almost
independent, but now the conditional entropy H(x|y) is reduced abruptly to (close
to) zero since reliable decoding is possible. But to achieve this performance, coding is
crucial; indeed the entropy per input symbol is close to I(x;y)/N , less than H(x[m])
under uncoded transmission. For the binary symmetric channel, the entropy per coded
symbol is 1−H(ε), rather than 1 for uncoded symbols.

The bottomline is that while the value of the input optimization problem (B.22) has
operational meaning as the maximum rate of reliable communication, it is incorrect
to interpret the i.i.d. input distribution which attains that value as the statistics of
the input symbols which achieve reliable communication. Coding is always needed to
achieve capacity. What is true, however, is that if we randomly pick the codewords
according to the i.i.d. input distribution, the resulting code is very likely to be good.
But this is totally different from sending uncoded symbols.

B.4 Formal Derivation of AWGN Capacity

We can now apply the methodology developed in the previous sections to formally
derive the capacity of the AWGN channel.
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B.4.1 Analog Memoryless Channels

So far we focused on channels with discrete-valued input and output symbols. To de-
rive the capacity of the AWGN channel, we need to extend the framework to analog
channels with continuous-valued input and output. There is no conceptual difficulty
in this extension. In particular, Theorem B.1 can be generalized to such analog chan-
nels.3 The definitions of entropy and conditional entropy, however, have to be modified
appropriately.

For a continuous random variable x with pdf fx, define the differential entropy of
x as

h(x) :=

∫ ∞

−∞
fx(u) log (1/fx(u)) du. (B.33)

Similarly, the conditional differential entropy of x given y is defined as

h(x|y) :=

∫ ∞

−∞
fx,y(u, v) log

(
1/fx|y(u|v)

)
dudv. (B.34)

The mutual information is again defined as

I(x; y) := h(x)− h(x|y). (B.35)

Observe that the chain rules for entropy and for mutual information extend readily
to the continuous-valued case. The capacity of the continuous-valued channel can be
shown to be

C = max
fx

I(x; y). (B.36)

This result can be proved by discretizing the continuous-valued input and output of the
channel, approximating it by discrete memoryless channels with increasing alphabet
sizes, and taking limits appropriately.

For many channels, it is common to have a cost constraint on the transmitted
codewords. Given a cost function c : X → < defined on the input symbols, a cost
constraint on the codewords can be defined: we require that every codeword xn in the
codebook must satisfy:

1

N

N∑
m=1

c(xn[m]) ≤ A. (B.37)

One can then ask: what is the maximum rate of reliable communication subject to
this constraint on the codewords. The answer turns out to be:

C = max
fx:E[c(x)]≤A

I(x; y). (B.38)

3Although the underlying channel is analog, the communication process is still digital. This means
that discrete symbols will still be used in the encoding. By formulating the communication problem
directly in terms of the underlying analog channel, this means we are not constraining ourselves to
using a particular symbol constellation (for example, 2-PAM or QPSK) a priori.
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B.4.2 Derivation of AWGN Capacity

We can now apply this result to derive the capacity of the power-constrained (real)
AWGN channel:

y = x + w, (B.39)

The cost function is c(x) = x2. The differential entropy of a N (µ, σ2) random variable
w can be calculated to be:

h(w) =
1

2
log

(
2πeσ2

)
. (B.40)

Not surprisingly, h(w) does not depend on the mean µ of W : differential entropies are
invariant to translations of the pdf. Thus, conditional on the input x of the Gaussian
channel, the differential entropy h(y|x) of the output y is just (1/2) log (2πeσ2). The
mutual information for the Gaussian channel is therefore:

I(x; y) = h(y)− h(y|x) = h(y)− 1

2
log

(
2πeσ2

)
. (B.41)

The computation of the capacity

C = max
fx:E[x2]≤P

I(x; y) (B.42)

is now reduced to finding the input distribution on x to maximize h(y) subject to
a second moment constraint on x. To solve this problem, we use a key fact about
Gaussian random variables: they are differential entropy maximizers. More precisely,
given a constraint E[u2] ≤ A on a random variable u, the distribution u is N (0, A)
maximizes the differential entropy h(u). (See Exercise B.6 for a proof of this fact.)
Applying this to our problem, we see that the second moment constraint of P on x
translates into a second moment constraint of P + σ2 on y. Thus, h(y) is maximized
when y is N (0, P + σ2), which is achieved by choosing x to be N (0, P ). Thus, the
capacity of the Gaussian channel is:

C =
1

2
log

(
2πe(P + σ2)

)− 1

2
log

(
2πeσ2

)
=

1

2
log

(
1 +

P

σ2

)
, (B.43)

agreeing with the result obtained via the heuristic sphere packing derivation in Sec-
tion 5.1. A capacity-achieving code can be obtained by choosing each component of
each codeword i.i.d. N (0, P ). Each codeword is therefore isotropically distributed,
and, by the law of large numbers, with high probability lies near the surface of the
sphere of radius

√
NP . Since in high dimensions, most of the volume of a sphere is

near its surface, this is effectively the same as picking each codeword uniformly from
the sphere.

Now consider a complex baseband AWGN channel:

y = x + w (B.44)
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where w is CN (0, N0). There is an average power constraint of P per (complex) symbol.
One way to derive the capacity of this channel is to think of each use of the complex
channel as two uses of a real AWGN channel, with SNR = (P/2)/(N0/2) = P/N0.
Hence, the capacity of the channel is

1

2
log

(
1 +

P

N0

)
bits per real dimension, (B.45)

or

log

(
1 +

P

N0

)
bits per complex dimension. (B.46)

Alternatively we may just as well work directly with the complex channel and the
associated complex random variables. This will be useful when we deal with other
more complicated wireless channel models later on. To this end, one can think of the
differential entropy of a complex random variable x as that of a real random vector
(<(x),=(x)). Hence, if w is CN (0, N0), h(w) = h(<(w)) + h(=(w)) = log (πeN0). The
mutual information I(x; y) of the complex AWGN channel y = x + w is then

I(x; y) = h(y)− log(πeN0). (B.47)

With a power constraint E[|x|2] ≤ P on the complex input x, y is constrained to
satisfy E[|y|2] ≤ P + N0. Here, we use an important fact: among all complex random
variables, the circular symmetric Gaussian random variable maximizes the differential
entropy for a given second moment constraint. (See Exercise B.7.) Hence, the capacity
of the complex Gaussian channel is

C = log (πe (P + N0))− log(πeN0) = log

(
1 +

P

N0

)
, (B.48)

which is the same as eqn. (5.11).

B.5 Sphere Packing Interpretation

In this section we consider a more precise version of the heuristic sphere-packing argu-
ment in Section 5.1 for the capacity of the real AWGN channel. Furthermore, we will
outline how the capacity as predicted by the sphere packing argument can be achieved.
The material here will be particularly useful when we discuss precoding in Chapter 10.

B.5.1 Upper Bound

Consider transmissions over a block of N symbols, where N is large. Suppose we use
a code C consisting of |C| equally likely codewords {x1, . . . ,x|C|}. By the law of large
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numbers, the N -dimensional received vector y = x + w will with high probability lie
within a y-sphere of radius

√
N(P + σ2), so without loss of generality we need only

to focus on what happens inside this y-sphere. Let Di be the part of the maximum-
likelihood decision region for xi within the y-sphere. The sum of the volumes of the
Di’s is equal to Vy, the volume of the y-sphere. Given this total volume, it can be
shown, using the spherical symmetry of the Gaussian noise distribution, that the error
probability is lower bounded by the (hypothetical) case when the Di’s are all perfect
spheres of equal volume Vy/|C|. But by the law of large numbers, the received vector y

lies near the surface of a noise sphere of radius
√

Nσ2 around the transmitted codeword.
Thus, for reliable communication, Vy/|C| should be no smaller than the volume Vw of
this noise sphere, otherwise even in the ideal case when the decision regions are all
spheres of equal volume, the error probability will still be very large. Hence, the
number of codewords is at most equal to the ratio of the volume of the y-sphere to
that of a noise sphere:

Vy

Vw

=

[√
N(P + σ2)

]N

[√
Nσ2

]N
.

(See Exercise B.10(3) for an explicit expression of the volume of an N dimensional
sphere of a given radius.) Hence, the number of bits per symbol time that can be
reliably communicated is at most

1

N
log




[√
N(P + σ2)

]N

[√
Nσ2

]N


 =

1

2
log

(
1 +

P

σ2

)
. (B.49)

The geometric picture is in Figure B.5.

B.5.2 Achievability

The above argument only gives an upper bound on the rate of reliable communication.
The question is: can we design codes that can perform this well?

Let us use a codebook C = {x1, . . . ,x|C|} such that the N -dimensional codewords

lie in the sphere of radius
√

NP (the “x-sphere”) and thus satisfy the power constraint.
The optimal detector is the maximum likelihood nearest neighbor rule. For reasons that
will be apparent shortly, we instead consider the following sub-optimal detector: given
the received vector y, decode to the codeword xi nearest to αy, where α := P/(P +σ2).

It is not easy to design a specific code that yields good performance, but suppose
we just randomly and independently choose each codeword to have i.i.d. N (0, P ) com-
ponents. By the law of large numbers, the codewords will with high probability lie
near the surface of the x-sphere. Moreover, in high dimensions, most of the volume of
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√
N(P + σ2)

√
Nσ2 √

NP

Figure B.5: The number of noise spheres that can be packed into the y-sphere yields
the maximum number of codewords that can be reliably distinguished.

√
NP

√
NPσ2

P+σ2

x1αy

Figure B.6: The ratio of the volume of the uncertainty sphere to that of the x-sphere
yields the probability that a given random codeword lies inside the uncertainty sphere.
The inverse of this probability yields a lower bound on the number of codewords that
can be reliably distinguished.
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the sphere lies near its surface, and the codewords are essentially uniformly distributed
in the sphere. (See Exercise B.10.)

What is the performance of this random code? Suppose the transmitted codeword
is x1. By the law of large numbers again,

‖αy − x1‖2 = ‖αw + (α− 1)x1‖2,

≈ α2Nσ2 + (α− 1)2NP,

= N
Pσ2

P + σ2
,

i.e., the transmitted codeword lies inside an uncertainty sphere of radius
√

NPσ2/(P + σ2)
around the vector αy. Thus, as long as all the other codewords lie outside this un-
certainty sphere, then the receiver will be able to correctly decode (Figure B.6). The
probability that the random codeword xi (i 6= 1) lies inside the uncertainty sphere is
equal to the ratio of the volume of the uncertainty sphere to that of the x-sphere:

p =

(√
NPσ2/(P + σ2)

)N

(
√

NP )N
=

(
σ2

P + σ2

)N
2

. (B.50)

By the union bound, the probability that any of the codewords (x2, . . . ,x|C|) lies inside
the uncertainty sphere is bounded by (|C| − 1)p. Thus, as long as the number of
codewords is much smaller than 1/p, then the probability of error is small (in particular,
we can take the number of codewords |C| to be 1/pN). In terms of the data rate R
bits per symbol time, this means that as long as

R =
log |C|

N
=

log 1/p

N
− log N

N
<

1

2
log

(
1 +

P

σ2

)
,

then reliable communication is possible.
Both the upper bound and the achievability arguments are based on calculating

the ratio of volumes of spheres. The ratio is the same in both cases, but the spheres
involved are different. The sphere packing picture in Figure B.5 corresponds to the
following decomposition of the capacity expression:

1

2
log

(
1 +

P

σ2

)
= I(x; y) = h(y)− h(y|x), (B.51)

with the volume of the y-sphere proportional to 2Nh(y) and the volume of the noise
sphere proportional to 2Nh(y|x). The picture in Figure B.6, on the other hand, corre-
sponds to the decomposition:

1

2
log

(
1 +

P

σ2

)
= I(x; y) = h(x)− h(x|y), (B.52)
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The volume of the x-sphere is proportional to 2Nh(x). Conditional on y, x is N(αy, σ2
mmse),

where α = P/(P + σ2) is the coefficient of the MMSE estimator of x given y, and

σ2
mmse =

Pσ2

P + σ2
,

is the MMSE estimation error. The radius of the uncertainty sphere considered above
is

√
Nσ2

mmse and its volume is proportional to 2Nh(x|y). In fact the proposed receiver
which finds the nearest codeword to αy is motivated precisely by this decomposition.
In this picture, then, the AWGN capacity formula is being interpreted in terms of the
number of MMSE error spheres that can be packed inside the x-sphere.

B.6 Time-Invariant Parallel Channel

Consider the parallel channel (c.f. (5.33):

ỹn[i] = h̃nd̃n[i] + w̃n[i] n = 0, 1, . . . , Nc − 1, (B.53)

subject to an average total power (sum of the powers over the sub-carriers) constraint
of P (c.f. (5.37)):

‖d̃[i]‖2 ≤ NcP. (B.54)

The capacity in bits per symbol is

CNc = max
E[‖d̃‖2]≤NcP

I(d̃; ỹ). (B.55)

Now

I(d̃; ỹ) = h(ỹ)− h(ỹ|d̃) (B.56)

≤
Nc−1∑
n=0

(
h(ỹn)− h(ỹn|d̃n)

)
(B.57)

≤
Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2
N0

)
. (B.58)

The inequality in (B.57) is from (B.11) and Pn denotes the variance of d̃n in (B.58).
Equality in (B.57) is achieved when d̃n, n = 1, . . . , Nc, are independent. Equality is
achieved in (B.58) when d̃n is CN (0, Pn) , n = 1, . . . , Nc. Thus computing the capacity
in (B.55) is reduced to a power allocation problem (by identifying the variance of d̃n

with the power allocated to the nth sub-carrier):

CNc = max
P0,...,PNc−1

Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2
N0

)
, (B.59)
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subject to

1

Nc

Nc−1∑
n=1

Pn = P, Pn ≥ 0, n = 0, . . . , Nc − 1. (B.60)

The solution to this optimization problem is waterfilling and is described in Sec-
tion 5.3.3.

B.7 Capacity of the Fast Fading Channel

B.7.1 Scalar Fast Fading Channnel

Ideal Interleaving

The fast fading channel with ideal interleaving is modeled as follows:

y[m] = h[m]x[m] + w[m], (B.61)

where the channel coefficients h[m] are i.i.d. in time and independent of the i.i.d.
CN (0, N0) additive noise w[m]. We are interested in the situation when the receiver
tracks the fading channel, but the transmitter only has access to the statistical charac-
terization; the receiver CSI scenario. The capacity of the power-constrained fast fading
channel with receiver CSI can be written as, by viewing the receiver CSI as part of the
output of the channel,

C = max
px:E[x2]≤P

I(x; y, h). (B.62)

Since the fading channel h is independent of the input, I(x; h) = 0. Thus, by the chain
rule of mutual information (c.f. (B.18)),

I(x; y, h) = I(x; h) + I(x; y|h) = I(x; y|h). (B.63)

Conditioned on the fading coefficient h, the channel is simply an AWGN one, with SNR
equal to P |h|2/N0, where we have denoted the transmit power constraint by P . The
optimal input distribution for a power constrained AWGN channel is CN , regardless
of the operating SNR. Thus, the maximizing input distribution in (B.62) is CN (0, P ).
With this input distribution,

I(x; y|h = h) = log

(
1 +

P |h|2
N0

)
,

and thus the capacity of the fast fading channel with receiver CSI is

C = Eh

[
log

(
1 +

P |h|2
N0

)]
, (B.64)

where the average is over the stationary distribution of the fading channel.
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Stationary Ergodic Fading

The above derivation hinges on the i.i.d. assumption on the fading process {h[m]}.
Yet in fact (B.64) holds as long as {h[m]} is stationary and ergodic. The alternative
derivation below is more insightful and valid for this more general setting.

We first fix a realization of the fading process {h[m]}. Recall from (B.20) that
the rate of reliable communication is given by the average rate of flow of mutual
information:

1

N
I(x;y) =

1

N

N∑
m=1

log
(
1 + |h[m]|2SNR

)
. (B.65)

For large N , due to the ergodicity of the fading process,

1

N

N∑
m=1

log
(
1 + |h[m]|2SNR

) → E
[
log(1 + |h|2SNR)

]
, (B.66)

for almost all realizations of the fading process {h[m]}. This yields the same expression
of capacity as in (B.64).

B.7.2 Fast Fading MIMO Channel

We have only considered the scalar fast fading channel so far; the extension of the
ideas to the MIMO case is very natural. The fast fading MIMO channel with ideal
interleaving is (c.f. (8.7))

y[m] = H[m]x[m] + w[m], m = 1, 2, . . . , (B.67)

where the channel H is i.i.d. in time and independent of the i.i.d. additive noise which
is CN (0, N0Inr). There is an average total power constraint of P on the transmit
signal. The capacity of the fast fading channel with receiver CSI is, as in (B.68),

C = max
px:E[|x|2]≤P

I(x;y,H). (B.68)

The observation in (B.63) holds here as well, so the capacity calculation is based on the
conditional mutual information I(x;y|H). If we fix the MIMO channel at a specific
realization, we have

I(x;y|H = H) = h(y)− h(y|x)

= h(y)− h(w) (B.69)

= h(y)− nr log (πeN0) . (B.70)

To proceed, we use the following fact about Gaussian random vectors: they are entropy
maximizers. Specifically, among all n-dimensional complex random vectors with a
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given covariance matrix K, the one that maximizes the differential entropy is complex
circular-symmetric jointly Gaussian CN (0,K) (see Exercise B.8). This is the vector
extension of the result that Gaussian random variables are entropy maximizers for a
fixed variance constraint. The corresponding maximum value is given by

log (det (πeK)) . (B.71)

If the covariance of x is Kx and the channel is H = H, then the covariance of y is

N0Inr + HKxH
∗. (B.72)

Calculating the corresponding maximal entropy of y (c.f. (B.71)) and substituting in
(B.70), we see that

I(x;y|H = H) ≤ log ((πe)nr det (N0Inr + HKxH
∗))− nr log (πeN0)

= log det

(
Inr +

1

N0

HKxH
∗
)

, (B.73)

with equality if x is CN (0,Kx). This means that even if the transmitter does not
know the channel, there is no loss of optimality in choosing the input to be CN .

Finally, the capacity of the fast fading MIMO channel is found by averaging (B.73)
with respect to the stationary distribution of H and choosing the appropriate covari-
ance matrix subject to the power constraint:

C = max
Kx: Tr[Kx]≤P

EH

[
log det

(
Inr +

1

N0

HKxH
∗
)]

. (B.74)

Just as in the scalar case, this result can be generalized to any stationary and
ergodic fading process {H[m]}.

B.8 Outage Formulation

Consider the slow fading MIMO channel (c.f. (8.79))

y[m] = Hx[m] + w[m]. (B.75)

Here the MIMO channel, represented by H (a nr × nt matrix with complex entries),
is random but not varying with time. The additive noise is i.i.d. CN (0, N0) and
independent of H.

If there is a positive probability, however small, that the entries of H are small, then
the capacity of the channel is zero. In particular, the capacity of the i.i.d. Rayleigh
slow fading MIMO channel is zero. So we focus on characterizing the ε-outage capacity:
the largest rate of reliable communication such that the error probability is no more
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than ε. We are aided in this study by viewing the slow fading channel in (B.75) as a
compound channel.

The basic compound channel consists of a collection of DMC’s pθ(y|x), θ ∈ Θ
with the same input alphabet X and the same output alphabet Y and parameterized
by θ. Operationally, the communication between the transmitter and the receiver is
carried out over one specific channel based on the (arbitrary) choice of the parameter
θ from the set Θ. The transmitter does not know the value of θ but the receiver does.
The capacity is the largest rate at which a single coding strategy can achieve reliable
communication regardless of which θ is chosen. The corresponding capacity achieving
strategy is said to be universal over the class of channels parameterized by θ ∈ Θ. An
important result in information theory is the characterization of the capacity of the
compound channel:

C = max
px

inf
θ∈Θ

Iθ(x; y). (B.76)

Here, the mutual information Iθ(x; y) signifies that the conditional distribution
of the output symbol y given the input symbol x is given by the channel pθ(y|x).
The characterization of the capacity in (B.76) offers a natural interpretation: there
exists a coding strategy, parameterized by the input distribution px, that achieves
reliable communication at a rate that is the minimum mutual information among all
the allowed channels. We have considered only discrete input and output alphabets,
but the generalization to continuous input and output alphabets and, further, to cost
constraints on the input follow much in the same line as our discussion in Section B.4.1.
The tutorial article [54] provides a more comprehensive introduction to compound
channels.

We can view the slow fading channel in (B.75) as a compound channel parame-
terized by H. In this case, we can simplify the parameterization of coding strategies
by the input distribution px: for any fixed H and channel input distribution px with
covariance matrix Kx, the corresponding mutual information

I(x;y) ≤ log det

(
Inr +

1

N0

HKxH
∗
)

. (B.77)

Equality holds when px is CN (0,Kx) (see Exercise B.8). Thus we can reparameterize
a coding strategy by its corresponding covariance matrix (the input distribution is
chosen to be CN with zero mean and the corresponding covariance). For every fixed
covariance matrix Kx that satisfies the power constraint on the input, we can reword
the compound channel result in (B.76) as follows. Over the slow fading MIMO channel
in (B.75), there exists a universal coding strategy at a rate R bits/s/Hz that achieves
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reliable communication over all channels H which satisfy the property

log det

(
Inr +

1

N0

HKxH
∗
)

> R. (B.78)

Further more, no reliable communication using the coding strategy parameterized by
Kx is possible over channels that are in outage: that is, they do not satisfy the condition
in (B.78). We can now choose the covariance matrix, subject to the input power
constraints, such that we minimize the probability of outage. With a total power
constraint of P on the transmit signal, the outage probability when communicating at
rate R bits/s/Hz is

pmimo
out := min

Kx:Tr[Kx]≤P
P

{
H : log det

(
Inr +

1

N0

HKxH
∗
)

< R

}
. (B.79)

The ε-outage capacity is now the largest rate R such that pmimo
out ≤ ε.

By restricting the number of receive antennas nr to be 1, this discussion also char-
acterizes the outage probability of the MISO fading channel. Further, restricting the
MIMO channel H to be diagonal we have also characterized the outage probability of
the parallel fading channel.

B.9 Multiple Access Channel

B.9.1 Capacity Region

The uplink channel (with potentially multiple antenna elements) is a special case of
the multiple access channel. Information theory gives a formula for computing the
capacity region of the multiple access channel in terms of mutual informations, from
which the corresponding region for the uplink channel can be derived as a special case.

The capacity of a memoryless point-to-point channel with input x and output y is
given by

C = max
px

I(x; y),

where the maximization is over the input distributions subject to the average cost
constraint. There is an analogous theorem for multiple access channels. Consider a
2-user channel, with inputs xk from user k, k = 1, 2 and output y. For given input
distributions px1 and px2 and independent across the two users, define the pentagon
C(px1 , px2) as the set of all rate pairs satisfying:

R1 < I(x1; y|x2), (B.80)

R2 < I(x2; y|x1), (B.81)

R1 + R2 < I(x1, x2; y). (B.82)
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R1

R2

A2

B1

A1

B2

Figure B.7: The achievable rate regions (pentagons) corresponding to two different
input distributions may not fully overlap with respect to one another.

The capacity region of the multiple access channel is the convex hull of the union
of these pentagons over all possible independent input distributions subject to the
appropriate individual average cost constraints, i.e.,

C = convex hull of
(∪px1 ,px2

C(px1 , px2)
)
. (B.83)

The convex hull operation means that we not only include points in ∪C(px1 , px2) in C,
but also all their convex combinations. This is natural since the convex combinations
can be achieved by time-sharing.

The capacity region of the uplink channel with single antenna elements can be
arrived at by specializing this result to the scalar Gaussian multiple access channel.
With average power constraints on the two users, we observe that Gaussian inputs for
user 1 and 2 simultaneously maximize I(x1; y|x2), I(x2; y|x1) and I(x1; x2; y). Hence,
the pentagon from this input distribution is a superset of all other pentagons, and
the capacity region itself is this pentagon. The same observation holds for the time-
invariant uplink channel with single transmit antennas at each user and multiple receive
antennas at the base station. The expressions for the capacity regions of the uplink
with a single receive antenna are provided in (6.4), (6.5) and (6.6). The capacity region
of the uplink with multiple receive antennas is expressed in (10.6).

In the uplink with single transmit antennas, there was a unique set of input dis-
tributions that simultaneously maximized the different constraints (c.f. (B.80), (B.81)
and (B.82)). In general, no single pentagon may dominate over the other pentagons,
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and in that case the overall capacity region may not be a pentagon (see Figure B.7). An
example of this situation is provided by the uplink with multiple transmit antennas at
the users. In this situation, zero mean circularly symmetric complex Gaussian random
vectors still simultaneously maximize all the constraints, but with different covariance
matrices. Thus we can restrict the user input distributions to be zero mean CN , but
leave the covariance matrices of the users as parameters to be chosen. Consider the
2-user uplink with multiple transmit and receive antennas. Fixing the kth user input
distribution to be CN (0,Kk) for k = 1, 2, the corresponding pentagon is expressed in
(10.23) and (10.24). In general, there is no single choice of covariance matrices that
simultaneously maximize the constraints: the capacity region is the convex hull of the
union of the pentagons created by all the possible covariance matrices (subject to the
power constraints on the users).

B.9.2 Corner Points of the Capacity Region

Consider the pentagon C(px1 , px2) parameterized by fixed independent input distribu-
tions on the two users and illustrated in Figure B.8. The two corner points A and B
have an important significance: if we have coding schemes that achieve reliable com-
munication to the users at the rates advertised by these two points, then the rates at
every other point in the pentagon can be achieved by appropriate time sharing be-
tween the two strategies that achieved the points A and B. Below, we try to get some
insight into the nature of the two corner points and properties of the receiver design
that achieves them.

Consider the corner point B. At this point, user 1 gets the rate I(x1; y). Using the
chain rule for mutual information we can write

I(x1, x2; y) = I(x1; y) + I(x2; y|x1).

Since the sum rate constraint is tight at the corner point B, user 2 achieves its’ highest
rate I(x2; y|x1). This rate pair can be achieved by a successive interference cancellation
(SIC) receiver: decode user 1 first, treating the signal from user 2 as part of the noise.
Next, decode user 2 conditioned on the already decoded information from user 1. In the
uplink with a single antenna, the second stage of the successive cancellation receiver is
very explicit: given the decoded information from user 1, the receiver simply subtracts
the decoded transmit signal of user 1 from the received signal. With multiple receive
antennas, the successive cancellation is done in conjunction with the MMSE receiver.
The MMSE receiver is information lossless (this aspect is explored in Section 8.3.4) and
we can conclude the following intuitive statement: the MMSE-SIC receiver is optimal
because it “implements” the chain rule for mutual information.
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R1

R2
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A

I(x2; y|x1)

I(x1; y)
•

Figure B.8: The set of rates at which two users can jointly reliably communicate is a
pentagon, parameterized by the independent users’ input distributions.

B.9.3 Fast Fading Uplink

Consider the canonical 2-user fast fading MIMO uplink channel:

y[m] = H1[m]x1[m] + H2[m]x2[m] + w[m], (B.84)

where the MIMO channels H1 and H2 are independent and i.i.d. over time. As argued
in Section B.7.1, interleaving allows us to convert stationary channels with memory to
this canonical form. We are interested in the receiver CSI situation: the receiver tracks
both the users’ channels perfectly. For fixed independent input distributions px1 and
px2 , the achievable rate region consists of tuples (R1, R2) constrained by

R1 < I(x1;y,H1,H2|x2), (B.85)

R2 < I(x2;y,H1,H2|x1), (B.86)

R1 + R2 < I(x1,x2;y,H1,H2). (B.87)

Here we have modeled receiver CSI as the MIMO channels being part of the output of
the multiple access channel. Since the channels are independent of the user inputs, we
can use the chain rule of mutual information as in (B.63), to rewrite the constraints
on the rate tuples as

R1 < I(x1;y|H1,H2,x2), (B.88)

R2 < I(xk;y|H1,H2,x1), (B.89)
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R1 + R2 < I(x1,x2;y|H1,H2). (B.90)

Fixing the realization of the MIMO channels of the users, we see again (as in the time-
invariant MIMO uplink) that the input distributions can be restricted to be zero mean
CN but leave their covariance matrices as parameters to be chosen later. The corre-
sponding rate region is a pentagon expressed by (10.23) and (10.24). The conditional
mutual information is now the average over the stationary distributions of the MIMO
channels: an expression for this pentagon is provided in (10.28) and (10.29).

Exercises

Exercise B.1. Suppose x is a discrete random variable taking on K values, each with
probability p1, . . . , pK . Show that

max
p1,...,pK

H(x) = log K,

and further that this is achieved only when pi = 1/K, i = 1 . . . K, i.e., x is uniformly
distributed.

Exercise B.2. In this exercise, we will study when conditioning does not reduce
entropy.

1. A concave function f is defined in the text by the condition f ′′(x) ≤ 0 for x in
the domain. Give an alternative geometric definition that does not use calculus.

2. Jensen’s inequality for a random variable x states that for any concave function
f :

E [f(x)] ≤ f (E [x]) . (B.91)

Prove this statement. Hint: You might find it useful to draw a picture and
visualize the proof geometrically. The geometric definition of a concave function
might come in handy here.

3. Show that H(x|y) ≤ H(x) with equality if and only if x and y are independent.
Give an example in which H(x|y = k) > H(x). Why is there no contradiction
between these two statements?

Exercise B.3. Under what condition on x1, x2, y does it hold that

I(x1, x2; y) = I(x1; y) + I(x2; y)? (B.92)
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Exercise B.4. Consider a continuous real random variable x with density fx(·) non-
zero on the entire real line. Suppose the second moment of x is fixed to be P . Show
that among all random variables with the constraints as those on x, the Gaussian
random variable has the maximum differential entropy. Hint: The differential entropy
is a concave function of the density function and fixing the second moment corresponds
to a linear constraint on the density function. So, you can use the classical Lagrangian
techniques to solve this problem.

Exercise B.5. Suppose x is now a nonnegative random variable with density non-zero
for all nonnegative real numbers. Further suppose that the mean of x is fixed. Show
that among all random variables of this form, the exponential random variable has the
maximum differential entropy.

Exercise B.6. In this exercise, we generalize the results in Exercises B.4 and B.5.
Consider a continuous real random variable x with density fx(·) on a support set S (i.e.,
fx(u) = 0, u 6∈ S). In this problem we will study the structure of the random variable
x with maximal differential entropy that satisfies the following moment conditions:

∫

S

ri(u)fx(u) du = Ai, i = 1 . . . m. (B.93)

Show that x with density

fx(u) = exp

(
λ0 − 1 +

m∑
i=1

λiri(u)

)
, u ∈ S, (B.94)

has the maximal differential entropy subject to the moment conditions (B.93). Here
λ0, λ1, . . . , λm are chosen such that the moment conditions (B.93) are met and that
fx(·) is a density function (i.e., it integrates to unity).

Exercise B.7. In this problem, we will consider the differential entropy of a vector of
continuous random variables with moment conditions.

1. Consider the class of continuous real random vectors x with the covariance condi-
tion: E [xxt] = K. Show that the jointly Gaussian random vector with covariance
K has the maximal differential entropy among this set of covariance constrained
random variables.

2. Now consider a complex random variable x. Show that among the class of contin-
uous complex random variables x with the second moment condition E [|x|2] ≤ P ,
the circularly symmetric Gaussian complex random variable has the maximal dif-
ferential entropy. Hint: View x as a length 2 vector of real random variables and
use the previous part of this question.
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Exercise B.8. Consider a zero mean complex random vector x with fixed covariance
E [xx∗] = K. Show the following upper bound on the differential entropy:

h(x) ≤ log det (πeK) , (B.95)

with equality when x is CN (0,K). Hint: This is a generalization of Exercise B.7(2).

Exercise B.9. Show that the structure of the input distribution in (5.28) optimizes
the mutual information in the MISO channel. Hint: Write the second moment of y as
a function of the covariance of x and see which covariance of x maximizes the second
moment of y. Now use Exercise B.8 to come to the desired conclusion.

Exercise B.10. Consider the real random vector x with i.i.d. N (0, P ) components.
In this exercise, we consider properties of the scaled vector x̃ := 1√

N
x. (The material

here is drawn from the discussion in Chapter 5.5 in [119].)

1. Show that
E[‖x‖2]

N
= P , so the scaling ensured that the mean length of ‖x̃‖2 is P ,

independent of N .

2. Calculate the variance of ‖x̃‖2 and show that ‖x̃‖2 converges to P in probability.
Thus, the scaled vector is concentrated around its mean.

3. Consider the event that x̃ lies in the shell between two concentric spheres of
radius ρ− δ and ρ. (See Figure B.9.) Calculate the volume of this shell to be

BN

(
ρN − (ρ− δ)N

)
, where BN =





πN/2

(N
2 )!

Neven

2Nπ(N−1)/2(N−1
2 )!

N !
N odd

. (B.96)

4. Show that we can approximate the volume of the shell by

NBNρN−1δ, for δ/ρ ¿ 1. (B.97)

5. Let us approximate the density of x̃ inside this shell to be

fx̃(a) ≈
(

N

2πP

)N/2

exp

(
−Nρ2

2P

)
, r − δ < ‖a‖ ≤ ρ. (B.98)

Combining (B.98) and (B.97), show that for δ/ρ = a constant ¿ 1:

P (ρ− δ ≤ ‖x̃‖ < ρ) ≈
(

ρ exp

(
− ρ2

2P

))N

. (B.99)
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ρ− δ

x̃

δ

Figure B.9: The shell between two concentric spheres of radius ρ− δ and ρ.

√
P

(
ρe−ρ2/2P

)N

ρe−ρ2/2P

ρ

Figure B.10: Behavior of P (ρ− δ ≤ ‖x̃‖ < ρ) as a function of ρ.
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6. Show that the right hand side of (B.99) has a single maximum at ρ2 = P (see
Figure B.10).

7. Conclude that as N becomes large, the consequence is that only values of ‖x̃‖2 in
the vicinity of P have significant probability. This phenomenon is called sphere
hardening.

Exercise B.11. Calculate the mutual information achieved by the isotropic input dis-
tribution x is CN (0, P/L·IL) in the MISO channel with given channel gains h1, . . . , hL.

Exercise B.12. In this exercise, we will study the capacity of the L-tap frequency
selective channel directly (without recourse to the cyclic prefix idea). Consider a length
Nc vector input x on to the channel in (5.32) and denote the vector output (of length
Nc + L− 1) by y. The input and output are linearly related as

y = Gx + w, (B.100)

where G is a matrix whose entries depend on the channel coefficients h0, . . . , hL−1 as
follows: G[i, j] = hi−j for i ≥ j and zero everywhere else. The channel in (B.100)
is a vector version of the basic AWGN channel and we consider the rate of reliable
communication I (x;y) /Nc.

1. Show that the optimal input distribution is x is CN (0,Kx), for some covariance
matrix Kx meeting the power constraint. (Hint: You will find Exercise B.8
useful.)

2. Show that it suffices to consider only those covariances Kx that have the same set
of eigenvectors as G∗G. (Hint: Use Exercise B.8 to explicitly write the reliable
rate of communiation in the vector AWGN channel of (B.100).)

3. Show that
(G∗G)ij = ri−j, (B.101)

where

rn :=
L−l−1∑

`=0

(h`)
∗ h[` + n], n ≥ 0, (B.102)

rn := r∗−n, n ≤ 0. (B.103)

Such a matrix G∗G is said to be Toeplitz.

4. An important result about the Hermitian Toeplitz matrix GG∗ is that the empir-
ical distribution of its eigenvalues converges (weakly) to the discrete-time Fourier
transform of the sequence {rl}. How is the discrete-time Fourier transform of the
sequence {rl} related to the discrete-time Fourier transform H(f) of the sequence
h0, . . . , hL−1?
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5. Use the result of the previous part and the nature of the optimal K∗
x (discussed

in part (2)) to show that the rate of reliable communication is equal to

∫ W

0

log

(
1 +

P ∗(f)|H(f)|2
N0

)
df. (B.104)

Here the waterfilling power allocation P ∗(f) is as defined in (5.47). This answer
is, of course, the same as that derived in the text (c.f. (5.49)). The cyclic prefix
converted the frequency selective channel into a parallel channel, reliable com-
munication over which is easier to understand. With a direct approach we had
to use analytical results about Toeplitz forms; more can be learnt about these
techniques from [42].
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